1
|
Ren B, Ma J, Tao M, Jing G, Han S, Zhou C, Wang X, Wang J. The disturbance of thyroid-associated hormone and its receptors in brain and blood circulation existed in the early stage of mouse model of Alzheimer's disease. Aging (Albany NY) 2023; 15:1591-1602. [PMID: 36897166 PMCID: PMC10042683 DOI: 10.18632/aging.204570] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/20/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Studies showed that thyroid function plays an important role in the pathology of Alzheimer's disease (AD). However, changes in brain thyroid hormone and related receptors in the early stage of AD were rarely reported. The aim of this study was to explore the relationship between the early stage of AD and local thyroid hormone and its receptors in the brain. METHODS The animal model was established by stereotactic injection of okadaic acid (OA) into hippocampal region for the experiment, and 0.9% NS for the control. Blood sample from each mouse was collected and then the mice were sacrificed and the brain tissue was collected for detecting free triiodothyronine (FT3), free thyroid hormone (FT4), and thyroid-stimulating hormone (TSH), thyrotropin-releasing hormone (TRH) and phosphorylated tau, amyloid-β (Aβ) and thyroid hormone receptors (THRs) in the hippocampus of the mice were detected as well. RESULTS Enzyme-linked immunosorbent assay showed that compared with the control, FT3, FT4, TSH and TRH in brain were significantly increased in the experimental group; in the serum, FT4, TSH and TRH were increased, while FT3 had no change; western blot analysis indicated that the expression of THR α and β in the hippocampus of the experimental group was significantly higher than that of the control. CONCLUSION Based on the results of this study, a mouse AD model can be established successfully by injecting a small dose of OA into the hippocampus. We speculate that early AD brain and circulating thyroid dysfunction may be an early local and systemic stress repair response.
Collapse
Affiliation(s)
- Bingxiu Ren
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Jinxin Ma
- Department of Hospital Infection Management, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Min Tao
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Gongwei Jing
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Sheng Han
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Chengyi Zhou
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Xin Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| | - Jiaoya Wang
- Department of Nuclear Medicine, The Third Affiliated Hospital of Zunyi Medical University (The First People’s Hospital of Zunyi), Zunyi, Guizhou 563000, China
| |
Collapse
|
2
|
Khezri MR, Yousefi K, Esmaeili A, Ghasemnejad-Berenji M. The Role of ERK1/2 Pathway in the Pathophysiology of Alzheimer's Disease: An Overview and Update on New Developments. Cell Mol Neurobiol 2023; 43:177-191. [PMID: 35038057 DOI: 10.1007/s10571-022-01191-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 01/06/2022] [Indexed: 01/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder worldwide. Several findings suggest that correcting the dysregulated signaling pathways may offer a potential therapeutic approach in this disease. Extracellular signal-regulated kinase 1/2 (ERK1/2), a member of the mitogen-activated protein kinase family, plays a major role in regulation of cell proliferation, autophagy process, and protein synthesis. The available literature suggests dysregulated ERK1/2 in AD patients with potential implications in the multifaceted underlying pathologies of AD, including amyloid-β plaque formation, tau phosphorylation, and neuroinflammation. In this regard, in the current review, we aim to summarize the reports on the potential roles of ERK1/2 in AD pathophysiology.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Keyvan Yousefi
- Department of Molecular and Cellular Pharmacology, University of Miami-Miller School of Medicine, Miami, FL, USA.
| | - Ayda Esmaeili
- Clinical Pharmacy Department, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran. .,Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran. .,Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, PO Box: 5715799313, Urmia, Iran.
| |
Collapse
|
3
|
HIF-1α Causes LCMT1/PP2A Deficiency and Mediates Tau Hyperphosphorylation and Cognitive Dysfunction during Chronic Hypoxia. Int J Mol Sci 2022; 23:ijms232416140. [PMID: 36555780 PMCID: PMC9783654 DOI: 10.3390/ijms232416140] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic hypoxia is a risk factor for Alzheimer's disease (AD), and the neurofibrillary tangle (NFT) formed by hyperphosphorylated tau is one of the two major pathological changes in AD. However, the effect of chronic hypoxia on tau phosphorylation and its mechanism remains unclear. In this study, we investigated the role of HIF-1α (the functional subunit of hypoxia-inducible factor 1) in tau pathology. It was found that in Sprague-Dawley (SD) rats, global hypoxia (10% O2, 6 h per day) for one month induced cognitive impairments. Meanwhile it induced HIF-1α increase, tau hyperphosphorylation, and protein phosphatase 2A (PP2A) deficiency with leucine carboxyl methyltransferase 1(LCMT1, increasing PP2A activity) decrease in the rats' hippocampus. The results were replicated by hypoxic treatment in primary hippocampal neurons and C6/tau cells (rat C6 glioma cells stably expressing human full-length tau441). Conversely, HIF-1α silencing impeded the changes induced by hypoxia, both in primary neurons and SD rats. The result of dual luciferase assay proved that HIF-1α acted as a transcription factor of LCMT1. Unexpectedly, HIF-1α decreased the protein level of LCMT1. Further study uncovered that both overexpression of HIF-1α and hypoxia treatment resulted in a sizable degradation of LCMT1 via the autophagy--lysosomal pathway. Together, our data strongly indicated that chronic hypoxia upregulates HIF-1α, which obviously accelerated LCMT1 degradation, thus counteracting its transcriptional expression. The increase in HIF-1α decreases PP2A activity, finally resulting in tau hyperphosphorylation and cognitive dysfunction. Lowering HIF-1α in chronic hypoxia conditions may be useful in AD prevention.
Collapse
|
4
|
Cardozo V, Vaamonde L, Parodi-Talice A, Zuluaga MJ, Agrati D, Portela M, Lima A, Blasina F, Dajas F, Bedó G. Multitarget neuroprotection by quercetin: Changes in gene expression in two perinatal asphyxia models. Neurochem Int 2021; 147:105064. [PMID: 33951501 DOI: 10.1016/j.neuint.2021.105064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/27/2022]
Abstract
Hypoxic-ischemic encephalopathy (HIE) causes mortality and long-term neurologic morbidities in newborns, affecting pathways related to energy failure, excitotoxicity and oxidative stress that often lead to cell death. The whole process of HIE injury is coupled to changes in the expression of a great array of proteins. A nanoliposomal preparation of the flavonoid quercetin has been shown to exert neuroprotective effects in perinatal asphyxia models. This study aimed to identify neonatal HIE markers and explore the effect of quercetin administration in two perinatal asphyxia models: newborn rats and piglets. In the rat model, nanoliposomal quercetin administration reduced mortality after asphyxia. In the piglet model, quercetin partially overrode the reduction of HIF-1α mRNA levels in the cortex induced by asphyxia. Quercetin administration also reduced increased level of HO-1 mRNA in asphyctic piglets. These results suggest that quercetin neuroprotection might be involved in the regulation of HIF-1α, HO-1 and their targets. A proteomic approach revealed that the glycolytic pathway is strongly regulated by quercetin in both species. We also identified a set of proteins differentially expressed that could be further considered as markers. In piglets, this set includes Acidic Leucine-rich nuclear phosphoprotein 32 (ANP32A), associated with nervous system differentiation, proteins related with death pathways and alpha-enolase which can be converted to neuron-specific enolase, a glycolytic enzyme that may promote neuroprotection. In newborn rats, other promising proteins associated with neurogenesis and neuroprotection emerged, such as dihydropyrimidinase-related proteins, catalytic and regulatory subunits of phosphatases and heterogeneous nuclear ribonucleoprotein K (hnRNPK). Our results show that a nanoliposomal preparation of quercetin, with protective effect in two HIE mammal models, modulates the expression of proteins involved in energy metabolism and other putative neuroprotective signals in the cortex. Identification of these signals could reveal potential molecular pathways involved in disease onset and the novel quercetin neuroprotective strategy.
Collapse
Affiliation(s)
- V Cardozo
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - L Vaamonde
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Parodi-Talice
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay; Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - M J Zuluaga
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - D Agrati
- Sección Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - M Portela
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay
| | - A Lima
- Unidad de Bioquímica y Proteómica Analíticas, Institut Pasteur de Montevideo; Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - F Blasina
- Dept. Neonatología, Facultad de Medicina, Universidad de la República (Udelar), Montevideo, Uruguay.
| | - F Dajas
- Dept. Neuroquímica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay
| | - G Bedó
- Sección Genética Evolutiva, Facultad de Ciencias, Universidad de la República (Udelar), Montevideo, Uruguay.
| |
Collapse
|
5
|
Fuzheng Quxie Decoction Ameliorates Learning and Memory Impairment in SAMP8 Mice by Decreasing Tau Hyperphosphorylation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:5934254. [PMID: 29422936 PMCID: PMC5750500 DOI: 10.1155/2017/5934254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Hyperphosphorylation of the microtubule-associated protein, tau, is critical to the progression of Alzheimer's disease (AD). Fuzheng Quxie Decoction (FQD), a Chinese herbal complex, is an effective clinical formula used to treat AD. In the current study, we employed high-performance liquid chromatography and liquid chromatography tandem mass spectrometry to identify the components of FQD. Three major components (ginsenoside Rg1, ginsenoside Re, and coptisine) were detected in the brain of FQD-fed mice, indicating their ability to cross the blood-brain barrier. We further evaluated the efficacy of FQD on Senescence-Accelerated Mice Prone-8 (SAMP8) mice. FQD significantly ameliorated learning and memory deficits in SAMP8 mice on the Morris Water Maze, decreasing escape latency (p < 0.01) and increasing swim time within the original platform-containing quadrant (p < 0.05). Further, FQD increased the number of neurons and intraneuronal Nissl bodies in the hippocampal CA1 region. FQD also decreased the expression of phosphorylated tau protein and increased the expression of protein phosphatase 2A (PP2A) and the N-methyl-D-aspartate receptor subunit, NR2A (p < 0.01). Our results indicate that FQD improves the learning and memory ability of SAMP8 mice. Moreover, our findings suggest that the protective effect of FQD is likely mediated through an inhibition of hippocampal tau hyperphosphorylation via NMDAR/PP2A-associated proteins.
Collapse
|
6
|
Mavroeidi P, Mavrofrydi O, Pappa E, Panopoulou M, Papazafiri P, Haralambous S, Efthimiopoulos S. Oxygen and Glucose Deprivation Alter Synaptic Distribution of Tau Protein: The Role of Phosphorylation. J Alzheimers Dis 2017; 60:593-604. [DOI: 10.3233/jad-170157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Panagiota Mavroeidi
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
- Inflammation Research Group and Transgenic Technology Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Olga Mavrofrydi
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Elpiniki Pappa
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Myrto Panopoulou
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Papazafiri
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sylva Haralambous
- Inflammation Research Group and Transgenic Technology Lab, Hellenic Pasteur Institute, Athens, Greece
| | - Spiros Efthimiopoulos
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Yuan Y, Chen Z, Li L, Li X, Xia Q, Zhang H, Duan Q, Zhao Y. High intraocular pressure produces learning and memory impairments in rats. Brain Res 2017; 1675:78-86. [PMID: 28893580 DOI: 10.1016/j.brainres.2017.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/17/2017] [Accepted: 09/01/2017] [Indexed: 01/14/2023]
Abstract
Primary open angle glaucoma (POAG) is a leading cause of irreversible blindness worldwide. Previous MRI studies have revealed that POAG can be associated with alterations in hippocampal function. Thus, the aim of this study was to investigate a relationship between chronic high intraocular pressure (IOP) and hippocampal changes in a rat model. We used behavioural tests to assess learning and memory ability, and additionally investigated the hippocampal expression of pathological amyloid beta (Aβ), phospho-tau, and related pathway proteins. Chronic high IOP impaired learning and memory in rats and concurrently increased Aβ and phospho-tau expression in the hippocampus by altering the activation of different kinase (GSK-3β, BACE1) and phosphatase (PP2A) proteins in the hippocampus. This study provides novel evidence for the relationship between high IOP and hippocampal alterations, especially in the context of learning and memory.
Collapse
Affiliation(s)
- Yuxiang Yuan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Chen
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xing Li
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, China
| | - Qian Xia
- Department of Neurobiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Diseases, Ministry of Education, Wuhan 430030, China
| | - Hong Zhang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qiming Duan
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yin Zhao
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
8
|
Zhang CE, Yang X, Li L, Sui X, Tian Q, Wei W, Wang J, Liu G. Hypoxia-induced tau phosphorylation and memory deficit in rats. NEURODEGENER DIS 2014; 14:107-16. [PMID: 24993525 DOI: 10.1159/000362239] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 03/17/2014] [Indexed: 11/19/2022] Open
Abstract
Hypoxia was shown to be associated with an increased risk of Alzheimer's disease (AD). The effects of hypoxia on the development of AD pathology and spatial memory ability and the possible molecular mechanisms remain poorly understood. In this study, we demonstrate that rats exposed to a hypoxic condition (10% oxygen concentration) for 1, 2, 4 and 8 weeks (6 h each day) displayed spatial memory impairment and increased tau phosphorylation at Ser198/199/202, Thr205, Ser262, Ser396 and Ser404 in the hippocampus. Concomitantly, the levels of Tyr216-phosphorylated glycogen synthase kinase (GSK)-3β (activated form of GSK-3β) and Tyr307-phosphorylated protein phosphatase 2A (inactivated form of PP2A) were significantly increased in the hippocampus of the rats with 1, 2, 4 and 8 weeks of hypoxia exposure, while the levels of methylated PP2A (activated form of PP2A) were significantly decreased in the hippocampus of the rats with 4 and 8 weeks of hypoxia exposure. In addition, the content of malondialdehyde, an indicator of oxidative stress, was elevated, whereas the activity of superoxide dismutase was not significantly changed in the hippocampus of the rats exposed to hypoxia. Taken together, these data demonstrated that hypoxia induced tau hyperphosphorylation and memory impairment in rats, and that the increased tau phosphorylation could be attributed to activation of GSK-3β and inactivation of PP2A. These data suggest that interventions to improve hypoxia may be helpful to prevent the development of AD pathology and cognitive impairment.
Collapse
Affiliation(s)
- Chang-E Zhang
- Department of Pathophysiology, Guangzhou Medical University, Guangzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Arendt T, Bullmann T. Neuronal plasticity in hibernation and the proposed role of the microtubule-associated protein tau as a "master switch" regulating synaptic gain in neuronal networks. Am J Physiol Regul Integr Comp Physiol 2013; 305:R478-89. [PMID: 23824962 DOI: 10.1152/ajpregu.00117.2013] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present paper provides an overview of adaptive changes in brain structure and learning abilities during hibernation as a behavioral strategy used by several mammalian species to minimize energy expenditure under current or anticipated inhospitable environmental conditions. One cellular mechanism that contributes to the regulated suppression of metabolism and thermogenesis during hibernation is reversible phosphorylation of enzymes and proteins, which limits rates of flux through metabolic pathways. Reversible phosphorylation during hibernation also affects synaptic membrane proteins, a process known to be involved in synaptic plasticity. This mechanism of reversible protein phosphorylation also affects the microtubule-associated protein tau, thereby generating a condition that in the adult human brain is associated with aggregation of tau protein to paired helical filaments (PHFs), as observed in Alzheimer's disease. Here, we put forward the concept that phosphorylation of tau is a neuroprotective mechanism to escape NMDA-mediated hyperexcitability of neurons that would otherwise occur during slow gradual cooling of the brain. Phosphorylation of tau and its subsequent targeting to subsynaptic sites might, thus, work as a kind of "master switch," regulating NMDA receptor-mediated synaptic gain in a wide array of neuronal networks, thereby enabling entry into torpor. If this condition lasts too long, however, it may eventually turn into a pathological trigger, driving a cascade of events leading to neurodegeneration, as in Alzheimer's disease or other "tauopathies".
Collapse
Affiliation(s)
- Thomas Arendt
- Paul Flechsig Institute of Brain Research, Universität Leipzig, Germany.
| | | |
Collapse
|
10
|
Medina M, Avila J, Villanueva N. Use of okadaic acid to identify relevant phosphoepitopes in pathology: a focus on neurodegeneration. Mar Drugs 2013; 11:1656-68. [PMID: 23697949 PMCID: PMC3707166 DOI: 10.3390/md11051656] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 04/02/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022] Open
Abstract
Protein phosphorylation is involved in the regulation of a wide variety of physiological processes and is the result of a balance between protein kinase and phosphatase activities. Biologically active marine derived compounds have been shown to represent an interesting source of novel compounds that could modify that balance. Among them, the marine toxin and tumor promoter, okadaic acid (OA), has been shown as an inhibitor of two of the main cytosolic, broad-specificity protein phosphatases, PP1 and PP2A, thus providing an excellent cell-permeable probe for examining the role of protein phosphorylation, and PP1 and PP2A in particular, in any physiological or pathological process. In the present work, we review the use of okadaic acid to identify specific phosphoepitopes mainly in proteins relevant for neurodegeneration. We will specifically highlight those cases of highly dynamic phosphorylation-dephosphorylation events and the ability of OA to block the high turnover phosphorylation, thus allowing the detection of modified residues that could be otherwise difficult to identify. Finally, its effect on tau hyperhosphorylation and its relevance in neurodegenerative pathologies such as Alzheimer’s disease and related dementia will be discussed.
Collapse
Affiliation(s)
- Miguel Medina
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
| | - Jesús Avila
- CIBERNED (Center for Networked Biomedical Research in Neurodegenerative Diseases), Valderrebollo 5, Madrid 28041, Spain; E-Mail:
- Center of Molecular Biology “Severo Ochoa” CSIC-UAM, Nicolás Cabrera 1, Madrid 28049, Spain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-91-196-4803; Fax: +34-91-196-4715
| | - Nieves Villanueva
- National Center of Microbiology (CNM), Carlos III Institute of Health (ISCIII), Crta. Majadahonda-Pozuelo km 2, Majadahonda, Madrid 28220, Spain; E-Mail:
| |
Collapse
|
11
|
Lin LF, Liao MJ, Xue XY, Zhang W, Yan L, Cai L, Zhou XW, Zhou X, Luo HM. Combination of Aβ clearance and neurotrophic factors as a potential treatment for Alzheimer's disease. Neurosci Bull 2013; 29:111-20. [PMID: 23179066 PMCID: PMC5561854 DOI: 10.1007/s12264-012-1287-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/12/2012] [Indexed: 12/31/2022] Open
Abstract
There is no effective drug to treat Alzheimer's disease (AD), a neurodegenerative disease affecting an estimated 30 million people around the world. Strongly supported by preclinical and clinical studies, amyloid-beta (Aβ) may be a target for developing drugs against AD. Meanwhile, the fact that localized neuronal death/loss and synaptic impairment occur in AD should also be considered. Neuronal regeneration, which does not occur normally in the mammalian central nervous system, can be promoted by neurotrophic factors (NTFs). Evidence from clinical trials has shown that both Aβ clearance and NTFs are potentially effective in treating AD, thus a new approach combining Aβ clearance and administration of NTFs may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Lian-Feng Lin
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Min-Jing Liao
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
- Department of Laboratory Medicine, Medical College of Hunan Normal University, Changsha, 410013 China
| | - Xiao-Yan Xue
- Ganzhou People’s Hospital, Ganzhou, 341000 China
| | - Wei Zhang
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Li Yan
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Liang Cai
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Xiao-Wen Zhou
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Xing Zhou
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
| | - Huan-Min Luo
- Department of Pharmacology, Jinan University, Guangzhou, 510632 China
- Institute of Brain Sciences, School of Medicine, Jinan University, Guangzhou, 510632 China
- The Joint Laboratory of Brain Function and Health, Jinan University and The University of Hong Kong, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
12
|
Sun J, Fang YQ, Ren H, Chen T, Guo JJ, Yan J, Song S, Zhang LY, Liao H. WIN55,212-2 protects oligodendrocyte precursor cells in stroke penumbra following permanent focal cerebral ischemia in rats. Acta Pharmacol Sin 2013. [PMID: 23202804 DOI: 10.1038/aps.2012.141] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To explore whether the synthetic cannabinoid receptor agonist WIN55,212-2 could protect oligodendrocyte precursor cells (OPCs) in stroke penumbra, thereby providing neuroprotection following permanent focal cerebral ischemia in rats. METHODS Adult male SD rats were subjected to permanent middle cerebral artery occlusion (p-MCAO). The animals were administered WIN55,212-2 at 2 h, and sacrificed at 24 h after the ischemic insult. The infarct volumes and brain swelling were assessed. The expression of cannabinoid receptor type 1 (CB1) in the stroke penumbra was examined using Western blot assay. The pathological changes and proliferation of neural glial antigen 2-positive OPCs (NG2(+) cells) in the stroke penumbra were studied using immunohistochemistry staining. RESULTS p-MCAO significantly increased the expression of CB1 within the stroke penumbra with the highest level appearing at 2 h following the ischemic insult. Administration of WIN55,212-2 (9 mg/kg, iv) significantly attenuated the brain swelling, and reduced the infarct volume as well as the number of tau-immunoreactive NG2(+) cells (tau-1(+)/NG2(+) cells) in the stroke penumbra. Moreover, WIN55,212-2 significantly promoted the proliferation of NG2(+) cells in the stroke penumbra and in the ipsilateral subventricular zone at 24 h following the ischemic insult. Administration of the selective CB1 antagonist rimonabant (1 mg/kg, iv) partially blocked the effects caused by WIN55,212-2. CONCLUSION Tau-1 is expressed in NG2(+) cells following permanent focal cerebral ischemic injury. Treatment with WIN55,212-2 reduces the number of tau-1(+)/NG2(+) cells and promotes NG2(+) cell proliferation in the stroke penumbra, which are mediated partially via CB1 and may contribute to its neuroprotective effects.
Collapse
|
13
|
Molecular Mechanisms Underlie Alzheimer-like Tau Hyperphosphorylation and Neurodegeneration*. PROG BIOCHEM BIOPHYS 2012. [DOI: 10.3724/sp.j.1206.2012.00333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sun XY, Wei YP, Xiong Y, Wang XC, Xie AJ, Wang XL, Yang Y, Wang Q, Lu YM, Liu R, Wang JZ. Synaptic released zinc promotes tau hyperphosphorylation by inhibition of protein phosphatase 2A (PP2A). J Biol Chem 2012; 287:11174-82. [PMID: 22334661 DOI: 10.1074/jbc.m111.309070] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hyperphosphorylated tau is the major component of neurofibrillary tangles in Alzheimer disease (AD), and the tangle distribution largely overlaps with zinc-containing glutamatergic neurons, suggesting that zinc released in synaptic terminals may play a role in tau phosphorylation. To explore this possibility, we treated cultured hippocampal slices or primary neurons with glutamate or Bic/4-AP to increase the synaptic activity with or without pretreatment of zinc chelators, and then detected the phosphorylation levels of tau. We found that glutamate or Bic/4-AP treatment caused tau hyperphosphorylation at multiple AD-related sites, including Ser-396, Ser-404, Thr-231, and Thr-205, while application of intracellular or extracellular zinc chelators, or blockade of zinc release by extracellular calcium omission almost abolished the synaptic activity-associated tau hyperphosphorylation. The zinc release and translocation of excitatory synapses in the hippocampus were detected, and zinc-induced tau hyperphosphorylation was also observed in cultured brain slices incubated with exogenously supplemented zinc. Tau hyperphosphorylation induced by synaptic activity was strongly associated with inactivation of protein phosphatase 2A (PP2A), and this inactivation can be reversed by pretreatment of zinc chelator. Together, these results suggest that synaptically released zinc promotes tau hyperphosphorylation through PP2A inhibition.
Collapse
Affiliation(s)
- Xu-Ying Sun
- Department of Pathophysiology, Tongji Medical College, HuaZhong University of Science and Technology, Wuhan, 430030, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Zhou P, Chen Z, Zhao N, Liu D, Guo ZY, Tan L, Hu J, Wang Q, Wang JZ, Zhu LQ. Acetyl-L-carnitine attenuates homocysteine-induced Alzheimer-like histopathological and behavioral abnormalities. Rejuvenation Res 2011; 14:669-79. [PMID: 21978079 DOI: 10.1089/rej.2011.1195] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Hyperhomocystinemia could induce tau protein hyperphosphorylation, β-amyloid (Aβ) accumulation, and memory deficits as seen in Alzheimer disease (AD), the most common cause of senile dementia with no effective cure currently. To search for possible treatment for AD, we produced a hyperhomocysteinemia model by vena caudalis injection of homocystine (Hcy) for 2 weeks and studied the effects of acetyl-L-carnitine (ALC) in rats. We found that simultaneous supplement of ALC could improve the Hcy-induced memory deficits remarkably, with attenuation of tau hyperphosphorylation and Aβ accumulation. Supplement of ALC almost abolished the Hcy-induced tau hyperphosphorylation at multiple AD-related sites. Supplementation of ALC also suppressed the phosphorylation of β-amyloid precursor proteins (APP), which may underlie the reduction of Aβ. Our data suggest that ALC could be a promising candidate for arresting Hcy-induced AD-like pathological and behavioral impairments.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Estadella D, Oyama LM, Bueno AA, Habitante CA, Souza GI, Ribeiro EB, Motoyama CSM, Oller do Nascimento CM. A palatable hyperlipidic diet causes obesity and affects brain glucose metabolism in rats. Lipids Health Dis 2011; 10:168. [PMID: 21943199 PMCID: PMC3198928 DOI: 10.1186/1476-511x-10-168] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 09/23/2011] [Indexed: 12/11/2022] Open
Abstract
Background We have previously shown that either the continuous intake of a palatable hyperlipidic diet (H) or the alternation of chow (C) and an H diet (CH regimen) induced obesity in rats. Here, we investigated whether the time of the start and duration of these feeding regimens are relevant and whether they affect brain glucose metabolism. Methods Male Wistar rats received C, H, or CH diets during various periods of their life spans: days 30-60, days 30-90, or days 60-90. Experiments were performed the 60th or the 90th day of life. Rats were killed by decapitation. The glucose, insulin, leptin plasma concentration, and lipid content of the carcasses were determined. The brain was sliced and incubated with or without insulin for the analysis of glucose uptake, oxidation, and the conversion of [1-14C]-glucose to lipids. Results The relative carcass lipid content increased in all of the H and CH groups, and the H30-60 and H30-90 groups had the highest levels. Groups H30-60, H30-90, CH30-60, and CH30-90 exhibited a higher serum glucose level. Serum leptin increased in all H groups and in the CH60-90 and CH30-90 groups. Serum insulin was elevated in the H30-60, H60-90, CH60-90, CH30-90 groups. Basal brain glucose consumption and hypothalamic insulin receptor density were lower only in the CH30-60 group. The rate of brain lipogenesis was increased in the H30-90 and CH30-90 groups. Conclusion These findings indicate that both H and CH diet regimens increased body adiposity independent treatment and the age at which treatment was started, whereas these diets caused hyperglycemia and affected brain metabolism when started at an early age.
Collapse
Affiliation(s)
- Debora Estadella
- Disciplina de Fisiologia da Nutrição, Departamento de Fisiologia, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang S, Toth ME, Bereczki E, Santha M, Guan ZZ, Winblad B, Pei JJ. Interplay between glycogen synthase kinase-3β and tau in the cerebellum of Hsp27 transgenic mouse. J Neurosci Res 2011; 89:1267-75. [PMID: 21544852 DOI: 10.1002/jnr.22660] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/26/2011] [Accepted: 03/09/2011] [Indexed: 12/19/2022]
Abstract
The association between heat shock protein 27 (Hsp27) and hyperphosphorylated tau has gained attention for more than a decade, but it has never been explored in vivo. In the present study, we found that tau phosphorylated at S396/404 (PHF-1) and S262 sites was significantly increased in the cerebellum of Hsp27 transgenic mice, which was concomitant with increased glycogen synthase kinase-3β (GSK3β) phosphorylated at Y216 and decreased GSK3β phosphorylated at S9. Neither 70-kDa ribosomal protein S6 kinase (p70S6K; total p70S6K, p70S6K at T389, and p70S6K at T421/S424) nor protein phosphatase PP2A (total PP2A, PP2A at Y307, methylated or demethylated PP2A) was changed. This suggests that the increased tau phosphorylation at S396/404 and S262 sites may be induced by Hsp27 through enhancement of GSK3β activity in the mouse cerebellum.
Collapse
Affiliation(s)
- Shan Wang
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, KI-Alzheimer's Disease Research Center, Novum, Huddinge, Sweden
| | | | | | | | | | | | | |
Collapse
|
18
|
Ogunshola OO, Antoniou X. Contribution of hypoxia to Alzheimer's disease: is HIF-1alpha a mediator of neurodegeneration? Cell Mol Life Sci 2009; 66:3555-63. [PMID: 19763399 PMCID: PMC11115623 DOI: 10.1007/s00018-009-0141-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/13/2022]
Abstract
The mammalian brain is extremely sensitive to alterations in cellular homeostasis as a result of environmental or physiological insults. In particular, hypoxic/ischemic challenges (i.e. reduced oxygen and/or glucose delivery) cause severe and detrimental alterations in brain function and can trigger neuronal cell death within minutes. Unfortunately, as we age, oxygen delivery to cells and tissues is impaired, thereby increasing the susceptibility of neurons to damage. Thus, hypoxic (neuronal) adaptation is significantly compromised during aging. Many neurological diseases, such as stroke, Alzheimer's disease (AD), Parkinson's disease and diabetes, are characterized by hypoxia, a state that is believed to only exacerbate disease progression. However, the contribution of hypoxia and hypoxia-mediated pathways to neurodegeneration remains unclear. This review discusses current evidence on the contribution of oxygen deprivation to AD, with an emphasis on hypoxia inducible transcription factor-1 (HIF-1)-mediated pathways and the association of AD with the cytoskeleton regulator cyclin-dependent kinase 5.
Collapse
Affiliation(s)
- O O Ogunshola
- Institute of Veterinary Physiology and Zurich Centre for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
19
|
Hyperphosphorylation of microtubule-associated tau protein plays dual role in neurodegeneration and neuroprotection. PATHOPHYSIOLOGY 2009; 16:311-6. [DOI: 10.1016/j.pathophys.2009.02.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
|
20
|
Run X, Liang Z, Zhang L, Iqbal K, Grundke-Iqbal I, Gong CX. Anesthesia induces phosphorylation of tau. J Alzheimers Dis 2009; 16:619-26. [PMID: 19276556 DOI: 10.3233/jad-2009-1003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abnormal hyperphosphorylation and aggregation of microtubule-associated protein tau play a crucial role in neurodegeneration of Alzheimer's disease (AD). Anesthesia has been associated with cognitive impairment and the risk for AD. Here we investigated the effects of anesthesia on site-specific tau phosphorylation and the possible mechanisms. We found that anesthesia for short periods (30 sec to 5 min) induced tau phosphorylation at Thr181, Ser199, Thr205, Thr212, Ser262, and Ser404 to small, but significant, extents, which appeared to result from anesthesia-induced activation of stress-activated protein kinases. Anesthesia for a longer time (1~h) induced much more dramatic phosphorylation of tau at the above sites, and the further phosphorylation may be associated with hypothermia induced by anesthesia. Anesthesia-induced tau phosphorylation appears to be specific because the increased phosphorylation was only seen at half of the tau phosphorylation sites studied and was not observed in global brain proteins. These studies clarified the dynamic changes of tau phosphorylation at various sites and, thus, served as a fundamental guide for future studies on tau phosphorylation by using brains of anesthetized experimental animals. Our findings also provide a possible mechanism by which anesthesia may cause postoperative cognitive impairment and increase the risk for AD.
Collapse
Affiliation(s)
- Xiaoqin Run
- Department of Neurochemistry, New York State Institute for Basic Research in Developmental Disabilities, Staten Island, NY 10314-6399, USA
| | | | | | | | | | | |
Collapse
|
21
|
Martin L, Magnaudeix A, Esclaire F, Yardin C, Terro F. Inhibition of glycogen synthase kinase-3β downregulates total tau proteins in cultured neurons and its reversal by the blockade of protein phosphatase-2A. Brain Res 2009; 1252:66-75. [DOI: 10.1016/j.brainres.2008.11.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/14/2008] [Accepted: 11/17/2008] [Indexed: 01/06/2023]
|
22
|
Su B, Wang X, Nunomura A, Moreira PI, Lee HG, Perry G, Smith MA, Zhu X. Oxidative stress signaling in Alzheimer's disease. Curr Alzheimer Res 2009; 5:525-32. [PMID: 19075578 DOI: 10.2174/156720508786898451] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Multiple lines of evidence demonstrate that oxidative stress is an early event in Alzheimer's disease (AD), occurring prior to cytopathology, and therefore may play a key pathogenic role in AD. Oxidative stress not only temporally precedes the pathological lesions of the disease but also activates cell signaling pathways, which, in turn, contribute to lesion formation and, at the same time, provoke cellular responses such as compensatory upregulation of antioxidant enzymes found in vulnerable neurons in AD. In this review, we provide an overview of the evidence of oxidative stress and compensatory responses that occur in AD, particularly focused on potential sources of oxidative stress and the roles and mechanism of activation of stress-activated protein kinase pathways.
Collapse
Affiliation(s)
- B Su
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Neurodegeneration and neurofibrillary degeneration are the two main pathological mechanisms of cognitive impairments in Alzheimer's disease (AD). It is not clear what factors determine the fates of neurons during the progress of the disease. Emerging evidence has suggested that mTOR-dependent signalling is involved in the two types of degeneration in AD brains. This review focuses on the roles of mTOR-dependent signalling in the pathogenesis of AD. It summarizes the recent advancements in the understanding of its roles in neurodegeneration and neurofibrillary degeneration, as well as the evidence achieved when mTOR-related signalling components were tested as potential biomarkers of cognitive impairments in the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Jin-Jing Pei
- Karolinska Institute, Department of Neurobiology, Care Sciences and SocietyKI-ADRC, Stockholm, Sweden
| | - Jacques Hugon
- Memory Center (CMRR) Lariboisière Hospital, University Paris 7 and Institut du Fer à Moulin InsermParis, France
| |
Collapse
|
24
|
Zhang CE, Tian Q, Wei W, Peng JH, Liu GP, Zhou XW, Wang Q, Wang DW, Wang JZ. Homocysteine induces tau phosphorylation by inactivating protein phosphatase 2A in rat hippocampus. Neurobiol Aging 2008; 29:1654-65. [PMID: 17537547 DOI: 10.1016/j.neurobiolaging.2007.04.015] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Revised: 04/02/2007] [Accepted: 04/09/2007] [Indexed: 11/23/2022]
Abstract
Hyperhomocysteinemia increases the risk of Alzheimer's disease (AD), but the mechanism is elusive. Here, we found that high plasma homocysteine induced by vena caudalis injection for 2 weeks could induce AD-like tau hyperphosphorylation at multiple sites in rat brain hippocampus. Homocysteine inhibited the activity of protein phosphatase 2A (PP2A) with a simultaneously increased Leu(309)-demethylation and Tyr(307)-phosphorylation of PP2A catalytic subunit (PP2A(C)). PP2A(C) Leu(309)-demethylation was positively correlated with its Tyr(307)-phosphorylation; and the abnormally modified PP2A(C) was incompetent in binding to its regulatory subunit (PP2A(B)). Homocysteine also activated methylesterase which stimulates demethylation of PP2A(C). In hippocampal slices of the homocysteine injected-rats and of the AD patients, the demethylated but not the methylated PP2A(C) was co-localized with the hyperphosphorylated tau. A simultaneous supplement of folate and vitamin B12 restored partially the plasma homocysteine level and thus significantly antagonized the homocysteine-induced tau hyperphosphorylation and as well as PP2A inactivation and the activity-related modifications of PP2A(C). These results suggest that homocysteine may be an upstream effector to induce AD-like tau hyperphosphorylation through inactivating PP2A.
Collapse
Affiliation(s)
- Chang-E Zhang
- Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Neurological Disease, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Neurofibrillary degeneration in Alzheimer's disease: from molecular mechanisms to identification of drug targets. Curr Opin Psychiatry 2008; 21:555-61. [PMID: 18852562 DOI: 10.1097/yco.0b013e328314b78b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Great progress has been made in understanding the pathogenesis of neurofibrillary degeneration in Alzheimer's disease brains in the last two decades. In this review we summarize how neurons are degenerated in Alzheimer's disease brains and highlight the evidence of using kinases such as glycogen synthase kinase 3 and p70 S6 kinase and phosphatases such as protein phosphatase 2A as drug targets to prohibit the formation of neurofibrillary degeneration of Alzheimer's disease. RECENT FINDINGS In general there are two types of neuronal degeneration in Alzheimer's disease brains: neurofibrillary formation and apoptosis. The microtubule-associated protein tau that stabilizes neuronal microtubules under normal physiological conditions is abnormally hyperphosphorylated in Alzheimer's disease brains, resulting in the generation of aberrant aggregates that are toxic to neurons. The processes of tau hyperphosphorylation and the formation of neurofibrillary tangles are caused by the imbalance of the activities of protein kinases and protein phosphatases in Alzheimer's disease brains. Recent findings from our and other groups have suggested glycogen synthase kinase 3 and p70 S6 kinase as main tau kinases and protein phosphatase 2A as the main tau phosphatase involved in the formation of these processes. Activities of these targets are implicated by Abeta peptide, the major component of another hallmark in Alzheimer's disease brains, senile plaques. SUMMARY To prevent the clinical progression of neurodegeneration, a combination strategy is suggested to target both senile plaques with immunization and neurofibrillary tangles with drugs to prevent the synthesis and phosphorylation of tau.
Collapse
|
26
|
Okadaic acid-sensitive protein phosphatases constrain phrenic long-term facilitation after sustained hypoxia. J Neurosci 2008; 28:2949-58. [PMID: 18337426 DOI: 10.1523/jneurosci.5539-07.2008] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Phrenic long-term facilitation (pLTF) is a serotonin-dependent form of pattern-sensitive respiratory plasticity induced by intermittent hypoxia (IH), but not sustained hypoxia (SH). The mechanism(s) underlying pLTF pattern sensitivity are unknown. SH and IH may differentially regulate serine/threonine protein phosphatase activity, thereby inhibiting relevant protein phosphatases uniquely during IH and conferring pattern sensitivity to pLTF. We hypothesized that spinal protein phosphatase inhibition would relieve this braking action of protein phosphatases, thereby revealing pLTF after SH. Anesthetized rats received intrathecal (C4) okadaic acid (25 nm) before SH (25 min, 11% O(2)). Unlike (vehicle) control rats, SH induced a significant pLTF in okadaic acid-treated rats that was indistinguishable from rats exposed to IH (three 5 min episodes, 11% O(2)). IH and SH with okadaic acid may elicit pLTF by similar, serotonin-dependent mechanisms, because intravenous methysergide blocks pLTF in rats receiving IH or okadaic acid plus SH. Okadaic acid did not alter IH-induced pLTF. In summary, pattern sensitivity in pLTF may reflect differential regulation of okadaic acid-sensitive serine/threonine phosphatases; presumably, these phosphatases are less active during/after IH versus SH. The specific okadaic acid-sensitive phosphatase(s) constraining pLTF and their spatiotemporal dynamics during and/or after IH and SH remain to be determined.
Collapse
|
27
|
Wang JZ, Liu F. Microtubule-associated protein tau in development, degeneration and protection of neurons. Prog Neurobiol 2008; 85:148-75. [PMID: 18448228 DOI: 10.1016/j.pneurobio.2008.03.002] [Citation(s) in RCA: 286] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 12/29/2007] [Accepted: 03/13/2008] [Indexed: 12/11/2022]
Abstract
As a principal neuronal microtubule-associated protein, tau has been recognized to play major roles in promoting microtubule assembly and stabilizing the microtubules and to maintain the normal morphology of the neurons. Recent studies suggest that tau, upon alternative mRNA splicing and multiple posttranslational modifications, may participate in the regulations of intracellular signal transduction, development and viability of the neurons. Furthermore, tau gene mutations, aberrant mRNA splicing and abnormal posttranslational modifications, such as hyperphosphorylation, have also been found in a number of neurodegenerative disorders, collectively known as tauopathies. Therefore, changes in expression of the tau gene, alternative splicing of its mRNA and its posttranslational modification can modulate the normal architecture and functions of neurons as well as in a situation of tauopathies, such as Alzheimer's disease. The primary aim of this review is to summarize the latest developments and perspectives in our understanding about the roles of tau, especially hyperphosphorylation, in the development, degeneration and protection of neurons.
Collapse
Affiliation(s)
- Jian-Zhi Wang
- Pathophysiology Department, Hubei Provincial Key Laboratory of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China.
| | | |
Collapse
|
28
|
Liu R, Zhou XW, Tanila H, Bjorkdahl C, Wang JZ, Guan ZZ, Cao Y, Gustafsson JA, Winblad B, Pei JJ. Phosphorylated PP2A (tyrosine 307) is associated with Alzheimer neurofibrillary pathology. J Cell Mol Med 2008; 12:241-57. [PMID: 18208556 PMCID: PMC3823485 DOI: 10.1111/j.1582-4934.2008.00249.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Down-regulation of protein phosphatase 2A (PP2A) is thought to play a critical role in tau hyperphosphorylation in Alzheimer's disease (AD). In vitro phosphorylation of PP2A catalytic subunit at Y307 efficiently inactivates PP2A. A specific antibody against phosphorylated (p) PP2A (Y307) (PP2Ac-Yp307) was used to investigate possible PP2A down-regulation by known pathophysiological changes associated with AD, such as Abeta accumulation and oestrogen deficiency. Immunohistochemistry and immunofluorescence confocal microscopy showed an aberrant accumulation of PP2Ac-Yp307 in neurons that bear pretangles or tangles in the susceptible brain regions, such as the entorhinal cortical cortex and the hippocampus. Experimentally, increased PP2Ac-Yp307 was observed in mouse N2a neuroblastoma cells that stably express the human amyloid precursor protein with Swedish mutation (APPswe) compared with wild-type, and in the brains of transgenic APPswe/ presenilin (PS1, A246E) mice, which corresponded to the increased tau phosphorylation. Treating N2a cells with Abeta25-35 mimicked the changes of PP2Ac-Yp307 and tau phosphorylation in N2a APPswe cells. Knockout of oestrogen receptor (ER) alpha or ERbeta gave similar changes of PP2Ac-Yp307 level and tau phosphorylation in the mouse brain. Taken together, these findings suggest that increased PP2A phosphorylation (Y307) can be mediated by Abeta deposition or oestrogen deficiency in the AD brain, and consequently compromise dephosphorylation of abnormally hyperphosphorylated tau, and lead to neurofibrillary tangle formation.
Collapse
Affiliation(s)
- R Liu
- Karolinska Institutet, KI-Alzheimer Disease Research Center (KI-ADRC), Novum, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Siniscalchi A, Cavallini S, Marino S, Falzarano S, Franceschetti L, Selvatici R. Effects of chemical ischemia on cerebral cortex slices: focus on mitogen-activated protein kinase cascade. Ann N Y Acad Sci 2007; 1090:445-54. [PMID: 17384288 DOI: 10.1196/annals.1378.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of harmful stimuli, among them energy depletion occurring during transient brain ischemia, are thought to unbalance protein kinase cascades, ultimately leading to neuronal damage. In superfused, electrically stimulated rat cerebral cortex slices, chemical ischemia (CI) was induced by a 5-min treatment with the mitochondrial toxin, sodium azide (10 mM), combined with the glycolysis blocker, 2-deoxyglucose (2 mM). Thereafter, 1 h reperfusion (REP) with normal medium followed. Western blot analysis of p21Ras, extracellular signal-regulated protein kinases (ERK)1/2 (p44/42), phospho-ERK1/2, mitogen-activated protein kinase (MAPK)-p38, phospho-p38, stress-activated protein kinases/c-Jun NH2-terminal protein kinases (SAPK/JNK), phospho-SAPK/JNK was carried out. The level of p21Ras was increased by 40% immediately after CI, and did not return to control values following REP. Both ERK1 and ERK2 levels were reduced by CI and recovered to control values following REP; no significant change in their phosphorylation degree (phosphorylated to total level ratio, about 50% in the controls) was observed. Neither p38 levels, nor phosphorylation degree were changed following CI/REP. The activation of SAPK/JNK was significantly reduced under CI, and did not recover following REP. All CI/REP-induced effects were prevented by the NMDA receptor antagonist MK-801, 10 microM, suggesting the involvement of glutamate. The present findings show that although CI stimulates the p21Ras protein, MAPK levels and/or phosphorylation are reduced, possibly because of acute energy depletion. Because the activation of SAPK/JNK has been related to both apoptosis and neuroprotection, the decrease observed under CI/REP conditions may instead be related to nonapoptotic neuronal death. These results could be of interest in developing preventive treatments for ischemia/REP-induced brain damage.
Collapse
Affiliation(s)
- Anna Siniscalchi
- Department of Clinical and Experimental Medicine, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17, 44100 Ferrara, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Carlin KP, Brownstone RM. Rapid pH and PO2changes in the tissue recording chamber during stoppage of a gas-equilibrated perfusate: effects on calcium currents in ventral horn neurons. Eur J Neurosci 2006; 24:1353-8. [PMID: 16965545 DOI: 10.1111/j.1460-9568.2006.05018.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In vitro studies often use bicarbonate-buffered saline solutions to mimic the normal extracellular environment of tissues. These solutions are typically equilibrated with gaseous O2 and CO2, the latter interacting with bicarbonate ions to maintain a physiological pH. In vitro tissue chambers, like those used for electrophysiology, are usually continually perfused with the gassed buffer, but stopping the perfusion to add expensive chemicals or acquire imaging data is a common practice. The present study demonstrates that this procedure leads to rapid (< 30 s) increases in pH and decreases in PO2 of the detained solution in the tissue chamber. During the first 200 s, pH increased by 0.4 units and resulted in a 25% PO2 reduction of the detained solution. The rates of these changes were dependent on the volume of solution in the chamber. In experiments using acute transverse slices from the lumbar spinal cord of neonatal (postnatal day 0-10) mice, perfusion stoppage of the same duration was accompanied by a 34.7% enhancement of the peak voltage-gated calcium current recorded from ventral horn neurons. In these cells both low voltage-activated and high voltage-activated currents were affected. These currents were unaffected by decreasing PO2 when a CO2-independent buffer was used, suggesting that changes in pH were responsible for the observed effects. It is concluded that the procedure of stopping a bicarbonate/CO2-buffered perfusate results in rapid changes in pH and PO2 of the solution detained in the tissue chamber, and that these changes have the potential to covertly influence experimental results.
Collapse
Affiliation(s)
- K P Carlin
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada R3E 0W3.
| | | |
Collapse
|