1
|
Lee S, Kim MA, Park JM, Park K, Sohn YC. Multiple tachykinins and their receptors characterized in the gastropod mollusk Pacific abalone: Expression, signaling cascades, and potential role in regulating lipid metabolism. Front Endocrinol (Lausanne) 2022; 13:994863. [PMID: 36187101 PMCID: PMC9521575 DOI: 10.3389/fendo.2022.994863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Tachykinin (TK) families, including the first neuropeptide substance P, have been intensively explored in bilaterians. Knowledge of signaling of TK receptors (TKRs) has enabled the comprehension of diverse physiological processes. However, TK signaling systems are largely unknown in Lophotrochozoa. This study identified two TK precursors and two TKR isoforms in the Pacific abalone Haliotis discus hannai (Hdh), and characterized Hdh-TK signaling. Hdh-TK peptides harbored protostomian TK-specific FXGXRamide or unique YXGXRamide motifs at the C-termini. A phylogenetic analysis showed that lophotrochozoan TKRs, including Hdh-TKRs, form a monophyletic group distinct from arthropod TKRs and natalisin receptor groups. Although reporter assays demonstrated that all examined Hdh-TK peptides activate intracellular cAMP accumulation and Ca2+ mobilization in Hdh-TKR-expressing mammalian cells, Hdh-TK peptides with N-terminal aromatic residues and C-terminal FXGXRamide motifs were more active than shorter or less aromatic Hdh-TK peptides with a C-terminal YXGXRamide. In addition, we showed that ligand-stimulated Hdh-TKRs mediate ERK1/2 phosphorylation in HEK293 cells and that ERK1/2 phosphorylation is inhibited by PKA and PKC inhibitors. In three-dimensional in silico Hdh-TKR binding modeling, higher docking scores of Hdh-TK peptides were consistent with the lower EC50 values in the reporter assays. The transcripts for Hdh-TK precursors and Hdh-TKR were highly expressed in the neural ganglia, with lower expression levels in peripheral tissues. When abalone were starved for 3 weeks, Hdh-TK1 transcript levels, but not Hdh-TK2, were increased in the cerebral ganglia (CG), intestine, and hepatopancreas, contrasting with the decreased lipid content and transcript levels of sterol regulatory element-binding protein (SREBP). At 24 h post-injection in vivo, the lower dose of Hdh-TK1 mixture increased SREBP transcript levels in the CG and hepatopancreas and accumulative food consumption of abalone. Higher doses of Hdh-TK1 and Hdh-TK2 mixtures decreased the SREBP levels in the CG. When Hdh-TK2-specific siRNA was injected into abalone, intestinal SREBP levels were significantly increased, whereas administration of both Hdh-TK1 and Hdh-TK2 siRNA led to decreased SREBP expression in the CG. Collectively, our results demonstrate the first TK signaling system in gastropod mollusks and suggest a possible role for TK peptides in regulating lipid metabolism in the neural and peripheral tissues of abalone.
Collapse
Affiliation(s)
- Seungheon Lee
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
| | - Mi Ae Kim
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jong-Moon Park
- College of Pharmacy, Gachon University, Incheon, South Korea
| | - Keunwan Park
- Natural Product Informatics Research Center, KIST Gangneung Institute of Natural Products, Gangneung, South Korea
| | - Young Chang Sohn
- Department of Marine Bioscience, Gangneung-Wonju National University, Gangneung, South Korea
- *Correspondence: Young Chang Sohn,
| |
Collapse
|
2
|
Grininger D, Birmingham JT. Dual modulatory effects on feedback from a proprioceptor in the crustacean stomatogastric nervous system. J Neurophysiol 2021; 125:1755-1767. [PMID: 33760675 DOI: 10.1152/jn.00080.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuromodulatory actions that change the properties of proprioceptors or the muscle movements to which they respond necessarily affect the feedback provided to the central network. Here we further characterize the responses of the gastropyloric receptor 1 (GPR1) and gastropyloric receptor 2 (GPR2) neurons in the stomatogastric nervous system of the crab Cancer borealis to movements and contractions of muscles, and we report how neuromodulation modifies those responses. We observed that the GPR1 response to contractions of the gastric mill 4 muscle (gm4) was absent, or nearly so, when the neuron was quiescent but robust when it was spontaneously active. We also found that the effects of four neuromodulatory substances (GABA, serotonin, proctolin, and TNRNFLRFamide) on the GPR1 response to muscle stretch were similar to those previously reported for GPR2. Finally, we showed that an excitatory action on gm4 due to proctolin combined with an inhibitory action on GPR2 due to GABA can allow for larger muscle contractions without increased proprioceptive feedback.NEW & NOTEWORTHY We report that the combination of GABA and the peptide proctolin increases contraction of a stomatogastric muscle while decreasing the corresponding response of the proprioceptor that reports on it. These results suggest a general mechanism by which muscle movements can be modified while sensory feedback is conserved, one that may be particularly well suited for providing flexibility to central pattern generator networks.
Collapse
Affiliation(s)
- Davis Grininger
- Department of Physics, Santa Clara University, Santa Clara, California
| | - John T Birmingham
- Department of Physics, Santa Clara University, Santa Clara, California
| |
Collapse
|
3
|
Dickinson PS, Samuel HM, Stemmler EA, Christie AE. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab. Gen Comp Endocrinol 2019; 282:113204. [PMID: 31201801 PMCID: PMC6719312 DOI: 10.1016/j.ygcen.2019.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Heidi M Samuel
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
4
|
To what extent may peptide receptor gene diversity/complement contribute to functional flexibility in a simple pattern-generating neural network? COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 30:262-282. [PMID: 30974344 DOI: 10.1016/j.cbd.2019.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/01/2019] [Accepted: 03/02/2019] [Indexed: 12/11/2022]
Abstract
Peptides are known to contribute to central pattern generator (CPG) flexibility throughout the animal kingdom. However, the role played by receptor diversity/complement in determining this functional flexibility is not clear. The stomatogastric ganglion (STG) of the crab, Cancer borealis, contains CPGs that are models for investigating peptidergic control of rhythmic behavior. Although many Cancer peptides have been identified, their peptide receptors are largely unknown. Thus, the extent to which receptor diversity/complement contributes to modulatory flexibility in this system remains unresolved. Here, a Cancer mixed nervous system transcriptome was used to determine the peptide receptor complement for the crab nervous system as a whole. Receptors for 27 peptide families, including multiple receptors for some groups, were identified. To increase confidence in the predicted sequences, receptors for allatostatin-A, allatostatin-B, and allatostatin-C were cloned, sequenced, and expressed in an insect cell line; as expected, all three receptors trafficked to the cell membrane. RT-PCR was used to determine whether each receptor was expressed in the Cancer STG. Transcripts for 36 of the 46 identified receptors were amplified; these included at least one for each peptide family except RYamide. Finally, two peptides untested on the crab STG were assessed for their influence on its motor outputs. Myosuppressin, for which STG receptors were identified, exhibited clear modulatory effects on the motor patterns of the ganglion, while a native RYamide, for which no STG receptors were found, elicited no consistent modulatory effects. These data support receptor diversity/complement as a major contributor to the functional flexibility of CPGs.
Collapse
|
5
|
Christie AE, Pascual MG, Yu A. Peptidergic signaling in the tadpole shrimp Triops newberryi: A potential model for investigating the roles played by peptide paracrines/hormones in adaptation to environmental change. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Christie AE. Neuropeptide discovery in Proasellus cavaticus: Prediction of the first large-scale peptidome for a member of the Isopoda using a publicly accessible transcriptome. Peptides 2017; 97:29-45. [PMID: 28893643 DOI: 10.1016/j.peptides.2017.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/01/2017] [Accepted: 09/03/2017] [Indexed: 11/29/2022]
Abstract
In silico transcriptome mining is one of the most effective methods for neuropeptide discovery in crustaceans, particularly for species that are small, rare or from geographically inaccessible habitats that make obtaining the large pools of tissue needed for other peptide discovery platforms impractical. Via this approach, large peptidomes have recently been described for members of many of the higher crustacean taxa, one notable exception being the Isopoda; no peptidome has been predicted for any member of this malacostracan order. Using a publicly accessible transcriptome for the isopod Proasellus cavaticus, a subcentimeter subterranean ground water dweller, the first in silico-predicted peptidome for a member of the Isopoda is presented here. BLAST searches employing known arthropod neuropeptide pre/preprohormone queries identified 49 transcripts as encoding putative homologs within the P. cavaticus transcriptome. The proteins deduced from these transcripts allowed for the prediction of 171 distinct mature neuropeptides. The P. cavaticus peptidome includes members of the adipokinetic hormone-corazonin-like peptide, allatostatin A, allatostatin B, allatostatin C, allatotropin, bursicon α, bursicon β, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone/molt-inhibiting hormone, diuretic hormone 31, eclosion hormone, elevenin, FMRFamide-like peptide, glycoprotein hormone α2, leucokinin, myosuppressin, neuroparsin, neuropeptide F, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, RYamide, short neuropeptide F, sulfakinin, tachykinin-related peptide and trissin families, as well as many linker/precursor-related sequences that may or may not represent additional bioactive molecules. Interestingly, many of the predicted P. cavaticus neuropeptides possess structures identical (or nearly so) to those previously described from members of several other malacostracan orders, i.e., the Decapoda, Amphipoda and Euphausiacea, a finding that suggests broad phylogenetic conservation of bioactive peptide structures, and possibly functions, may exist within the Malacostraca.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA, USA.
| |
Collapse
|
7
|
Abstract
Colocalization of small-molecule and neuropeptide transmitters is common throughout the nervous system of all animals. The resulting co-transmission, which provides conjoint ionotropic ('classical') and metabotropic ('modulatory') actions, includes neuropeptide- specific aspects that are qualitatively different from those that result from metabotropic actions of small-molecule transmitter release. Here, we focus on the flexibility afforded to microcircuits by such co-transmission, using examples from various nervous systems. Insights from such studies indicate that co-transmission mediated even by a single neuron can configure microcircuit activity via an array of contributing mechanisms, operating on multiple timescales, to enhance both behavioural flexibility and robustness.
Collapse
|
8
|
Christie AE, Pascual MG. Peptidergic signaling in the crab Cancer borealis: Tapping the power of transcriptomics for neuropeptidome expansion. Gen Comp Endocrinol 2016; 237:53-67. [PMID: 27497705 DOI: 10.1016/j.ygcen.2016.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/26/2016] [Accepted: 08/02/2016] [Indexed: 11/21/2022]
Abstract
The crab Cancer borealis has long been used as a model for understanding neural control of rhythmic behavior. One significant discovery made through its use is that even numerically simple neural circuits are capable of producing an essentially infinite array of distinct motor outputs via the actions of locally released and circulating neuromodulators, the largest class being peptides. While much work has focused on elucidating the peptidome of C. borealis, no investigation has used in silico transcriptome mining for peptide discovery in this species, a strategy proven highly effective for identifying neuropeptides in other crustaceans. Here, we mined a C. borealis neural transcriptome for putative peptide-encoding transcripts, and predicted 200 distinct mature neuropeptides from the proteins deduced from these sequences. The identified peptides include isoforms of allatostatin A, allatostatin B, allatostatin C, CCHamide, crustacean cardioactive peptide, crustacean hyperglycemic hormone, diuretic hormone 31 (DH31), diuretic hormone 44 (DH44), FMRFamide-like peptide, GSEFLamide, HIGSLYRamide, insulin-like peptide (ILP), intocin, leucokinin, neuroparsin, pigment dispersing hormone, pyrokinin, red pigment concentrating hormone, short neuropeptide F and SIFamide. While some of the predicted peptides were known previously from C. borealis, most (159) are new discoveries for the species, e.g., the isoforms of CCHamide, DH31, DH44, GSEFLamide, ILP, intocin and neuroparsin, which are the first members of these peptide families identified from C. borealis. Collectively, the peptides predicted here approximately double the peptidome known for C. borealis, and in so doing provide an expanded platform from which to launch new investigations of peptidergic neuromodulation in this species.
Collapse
Affiliation(s)
- Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA.
| | - Micah G Pascual
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822 USA
| |
Collapse
|
9
|
Dickinson PS, Qu X, Stanhope ME. Neuropeptide modulation of pattern-generating systems in crustaceans: comparative studies and approaches. Curr Opin Neurobiol 2016; 41:149-157. [PMID: 27693928 DOI: 10.1016/j.conb.2016.09.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/13/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022]
Abstract
Central pattern generators are subject to modulation by peptides, allowing for flexibility in patterned output. Current techniques used to characterize peptides include mass spectrometry and transcriptomics. In recent years, hundreds of neuropeptides have been sequenced from crustaceans; mass spectrometry has been used to identify peptides and to determine their levels and locations, setting the stage for comparative studies investigating the physiological roles of peptides. Such studies suggest that there is some evolutionary conservation of function, but also divergence of function even within a species. With current baseline data, it should be possible to begin using comparative approaches to ask fundamental questions about why peptides are encoded the way that they are and how this affects nervous system function.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Biology and Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Xuan Qu
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Meredith E Stanhope
- Neuroscience, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| |
Collapse
|
10
|
Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, Du F, Ren J, Wu YT, Grishin NV, Chen ZJ. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science 2015; 347:aaa2630. [PMID: 25636800 DOI: 10.1126/science.aaa2630] [Citation(s) in RCA: 1320] [Impact Index Per Article: 132.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During virus infection, the adaptor proteins MAVS and STING transduce signals from the cytosolic nucleic acid sensors RIG-I and cGAS, respectively, to induce type I interferons (IFNs) and other antiviral molecules. Here we show that MAVS and STING harbor two conserved serine and threonine clusters that are phosphorylated by the kinases IKK and/or TBK1 in response to stimulation. Phosphorylated MAVS and STING then bind to a positively charged surface of interferon regulatory factor 3 (IRF3) and thereby recruit IRF3 for its phosphorylation and activation by TBK1. We further show that TRIF, an adaptor protein in Toll-like receptor signaling, activates IRF3 through a similar phosphorylation-dependent mechanism. These results reveal that phosphorylation of innate adaptor proteins is an essential and conserved mechanism that selectively recruits IRF3 to activate the type I IFN pathway.
Collapse
Affiliation(s)
- Siqi Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Xin Cai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Jiaxi Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Qian Cong
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Xiang Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Tuo Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Fenghe Du
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Junyao Ren
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - You-Tong Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Nick V Grishin
- Departments of Biophysics and Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA
| | - Zhijian J Chen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA. Howard Hughes Medical Institute (HHMI), University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| |
Collapse
|
11
|
Toullec JY, Corre E, Bernay B, Thorne MAS, Cascella K, Ollivaux C, Henry J, Clark MS. Transcriptome and peptidome characterisation of the main neuropeptides and peptidic hormones of a euphausiid: the Ice Krill, Euphausia crystallorophias. PLoS One 2013; 8:e71609. [PMID: 23990964 PMCID: PMC3749230 DOI: 10.1371/journal.pone.0071609] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
Background The Ice krill, Euphausia crystallorophias is one of the species at the base of the Southern Ocean food chain. Given their significant contribution to the biomass of the Southern Ocean, it is vitally important to gain a better understanding of their physiology and, in particular, anticipate their responses to climate change effects in the warming seas around Antarctica. Methodology/Principal Findings Illumina sequencing was used to produce a transcriptome of the ice krill. Analysis of the assembled contigs via two different methods, produced 36 new pre-pro-peptides, coding for 61 neuropeptides or peptide hormones belonging to the following families: Allatostatins (A, B et C), Bursicon (α and β), Crustacean Hyperglycemic Hormones (CHH and MIH/VIHs), Crustacean Cardioactive Peptide (CCAP), Corazonin, Diuretic Hormones (DH), the Eclosion Hormone (EH), Neuroparsin, Neuropeptide F (NPF), small Neuropeptide F (sNPF), Pigment Dispersing Hormone (PDH), Red Pigment Concentrating Hormone (RPCH) and finally Tachykinin. LC/MS/MS proteomics was also carried out on eyestalk extracts, which are the major site of neuropeptide synthesis in decapod crustaceans. Results confirmed the presence of six neuropeptides and six precursor-related peptides previously identified in the transcriptome analyses. Conclusions This study represents the first comprehensive analysis of neuropeptide hormones in a Eucarida non-decapod Malacostraca, several of which are described for the first time in a non-decapod crustacean. Additionally, there is a potential expansion of PDH and Neuropeptide F family members, which may reflect certain life history traits such as circadian rhythms associated with diurnal migrations and also the confirmation via mass spectrometry of several novel pre-pro-peptides, of unknown function. Knowledge of these essential hormones provides a vital framework for understanding the physiological response of this key Southern Ocean species to climate change and provides a valuable resource for studies into the molecular phylogeny of these organisms and the evolution of neuropeptide hormones.
Collapse
Affiliation(s)
- Jean-Yves Toullec
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
- * E-mail:
| | - Erwan Corre
- UPMC University of Paris 06, FR 2424 CNRS, ABiMS, Analysis and Bioinformatics for Marine Science, Station Biologique de Roscoff, Roscoff, France
| | - Benoît Bernay
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Michael A. S. Thorne
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| | - Kévin Cascella
- UPMC University of Paris 06, UMR 7144 CNRS, Adaptation et Diversité en Milieu Marin, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Céline Ollivaux
- UPMC University of Paris 06, UMR 7150 CNRS, Mer et Santé, Station Biologique de Roscoff, Roscoff, France
- Centre National de la Recherche Scientifique, UMR 7150, Station Biologique de Roscoff, Roscoff, France
- Université Européenne de Bretagne, UEB, France
| | - Joël Henry
- University of Caen Basse Normandie, FRE 3484 CNRS, Biologie des Mollusques Marins et des Ecosystèmes Associés, Caen, France
- University of Caen Basse Normandie, Plateforme PROTEOGEN, Caen, France, SF ICORE 4206
| | - Melody S. Clark
- British Antarctic Survey, Natural Environment Research Council, High Cross, Cambridge, United Kingdom
| |
Collapse
|
12
|
Swim pacemaker response to bath applied neurotransmitters in the cubozoan Tripedalia cystophora. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 199:785-97. [PMID: 23893247 DOI: 10.1007/s00359-013-0839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 07/05/2013] [Accepted: 07/11/2013] [Indexed: 10/26/2022]
Abstract
The four rhopalia of cubomedusae are integrated parts of the central nervous system carrying their many eyes and thought to be the centres of visual information processing. Rhopalial pacemakers control locomotion through a complex neural signal transmitted to the ring nerve and the signal frequency is modulated by the visual input. Since electrical synapses have never been found in the cubozoan nervous system all signals are thought to be transmitted across chemical synapses, and so far information about the neurotransmitters involved are based on immunocytochemical or behavioural data. Here we present the first direct physiological evidence for the types of neurotransmitters involved in sensory information processing in the rhopalial nervous system. FMRFamide, serotonin and dopamine are shown to have inhibitory effect on the pacemaker frequency. There are some indications that the fast acting acetylcholine and glycine have an initial effect and then rapidly desensitise. Other tested neuroactive compounds (GABA, glutamate, and taurine) could not be shown to have a significant effect.
Collapse
|
13
|
Hui L, D’Andrea BT, Jia C, Liang Z, Christie AE, Li L. Mass spectrometric characterization of the neuropeptidome of the ghost crab Ocypode ceratophthalma (Brachyura, Ocypodidae). Gen Comp Endocrinol 2013; 184:22-34. [PMID: 23298572 PMCID: PMC3684161 DOI: 10.1016/j.ygcen.2012.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 12/17/2012] [Accepted: 12/18/2012] [Indexed: 11/22/2022]
Abstract
The horn-eyed ghost crab Ocypode ceratophthalma is a terrestrial brachyuran native to the Indo-Pacific region, including the islands of Hawaii. Here, multiple mass spectrometric platforms, including matrix-assisted laser desorption/ionization time-of-flight/time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) and nanoflow liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS), were used to characterize the neuropeptidome of this species. In total, 156 peptide paracrines/hormones, representing 15 peptide families, were identified from the O. ceratophthalma supraesophageal ganglion (brain), eyestalk ganglia, pericardial organ and/or sinus gland, including 59 neuropeptides de novo sequenced here for the first time. Among the de novo sequenced peptides were isoforms of A-type allatostatin, B-type allatostatin, FMRFamide-like peptide (FLP), orcokinin, orcomyotropin and RYamide. Of particular note, were several novel FLPs including DVRAPALRLRFamide, an isoform of short neuropeptide F, and NRSNLRFamide, the orcokinins NFDEIDRSGYGFV and DFDEIDRSSFGFH, which exhibit novel Y for F and D for N substitutions at positions 10 and 1, respectively, and FDAYTTGFGHS, a member of the orcomyotropin family exhibiting a novel Y for F substitution at position 4. Taken collectively, the set of peptides described here represents the largest number of neuropeptides thus far characterized via mass spectrometry from any single crustacean, and provides a framework for future investigations of the physiological roles played by these molecules in this species.
Collapse
Affiliation(s)
- Limei Hui
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison, Wisconsin 53706-1396, USA
| | - Brandon T. D’Andrea
- Békésy Laboratory of Neurobiology Pacific Biosciences Research Center University of Hawaii at Manoa 1993 East-West Road Honolulu, Hawaii 96822, USA
| | - Chenxi Jia
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
| | - Zhidan Liang
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
| | - Andrew E. Christie
- Békésy Laboratory of Neurobiology Pacific Biosciences Research Center University of Hawaii at Manoa 1993 East-West Road Honolulu, Hawaii 96822, USA
- Correspondence to either: Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA. Phone: 808-956-5212; FAX: 808-956-6984; School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Phone: 608-265-8491; Fax: 608-262-5345;
| | - Lingun Li
- Department of Chemistry University of Wisconsin 1101 University Avenue Madison, Wisconsin 53706-1396, USA
- School of Pharmacy University of Wisconsin 777 Highland Avenue Madison, Wisconsin 53705-2222, USA
- Correspondence to either: Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822, USA. Phone: 808-956-5212; FAX: 808-956-6984; School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222, USA; Phone: 608-265-8491; Fax: 608-262-5345;
| |
Collapse
|
14
|
Ye H, Hui L, Kellersberger K, Li L. Mapping of neuropeptides in the crustacean stomatogastric nervous system by imaging mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:134-47. [PMID: 23192703 PMCID: PMC3554855 DOI: 10.1007/s13361-012-0502-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 09/05/2012] [Accepted: 09/10/2012] [Indexed: 05/04/2023]
Abstract
Considerable effort has been devoted to characterizing the crustacean stomatogastric nervous system (STNS) with great emphasis on comprehensive analysis and mapping distribution of its diverse neuropeptide complement. Previously, immunohistochemistry (IHC) has been applied to this endeavor, yet with identification accuracy and throughput compromised. Therefore, molecular imaging methods are pursued to unequivocally determine the identity and location of the neuropeptides at a high spatial resolution. In this work, we developed a novel, multi-faceted mass spectrometric strategy combining profiling and imaging techniques to characterize and map neuropeptides from the blue crab Callinectes sapidus STNS at the network level. In total, 55 neuropeptides from 10 families were identified from the major ganglia in the C. sapidus STNS for the first time, including the stomatogastric ganglion (STG), the paired commissural ganglia (CoG), the esophageal ganglion (OG), and the connecting nerve stomatogastric nerve (stn) using matrix-assisted laser desorption/ionization tandem time-of-flight (MALDI-TOF/TOF) and the MS/MS capability of this technique. In addition, the locations of multiple neuropeptides were documented at a spatial resolution of 25 μm in the STG and upstream nerve using MALDI-TOF/TOF and high-mass-resolution and high-mass-accuracy MALDI-Fourier transform ion cyclotron resonance (FT-ICR) instrument. Furthermore, distributions of neuropeptides in the whole C. sapidus STNS were examined by imaging mass spectrometry (IMS). Different isoforms from the same family were simultaneously and unambiguously mapped, facilitating the functional exploration of neuropeptides present in the crustacean STNS and exemplifying the revolutionary role of this novel platform in neuronal network studies.
Collapse
Affiliation(s)
- Hui Ye
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | - Limei Hui
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | | - Lingjun Li
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
- Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| |
Collapse
|
15
|
Yan XC, Chen ZF, Sun J, Matsumura K, Wu RSS, Qian PY. Transcriptomic analysis of neuropeptides and peptide hormones in the barnacle Balanus amphitrite: evidence of roles in larval settlement. PLoS One 2012; 7:e46513. [PMID: 23056329 PMCID: PMC3462748 DOI: 10.1371/journal.pone.0046513] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/01/2012] [Indexed: 01/18/2023] Open
Abstract
The barnacle Balanus amphitrite is a globally distributed marine crustacean and has been used as a model species for intertidal ecology and biofouling studies. Its life cycle consists of seven planktonic larval stages followed by a sessile juvenile/adult stage. The transitional processes between larval stages and juveniles are crucial for barnacle development and recruitment. Although some studies have been conducted on the neuroanatomy and neuroactive substances of the barnacle, a comprehensive understanding of neuropeptides and peptide hormones remains lacking. To better characterize barnacle neuropeptidome and its potential roles in larval settlement, an in silico identification of putative transcripts encoding neuropeptides/peptide hormones was performed, based on transcriptome of the barnacle B. amphitrite that has been recently sequenced. Potential cleavage sites andstructure of mature peptides were predicted through homology search of known arthropod peptides. In total, 16 neuropeptide families/subfamilies were predicted from the barnacle transcriptome, and 14 of them were confirmed as genuine neuropeptides by Rapid Amplification of cDNA Ends. Analysis of peptide precursor structures and mature sequences showed that some neuropeptides of B. amphitrite are novel isoforms and shared similar characteristics with their homologs from insects. The expression profiling of predicted neuropeptide genes revealed that pigment dispersing hormone, SIFamide, calcitonin, and B-type allatostatin had the highest expression level in cypris stage, while tachykinin-related peptide was down regulated in both cyprids and juveniles. Furthermore, an inhibitor of proprotein convertase related to peptide maturation effectively delayed larval metamorphosis. Combination of real-time PCR results and bioassay indicated that certain neuropeptides may play an important role in cypris settlement. Overall, new insight into neuropeptides/peptide hormones characterized in this study shall provide a platform for unraveling peptidergic control of barnacle larval behavior and settlement process.
Collapse
Affiliation(s)
- Xing-Cheng Yan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Zhang-Fan Chen
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Kiyotaka Matsumura
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Rudolf S. S. Wu
- School of Biological Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
16
|
Hui L, Xiang F, Zhang Y, Li L. Mass spectrometric elucidation of the neuropeptidome of a crustacean neuroendocrine organ. Peptides 2012; 36:230-9. [PMID: 22627023 PMCID: PMC3402701 DOI: 10.1016/j.peptides.2012.05.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 05/14/2012] [Accepted: 05/14/2012] [Indexed: 01/23/2023]
Abstract
The blue crab Callinectes sapidus has been used as an experimental model organism for the study of regulation of cardiac activity and other physiological processes. Moreover, it is an economically and ecologically important crustacean species. However, there was no previous report on the characterization of its neuropeptidome. To fill in this gap, we employed multiple sample preparation methods including direct tissue profiling, crude tissue extraction and tissue extract fractionation by HPLC to obtain a complete description of the neuropeptidome of C. sapidus. Matrix-assisted laser desorption/ionization (MALDI)-Fourier transform mass spectrometry (FTMS) and MALDI-time-of-flight (TOF)/TOF were utilized initially to obtain a quick snapshot of the neuropeptide profile, and subsequently nanoflow liquid chromatography (nanoLC) coupled with electrospray ionization quadrupole time-of-flight (ESI-Q-TOF) tandem MS analysis of neuropeptide extracts was conducted for de novo sequencing. Simultaneously, the pericardial organ (PO) tissue extract was labeled by a novel N,N-dimethylated leucine (DiLeu) reagent, offering enhanced fragmentation efficiency of peptides. In total, 130 peptide sequences belonging to 11 known neuropeptide families including orcomyotropin, pyrokinin, allatostatin A (AST-A), allatostatin B (AST-B), FMRFamide-like peptides (FLPs), and orcokinin were identified. Among these 130 sequences, 44 are novel peptides and 86 are previously identified. Overall, our results lay the groundwork for future physiological studies of neuropeptides in C. sapidus and other crustaceans.
Collapse
Affiliation(s)
- Limei Hui
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | - Feng Xiang
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
| | - Yuzhuo Zhang
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, WI, USA
- School of Pharmacy, University of Wisconsin-Madison, WI, USA
- Address correspondence to: Dr. Lingjun Li, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, WI 53705-2222. Phone: (608)265-8491; Fax: (608)262-5345;
| |
Collapse
|
17
|
Nusbaum MP, Blitz DM. Neuropeptide modulation of microcircuits. Curr Opin Neurobiol 2012; 22:592-601. [PMID: 22305485 DOI: 10.1016/j.conb.2012.01.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 01/10/2012] [Indexed: 11/29/2022]
Abstract
Neuropeptides provide functional flexibility to microcircuits, their inputs and effectors by modulating presynaptic and postsynaptic properties and intrinsic currents. Recent studies have relied less on applied neuropeptide and more on their neural release. In rhythmically active microcircuits (central pattern generators, CPGs), recent studies show that neuropeptide modulation can enable particular activity patterns by organizing specific circuit motifs. Neuropeptides can also modify microcircuit output indirectly, by modulating circuit inputs. Recently elucidated consequences of neuropeptide modulation include changes in motor patterns and behavior, stabilization of rhythmic motor patterns and changes in CPG sensitivity to sensory input. One aspect of neuropeptide modulation that remains enigmatic is the presence of multiple peptide family members in the same nervous system and even the same neurons.
Collapse
Affiliation(s)
- Michael P Nusbaum
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6074, United States.
| | | |
Collapse
|
18
|
Hui L, Zhang Y, Wang J, Cook A, Ye H, Nusbaum MP, Li L. Discovery and functional study of a novel crustacean tachykinin neuropeptide. ACS Chem Neurosci 2011; 2:711-722. [PMID: 22247794 DOI: 10.1021/cn200042p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Tachykinin-related peptide (TRP) refers to a large and structurally diverse family of neuropeptides found in vertebrate and invertebrate nervous systems. These peptides have various important physiological functions, from regulating stress in mammals to exciting the pyloric (food filtering) rhythm in the stomatogastric nervous system (STNS) of decapod crustaceans. Here, a novel TRP, which we named CalsTRP (Callinectes sapidus TRP), YPSGFLGMRamide (m/z 1026.52), was identified and de novo sequenced using a multifaceted mass spectrometry-based platform in both the central nervous system (CNS) and STNS of C. sapidus. We also found, using isotopic formaldehyde labeling, that CalsTRP in the C. sapidus brain and commissural ganglion (CoG) was up-regulated after food-intake, suggesting that TRPs in the CNS and STNS are involved in regulating feeding in Callinectes. Using imaging mass spectrometry, we determined that the previously identified CabTRP Ia (APSGFLGMRamide) and CalsTRP were co-localized in the C. sapidus brain. Lastly, our electrophysiological studies show that bath-applied CalsTRP and CabTRP Ia each activates the pyloric and gastric mill rhythms in C. sapidus, as shown previously for pyloric rhythm activation by CabTRP Ia in the crab Cancer borealis. In summary, the newly identified CalsTRP joins CabTRP Ia as a TRP family member in the decapod crustacean nervous system, whose actions include regulating feeding behavior.
Collapse
Affiliation(s)
| | | | | | - Aaron Cook
- Department of Neuroscience, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | | - Michael P. Nusbaum
- Department of Neuroscience, Perelman
School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
19
|
Christie AE, Stemmler EA, Dickinson PS. Crustacean neuropeptides. Cell Mol Life Sci 2010; 67:4135-69. [PMID: 20725764 PMCID: PMC11115526 DOI: 10.1007/s00018-010-0482-8] [Citation(s) in RCA: 169] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ-sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for understanding the general principles governing neural circuit functioning, including modulation by peptides. Here, we review the basic biology of crustacean neuropeptides, discuss methodologies currently driving their discovery, provide an overview of the known families, and summarize recent data on their control of physiology and behavior.
Collapse
Affiliation(s)
- Andrew E Christie
- Program in Neuroscience, John W. and Jean C. Boylan Center for Cellular and Molecular Physiology, Mount Desert Island Biological Laboratory, Old Bar Harbor Road, P.O. Box 35, Salisbury Cove, ME 04672, USA.
| | | | | |
Collapse
|
20
|
Wilson CH, Christie AE. Distribution of C-type allatostatin (C-AST)-like immunoreactivity in the central nervous system of the copepod Calanus finmarchicus. Gen Comp Endocrinol 2010; 167:252-60. [PMID: 20338176 PMCID: PMC2921218 DOI: 10.1016/j.ygcen.2010.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2009] [Revised: 03/08/2010] [Accepted: 03/19/2010] [Indexed: 11/26/2022]
Abstract
The C-type allatostatins (C-ASTs) are a family of highly pleiotropic arthropod neuropeptides. In crustaceans, transcriptomic/mass spectral studies have identified C-ASTs in the nervous systems of many species; the cellular distributions of these peptides remain unknown. Here, the distribution of C-AST was mapped in the nervous system of the copepod Calanus finmarchicus, the major contributor to the North Atlantic's zooplanktonic biomass; C-AST-immunopositive neurons were identified in the protocerebrum, in several peripheral ganglia associated with feeding appendages, and in the ganglia controlling the swimming legs, with immunopositive axons present throughout the ventral nerve cord. In addition, axons innervating the dorsal longitudinal and ventral longitudinal muscles of the body wall of the metasome were labeled by the C-AST antibody. While the distribution of C-AST-like immunoreactivity was similar between sexes, several differences were noted, i.e., two pair of somata located at the deutocerebral/tritocerebral border in males and immunopositive fibers that surround the genital opening in females. To place the C-AST-like labeling into context with those of several previously mapped peptides, i.e., A-type allatostatin (A-AST) and tachykinin-related peptide (TRP), we conducted double-labeling studies; the C-AST-like immunopositive neurons appear distinct from those expressing either A-AST or TRP (and through extrapolation, pigment dispersing hormone). Collectively, our data represent the first mapping of C-AST in crustacean neural tissue, show that sex-specific differences in the distribution of C-AST exist in the C. finmarchicus CNS, and suggest that the peptide may be involved in the modulation of both feeding and postural control/locomotion.
Collapse
Affiliation(s)
- Caroline H Wilson
- Department of Biology, Denison University, 350 Ridge Road, Talbot Hall, Granville, OH 43023, USA.
| | | |
Collapse
|
21
|
Chen R, Jiang X, Conaway MCP, Mohtashemi I, Hui L, Viner R, Li L. Mass spectral analysis of neuropeptide expression and distribution in the nervous system of the lobster Homarus americanus. J Proteome Res 2010; 9:818-32. [PMID: 20025296 DOI: 10.1021/pr900736t] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The lobster Homarus americanus has long served as an important animal model for electrophysiological and behavioral studies. Using this model, we performed a comprehensive investigation of the neuropeptide expression and their localization in the nervous system, which provides useful insights for further understanding of their biological functions. Using nanoLC ESI Q-TOF MS/MS and three types of MALDI instruments, we analyzed the neuropeptide complements in a major neuroendocrine structure, pericardial organ. A total of 57 putative neuropeptides were identified and 18 of them were de novo sequenced. Using direct tissue/extract analysis and bioinformatics software SpecPlot, we charted the global distribution of neuropeptides throughout the nervous system in H. americanus. Furthermore, we also mapped the localization of several neuropeptide families in the brain by high mass resolution and high mass accuracy mass spectrometric imaging (MSI) using a MALDI LTQ Orbitrap mass spectrometer. We have also compared the utility and instrument performance of multiple mass spectrometers for neuropeptide analysis in terms of peptidome coverage, sensitivity, mass spectral resolution and capability for de novo sequencing.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Chemistry and School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Chen R, Hui L, Cape SS, Wang J, Li L. Comparative Neuropeptidomic Analysis of Food Intake via a Multi-faceted Mass Spectrometric Approach. ACS Chem Neurosci 2010; 1:204-214. [PMID: 20368756 DOI: 10.1021/cn900028s] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Feeding behavior is a fundamental aspect of energy homeostasis and is crucial for animal survival. This process is regulated by a multitude of neurotransmitters including neuropeptides within a complex neuroendocrine system. Given the high chemical complexity and wide distribution of neuropeptides, the precise molecular mechanisms at the cellular and network levels remain elusive. Here we report comparative neuropeptidomic analysis of brain and major neuroendocrine organ in a crustacean model organism in response to feeding. A multi-faceted approach employing direct tissue matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), stable isotopic labeling of neuropeptide extracts for quantitation, and mass spectrometric imaging (MSI) has been employed to obtain complementary information on the expression changes of a large array of neuropeptides in the brain and the pericardial organ (PO) in the crab Cancer borealis. Multiple neuropeptides exhibited changes in abundance after feeding, including RFamides, Cancer borealis tachykinin related peptides (CabTRPs), RYamides, and pyrokinins. By combining quantitative analysis of neuropeptide changes via isotopic labeling of brain extract and MSI mapping of neuropeptides of brain slices, we identified the boundary of olfactory lobe (ON) and median protocerebrum (MPC) area as two potential feeding centers in the crab brain.
Collapse
Affiliation(s)
- Ruibing Chen
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Limei Hui
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Stephanie S. Cape
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Junhua Wang
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| | - Lingjun Li
- Department of Chemistry & School of Pharmacy, University of Wisconsin—Madison, 777 Highland Avenue, Madison, Wisconsin 53705-2222
| |
Collapse
|
23
|
Ma M, Gard AL, Xiang F, Wang J, Davoodian N, Lenz PH, Malecha SR, Christie AE, Li L. Combining in silico transcriptome mining and biological mass spectrometry for neuropeptide discovery in the Pacific white shrimp Litopenaeus vannamei. Peptides 2010; 31:27-43. [PMID: 19852991 PMCID: PMC2815327 DOI: 10.1016/j.peptides.2009.10.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/10/2009] [Accepted: 10/12/2009] [Indexed: 11/28/2022]
Abstract
The shrimp Litopenaeus vannamei is arguably the most important aquacultured crustacean, being the subject of a multi-billion dollar industry worldwide. To extend our knowledge of peptidergic control in this species, we conducted an investigation combining transcriptomics and mass spectrometry to identify its neuropeptides. Specifically, in silico searches of the L. vannamei EST database were conducted to identify putative prepro-hormone-encoding transcripts, with the mature peptides contained within the deduced precursors predicted via online software programs and homology to known isoforms. MALDI-FT mass spectrometry was used to screen tissue fragments and extracts via accurate mass measurements for the predicted peptides, as well as for known ones from other species. ESI-Q-TOF tandem mass spectrometry was used to de novo sequence peptides from tissue extracts. In total 120 peptides were characterized using this combined approach, including 5 identified both by transcriptomics and by mass spectrometry (e.g. pQTFQYSRGWTNamide, Arg(7)-corazonin, and pQDLDHVFLRFamide, a myosuppressin), 49 predicted via transcriptomics only (e.g. pQIRYHQCYFNPISCF and pQIRYHQCYFIPVSCF, two C-type allatostatins, and RYLPT, authentic proctolin), and 66 identified solely by mass spectrometry (e.g. the orcokinin NFDEIDRAGMGFA). While some of the characterized peptides were known L. vannamei isoforms (e.g. the pyrokinins DFAFSPRLamide and ADFAFNPRLamide), most were novel, either for this species (e.g. pEGFYSQRYamide, an RYamide) or in general (e.g. the tachykinin-related peptides APAGFLGMRamide, APSGFNGMRamide and APSGFLDMRamide). Collectively, our data not only expand greatly the number of known L. vannamei neuropeptides, but also provide a foundation for future investigations of the physiological roles played by them in this commercially important species.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Ashley L. Gard
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Feng Xiang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Junhua Wang
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Naveed Davoodian
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Petra H. Lenz
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822 USA
| | - Spencer R. Malecha
- Deparment of Human Nutrition, Food and Animal Science, College of Tropical Agriculture and Human, Resources, University of Hawaii at Manoa, 1955 East West Road, Honolulu, Hawaii 96822 USA
| | - Andrew E. Christie
- Center for Marine Functional Genomics, Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, Hawaii 96822 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
| |
Collapse
|
24
|
Modulation of stomatogastric rhythms. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:989-1009. [PMID: 19823843 DOI: 10.1007/s00359-009-0483-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 09/15/2009] [Accepted: 09/20/2009] [Indexed: 12/15/2022]
Abstract
Neuromodulation by peptides and amines is a primary source of plasticity in the nervous system as it adapts the animal to an ever-changing environment. The crustacean stomatogastric nervous system is one of the premier systems to study neuromodulation and its effects on motor pattern generation at the cellular level. It contains the extensively modulated central pattern generators that drive the gastric mill (chewing) and pyloric (food filtering) rhythms. Neuromodulators affect all stages of neuronal processing in this system, from membrane currents and synaptic transmission in network neurons to the properties of the effector muscles. The ease with which distinct neurons are identified and their activity is recorded in this system has provided considerable insight into the mechanisms by which neuromodulators affect their target cells and modulatory neuron function. Recent evidence suggests that neuromodulators are involved in homeostatic processes and that the modulatory system itself is under modulatory control, a fascinating topic whose surface has been barely scratched. Future challenges include exploring the behavioral conditions under which these systems are activated and how their effects are regulated.
Collapse
|
25
|
Ma M, Wang J, Chen R, Li L. Expanding the Crustacean neuropeptidome using a multifaceted mass spectrometric approach. J Proteome Res 2009; 8:2426-37. [PMID: 19222238 DOI: 10.1021/pr801047v] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Jonah crab Cancer borealis is an excellent, long-served model organism for many areas of physiology, including the study of endocrinology and neurobiology. Characterizing the neuropeptides present in its nervous system provides the first critical step toward understanding the physiological roles of these complex molecules. Multiple mass spectral techniques were used to comprehensively characterize the neuropeptidome in C. borealis, including matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), MALDI time-of-flight (TOF)/TOF MS and nanoflow liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS). To enhance the detection signals and expand the dynamic range, direct tissue analysis, tissue extraction, capillary electrophoresis (CE) and off-line HPLC separation have also been employed. In total, 142 peptides were identified, including 85 previously known C. borealis peptides, 22 peptides characterized previously from other decapods, but new to this species, and 35 new peptides de novo sequenced for the first time in this study. Seventeen neuropeptide families were revealed including FMRFamide-related peptide (FaRP), allatostatin (A and B type), RYamide, orcokinin, orcomyotropin, proctolin, crustacean cardioactive peptide (CCAP), crustacean hyperglycemic hormone precursor-related peptide (CPRP), crustacean hyperglycemic hormone (CHH), corazonin, pigment-dispersing hormone (PDH), tachykinin, pyrokinin, SIFamide, red pigment concentrating hormone (RPCH) and HISGLYRamide. Collectively, our results greatly increase the number and expand the coverage of known C. borealis neuropeptides, and thus provide a stronger framework for future studies on the physiological roles played by these molecules in this important model organism.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| | | | | | | |
Collapse
|
26
|
Christie AE, Cashman CR, Stevens JS, Smith CM, Beale KM, Stemmler EA, Greenwood SJ, Towle DW, Dickinson PS. Identification and cardiotropic actions of brain/gut-derived tachykinin-related peptides (TRPs) from the American lobster Homarus americanus. Peptides 2008; 29:1909-18. [PMID: 18706463 DOI: 10.1016/j.peptides.2008.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 07/14/2008] [Accepted: 07/14/2008] [Indexed: 10/21/2022]
Abstract
Two tachykinin-related peptides (TRPs) are known in decapods, APSGFLGMRamide and TPSGFLGMRamide. The former peptide appears to be ubiquitously conserved in members of this taxon, while the latter has been suggested to be a genus (Cancer)- or infraorder (Brachyura)-specific isoform. Here, we characterized a cDNA from the American lobster Homarus americanus (infraorder Astacidea) that encodes both TRPs: six copies of APSGFLGMRamide and one of TPSGFLGMRamide. Mass spectral analyses of the H. americanus supraoesophageal ganglion (brain) and commissural ganglia confirmed the presence of both peptides in these neural tissues; both isoforms were also detected in the midgut. Physiological experiments showed that both APSGFLGMRamide and TPSGFLGMRamide are cardioactive in H. americanus, eliciting identical increases in both heart contraction frequency and amplitude. Collectively, our data represent the first genetic confirmation of TRPs in H. americanus and of TPSGFLGMRamide in any species, demonstrate that TPSGFLGMRamide is not restricted to brachyurans, and show that both this peptide and APSGFLGMRamide are brain-gut isoforms, the first peptides thus far confirmed to possess this dual tissue distribution in H. americanus. Our data also suggest a possible role for TRPs in modulating the output of the lobster heart.
Collapse
Affiliation(s)
- Andrew E Christie
- Ctr. for Marine Functional Genomics, Mt. Desert Island Biol. Lab., P.O. Box 35, Old Bar Harbor Rd., Salisbury Cove, ME 04672, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dickinson PS, Stemmler EA, Christie AE. The pyloric neural circuit of the herbivorous crab Pugettia producta shows limited sensitivity to several neuromodulators that elicit robust effects in more opportunistically feeding decapods. ACTA ACUST UNITED AC 2008; 211:1434-47. [PMID: 18424677 DOI: 10.1242/jeb.016998] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Modulation of neural circuits in the crustacean stomatogastric nervous system (STNS) allows flexibility in the movements of the foregut musculature. The extensive repertoire of such resulting motor patterns in dietary generalists is hypothesized to permit these animals to process varied foods. The foregut and STNS of Pugettia producta are similar to those of other decapods, but its diet is more uniform, consisting primarily of kelp. We investigated the distribution of highly conserved neuromodulators in the stomatogastric ganglion (STG) and neuroendocrine organs of Pugettia, and documented their effects on its pyloric rhythm. Using immunohistochemistry, we found that the distributions of Cancer borealis tachykinin-related peptide I (CabTRP I), crustacean cardioactive peptide (CCAP), proctolin, red pigment concentrating hormone (RPCH) and tyrosine hydroxylase (dopamine) were similar to those of other decapods. For all peptides except proctolin, the isoforms responsible for the immunoreactivity were confirmed by mass spectrometry to be the authentic peptides. Only two modulators had physiological effects on the pyloric circuit similar to those seen in other species. In non-rhythmic preparations, proctolin and the muscarinic acetylcholine agonist oxotremorine consistently initiated a full pyloric rhythm. Dopamine usually activated a pyloric rhythm, but this pattern was highly variable. In only about 25% of preparations, RPCH activated a pyloric rhythm similar to that seen in other species. CCAP and CabTRP I had no effect on the pyloric rhythm. Thus, whereas Pugettia possesses all the neuromodulators investigated, its pyloric rhythm, when compared with other decapods, appears less sensitive to many of them, perhaps because of its limited diet.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | | | | |
Collapse
|
28
|
Blitz DM, White RS, Saideman SR, Cook A, Christie AE, Nadim F, Nusbaum MP. A newly identified extrinsic input triggers a distinct gastric mill rhythm via activation of modulatory projection neurons. ACTA ACUST UNITED AC 2008; 211:1000-11. [PMID: 18310125 DOI: 10.1242/jeb.015222] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Neuronal network flexibility enables animals to respond appropriately to changes in their internal and external states. We are using the isolated crab stomatogastric nervous system to determine how extrinsic inputs contribute to network flexibility. The stomatogastric system includes the well-characterized gastric mill (chewing) and pyloric (filtering of chewed food) motor circuits in the stomatogastric ganglion. Projection neurons with somata in the commissural ganglia (CoGs) regulate these rhythms. Previous work characterized a unique gastric mill rhythm that occurred spontaneously in some preparations, but whose origin remained undetermined. This rhythm includes a distinct protractor phase activity pattern, during which a key gastric mill circuit neuron (LG neuron) and the projection neurons MCN1 and CPN2 fire in a pyloric rhythm-timed activity pattern instead of the tonic firing pattern exhibited by these neurons during previously studied gastric mill rhythms. Here we identify a new extrinsic input, the post-oesophageal commissure (POC) neurons, relatively brief stimulation (30 s) of which triggers a long-lasting (tens of minutes) activation of this novel gastric mill rhythm at least in part via its lasting activation of MCN1 and CPN2. Immunocytochemical and electrophysiological data suggest that the POC neurons excite MCN1 and CPN2 by release of the neuropeptide Cancer borealis tachykinin-related peptide Ia (CabTRP Ia). These data further suggest that the CoG arborization of the POC neurons comprises the previously identified anterior commissural organ (ACO), a CabTRP Ia-containing neurohemal organ. This endocrine organ thus appears to also have paracrine actions, including activation of a novel and lasting gastric mill rhythm.
Collapse
Affiliation(s)
- Dawn M Blitz
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Spitzer N, Cymbalyuk G, Zhang H, Edwards DH, Baro DJ. Serotonin transduction cascades mediate variable changes in pyloric network cycle frequency in response to the same modulatory challenge. J Neurophysiol 2008; 99:2844-63. [PMID: 18400960 DOI: 10.1152/jn.00986.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A fundamental question in systems biology addresses the issue of how flexibility is built into modulatory networks such that they can produce context-dependent responses. Here we examine flexibility in the serotonin (5-HT) response system that modulates the cycle frequency (cf) of a rhythmic motor output. We found that depending on the preparation, the same 5-min bath application of 5-HT to the pyloric network of the California spiny lobster, Panulirus interruptus, could produce a significant increase, decrease, or no change in steady-state cf relative to baseline. Interestingly, the mean circuit output was not significantly different among preparations prior to 5-HT application. We developed pharmacological tools to examine the preparation-to-preparation variability in the components of the 5-HT response system. We found that the 5-HT response system consisted of at least three separable components: a 5-HT(2betaPan)-like component mediated a rapid decrease followed by a sustained increase in cf; a 5-HT(1alphaPan)-like component produced a small and usually gradual increase in cf; at least one other component associated with an unknown receptor mediated a sustained decrease in cf. The magnitude of the change in cf produced by each component was highly variable, so that when summed they could produce either a net increase, decrease, or no change in cf depending on the preparation. Overall, our research demonstrates that the balance of opposing components of the 5-HT response system determines the direction and magnitude of 5-HT-induced change in steady-state cf relative to baseline.
Collapse
Affiliation(s)
- Nadja Spitzer
- Department of Biology, Georgia State University, P.O. Box 4010, Atlanta, GA 30302-4010, USA
| | | | | | | | | |
Collapse
|
30
|
Ma M, Chen R, Sousa GL, Bors EK, Kwiatkowski M, Goiney CC, Goy MF, Christie AE, Li L. Mass spectral characterization of peptide transmitters/hormones in the nervous system and neuroendocrine organs of the American lobster Homarus americanus. Gen Comp Endocrinol 2008; 156:395-409. [PMID: 18304551 PMCID: PMC2293973 DOI: 10.1016/j.ygcen.2008.01.009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 12/08/2007] [Accepted: 01/04/2008] [Indexed: 10/22/2022]
Abstract
The American lobster Homarus americanus is a decapod crustacean with both high economic and scientific importance. To facilitate physiological investigations of peptide transmitter/hormone function in this species, we have used matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS), matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) and nanoscale liquid chromatography coupled to electrospray ionization quadrupole time-of-flight tandem mass spectrometry (nanoLC-ESI-Q-TOF MS/MS) to elucidate the peptidome present in its nervous system and neuroendocrine organs. In total, 84 peptides were identified, including 27 previously known H. americanus peptides (e.g., VYRKPPFNGSIFamide [Val(1)-SIFamide]), 23 peptides characterized previously from other decapods, but new to the American lobster (e.g., pQTFQYSRGWTNamide [Arg(7)-corazonin]), and 34 new peptides de novo sequenced/detected for the first time in this study. Of particular note are a novel B-type allatostatin (TNWNKFQGSWamide) and several novel FMRFamide-related peptides, including an unsulfated analog of sulfakinin (GGGEYDDYGHLRFamide), two myosuppressins (QDLDHVFLRFamide and pQDLDHVFLRFamide), and a collection of short neuropeptide F isoforms (e.g., DTSTPALRLRFamide and FEPSLRLRFamide). Our data also include the first detection of multiple tachykinin-related peptides in a non-brachyuran decapod, as well as the identification of potential individual-specific variants of orcokinin and orcomyotropin-related peptide. Taken collectively, our results not only expand greatly the number of known H. americanus neuropeptides, but also provide a framework for future studies on the physiological roles played by these molecules in this commercially and scientifically important species.
Collapse
Affiliation(s)
- Mingming Ma
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
| | - Ruibing Chen
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
| | - Gregory L. Sousa
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Eleanor K. Bors
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Molly Kwiatkowski
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
| | - Christopher C. Goiney
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA
| | - Michael F. Goy
- Department of Cell and Molecular Physiology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 USA
| | - Andrew E. Christie
- Mount Desert Island Biological Laboratory, P.O. Box 35, Old Bar Harbor Road, Salisbury Cove, Maine 04672 USA
- Department of Biology, University of Washington, Box 351800, Seattle, Washington 98195-1800 USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706-1396 USA
- Correspondence to: Dr. Lingjun Li, School of Pharmacy, University of Wisconsin, 777 Highland Avenue, Madison, Wisconsin 53705-2222 USA; Phone: 608-265-8491; Fax: 608-262-5345;
| |
Collapse
|
31
|
Christie AE, Cashman CR, Brennan HR, Ma M, Sousa GL, Li L, Stemmler EA, Dickinson PS. Identification of putative crustacean neuropeptides using in silico analyses of publicly accessible expressed sequence tags. Gen Comp Endocrinol 2008; 156:246-64. [PMID: 18321503 DOI: 10.1016/j.ygcen.2008.01.018] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Revised: 12/21/2007] [Accepted: 01/15/2008] [Indexed: 11/20/2022]
Abstract
The development of expressed sequence tags (ESTs) for crustacean cDNA libraries and their deposition in publicly accessible databases has generated a rich resource for peptide discovery in this commercially and ecologically important arthropod subphylum. Here, we have conducted in silico searches of these databases for unannotated ESTs encoding putative neuropeptide precursors using the BLAST program tblastn, and have predicted the mature forms of the peptides encoded by them. The primary strategy used was to query the database with known decapod prepro-hormone sequences or, in some instances, insect precursor protein sequences. For neuropeptides for which no prepro-hormones are known, the peptides themselves were used as queries. For those peptides expected to originate from a common precursor, the individual sequences were combined, with each peptide flanked by a dibasic processing site and, if amidated, a glycine residue. Using these approaches, 13 unannotated ESTs encoding putative neuropeptide precursors were found. For example, using the first strategy, putative Marsupenaeus japonicus prepro-hormones encoding B-type allatostatins, neuropeptide F (NPF), and orcokinins were identified. Similarly, several Homarus americanus ESTs encoding putative orcokinin precursors were found. In addition to the decapod prepro-hormones, ESTs putatively encoding a NPF isoform and a red pigment concentrating hormone-like peptide were identified from the cladoceran Daphnia magna, as was one EST putatively encoding multiple tachykinin-related peptides from the isopod Eurydice pulchra. Using the second strategy, we identified a Carcinus maenas EST encoding HIGSLYRamide, a peptide recently discovered via mass spectrometry from Cancer productus. Using mass spectral methods we confirmed that this peptide is also present in Carcinus maenas. Collectively over 50 novel crustacean peptides were predicted from the identified ESTs, providing a strong foundation for future investigations of the evolution, regulation and function of these and related molecules in this arthropod taxon.
Collapse
Affiliation(s)
- Andrew E Christie
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Schmidt JJ, McIlwain S, Page D, Christie AE, Li L. Combining MALDI-FTMS and bioinformatics for rapid peptidomic comparisons. J Proteome Res 2008; 7:887-96. [PMID: 18205299 DOI: 10.1021/pr070390p] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Increasing research efforts in large-scale mass spectral analyses of peptides and proteins have led to many advances in technology and method development for collecting data and improving the quality of data. However, the resultant large data sets often pose significant challenges in extracting useful information in a high-throughput manner. Here, we describe one such method where we analyzed a large mass spectral data set collected using decapod crustacean nervous tissue extracts separated via high-performance liquid chromatography (HPLC) coupled to high-resolution matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS). Following their acquisition, the data collected from discrete LC fractions was compiled and analyzed using an in-house developed software package that deisotoped, compressed, calibrated, and matched peaks to a list of known crustacean neuropeptides. By processing these data via bioinformatics tools such as hierarchical clustering, more than 110 neuropeptides that belong to 14 peptide families were mapped in five crustacean species. Overall, we demonstrate the utility of MALDI-FTMS in combination with a bioinformatics software package for the elucidation and comparison of peptidomes of varying crustacean species. This study established an effective methodology and will provide the basis for future investigations into more comprehensive comparative peptidomics with larger collection of species and phyla in order to gain a deeper understanding of the evolution and diversification of peptide families.
Collapse
Affiliation(s)
- Joshua J Schmidt
- School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, USA
| | | | | | | | | |
Collapse
|
33
|
Cape SS, Rehm KJ, Ma M, Marder E, Li L. Mass spectral comparison of the neuropeptide complement of the stomatogastric ganglion and brain in the adult and embryonic lobster, Homarus americanus. J Neurochem 2007; 105:690-702. [PMID: 18088365 DOI: 10.1111/j.1471-4159.2007.05154.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Neuropeptides in the stomatogastric ganglion (STG) and the brain of adult and late embryonic Homarus americanus were compared using a multi-faceted mass spectral strategy. Overall, 29 neuropeptides from 10 families were identified in the brain and/or the STG of the lobster. Many of these neuropeptides are reported for the first time in the embryonic lobster. Neuropeptide extraction followed by liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry enabled confident identification of 24 previously characterized peptides in the adult brain and 13 peptides in the embryonic brain. Two novel peptides (QDLDHVFLRFa and GPPSLRLRFa) were de novo sequenced. In addition, a comparison of adult to embryonic brains revealed the presence of an incompletely processed form of Cancer borealis tachykinin-related peptide 1a (CabTRP 1a, APSGFLGMRG) only in the embryonic brain. A comparison of adult to embryonic STGs revealed that QDLDHVFLRFa was present in the embryonic STG but absent in the adult STG, and CabTRP 1a exhibited the opposite trend. Relative quantification of neuropeptides in the STG revealed that three orcokinin family peptides (NFDEIDRSGFGF, NFDEIDRSGFGFV, and NFDEIDRSGFGFN), a B-type allatostatin (STNWSSLRSAWa), and an orcomyotropin-related peptide (FDAFTTGFGHS) exhibited higher signal intensities in the adult relative to the embryonic STG. RFamide (Arg-Phe-amide) family peptide (DTSTPALRLRFa), [Val(1)]SIFamide (VYRKPPFNGSIFa), and orcokinin-related peptide (VYGPRDIANLY) were more intense in the embryonic STG spectra than in the adult STG spectra. Collectively, this study expands our current knowledge of the H. americanus neuropeptidome and highlights some intriguing expression differences that occur during development.
Collapse
Affiliation(s)
- Stephanie S Cape
- School of Pharmacy and Department of Chemistry, University of Wisconsin, Madison, WI 53705-2222, USA
| | | | | | | | | |
Collapse
|
34
|
Stemmler EA, Cashman CR, Messinger DI, Gardner NP, Dickinson PS, Christie AE. High-mass-resolution direct-tissue MALDI-FTMS reveals broad conservation of three neuropeptides (APSGFLGMRamide, GYRKPPFNGSIFamide and pQDLDHVFLRFamide) across members of seven decapod crustaean infraorders. Peptides 2007; 28:2104-15. [PMID: 17928104 DOI: 10.1016/j.peptides.2007.08.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 08/19/2007] [Accepted: 08/21/2007] [Indexed: 10/22/2022]
Abstract
Matrix-assisted laser desorption/ionization Fourier transform mass spectrometry (MALDI-FTMS) has become an important method for identifying peptides in neural tissues. The ultra-high-mass resolution and mass accuracy of MALDI-FTMS, in combination with in-cell accumulation techniques, can be used to advantage for the analysis of complex mixtures of peptides directly from tissue fragments or extracts. Given the diversity within the decapods, as well as the large number of extant species readily available for analysis, this group of animals represents an optimal model in which to examine phylogenetic conservation and evolution of neuropeptides and neuropeptide families. Surprisingly, no large comparative studies have previously been undertaken. Here, we have initiated such an investigation, which encompasses 32 species spanning seven decapod infraorders. Two peptides, APSGFLGMRamide and pQDLDHVFLRFamide, were detected in all species. A third peptide, GYRKPPFNGSIFamide, was detected in all species except members of the Astacidean genus Homarus, where a Val(1) variant was present. Our finding that these peptides are ubiquitously (or nearly ubiquitously) conserved in decapod neural tissues not only suggests important conserved functions for them, but also provides an intrinsic calibrant set for future MALDI-FTMS assessments of other peptides in this crustacean order.
Collapse
Affiliation(s)
- Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA.
| | | | | | | | | | | |
Collapse
|