1
|
Lahsen AO, Baba H, Bensghir R, Fayssel N, Sodqi M, Marih L, Nadifi S, Wakrim L, El Filali KM, Ezzikouri S. TP53 R72P Polymorphism and Susceptibility to Human Papillomavirus Infection Among Women With Human Immunodeficiency Virus in Morocco: A Case-control Study. J Cancer Prev 2017; 22:248-253. [PMID: 29302583 PMCID: PMC5751843 DOI: 10.15430/jcp.2017.22.4.248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/21/2017] [Accepted: 11/23/2017] [Indexed: 01/27/2023] Open
Abstract
Background Human papillomavirus (HPV) is the most common sexually transmitted agent worldwide. HPV is the main causative agent for cervical cancer. The HPV oncoprotein E6 binds to the tumor suppressor gene product p53, promoting its degradation; the Arg allele of TP53 R72P polymorphism binds more ardently with HPV E6 than the Pro variant. Here, we investigated whether TP53 R72P gene variant, rs104252, was associated with susceptibility to HPV infection in women with human immunodeficiency virus (HIV). Methods We analyzed 200 HPV-positive and 68 uninfected women with HIV. Genomic DNA was isolated from cervical swab. The TP53 R72P polymorphism was genotyped by PCR-RFLP. Unconditional logistic regression was used to assess the association between polymorphism and the clinical, lifestyle, and behavioral data. Results The genotype and allele frequencies of rs104252 variant did not differ between women without or with HPV infection (P > 0.05). Moreover, the p53 polymorphism was not associated with cervical cytology. In contrast, when we analyzed according to behavior factors, the P72P genotype was more frequent among HPV-positive smoker women. However, no significant relationship was found between alcohol, contraceptive use, and number of partners with TP53 R72P genotype distributions among HPV-positive cases (P > 0.05). Conclusions The R72 variant of p53 R72P is not associated with HPV infection and progression of lesions. There was no association between this variant and behavior factors in HPV-positive cases. The P72P genotype may be more frequent among HPV-positive smoker women.
Collapse
Affiliation(s)
- Ahd Oulad Lahsen
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco.,Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Hanâ Baba
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Rajaa Bensghir
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Naouar Fayssel
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | - Mustapha Sodqi
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Latifa Marih
- Service des Maladies Infectieuses, CHU Ibn Rochd, Casablanca, Morocco
| | - Sellama Nadifi
- Laboratoire de Génétique Médicale et de Pathologie Moléculaire, Faculté de Médecine et de Pharmacie, Casablanca, Morocco
| | - Lahcen Wakrim
- Virology Unit, Immunovirology Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| | | | - Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca, Morocco
| |
Collapse
|
2
|
ASPP2 involvement in p53-mediated HIV-1 envelope glycoprotein gp120 neurotoxicity in mice cerebrocortical neurons. Sci Rep 2016; 6:33378. [PMID: 27625111 PMCID: PMC5022057 DOI: 10.1038/srep33378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 08/22/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanisms behind HIV-1-associated neurocognitive disorders are still unclear. Apoptosis-stimulating protein 2 of p53 (ASPP2) is a damage-inducible p53-binding protein that stimulates p53-mediated apoptosis and transactivates proapoptotic and cell cycle regulatory genes. It has been reported that ASPP2 has a specific regulatory function in the death of retinal ganglion cells and the development of Alzheimer's disease. In this study, we used p53 and ASPP2 knockout mice and primary cerebrocortical neuron culture to analyze the role of the interaction between ASPP2 with p53 in HIV-1 envelope glycoprotein gp120-induced neurotoxicity. The results showed that 10 ng/mL gp120 protein might stimulate p53 overexpression and translocation to the nucleus, and 30 ng/mL gp120 protein could stimulate both p53 and ASPP2 translocation to the nucleus, but only with p53 overexpression. The primary cultured neurons of p53(-/-)ASPP2(+/-) mice had a higher survival rate than p53(-/-) mice under gp120 protein stress. The interaction of ASPP2 with p53 induced by a high dose of gp120 stimulated Bax transcription and contributed to caspase-3 cleavage, and ASPP2-siRNA attenuated gp120 induced neuron death through inhibition of Bax expression. These results suggest that ASPP2 plays an important role in p53-mediated neuronal apoptosis under gp120 stress.
Collapse
|
3
|
Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter. Int J Mol Sci 2016; 17:ijms17010119. [PMID: 26784188 PMCID: PMC4730360 DOI: 10.3390/ijms17010119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/04/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023] Open
Abstract
HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at -1205~-838 bp and -146~+93 bp, with the -838~-649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at -709~+37 bp, and eight heat shock transcription factor 1 (HSF1) sites, two Sp1 transcription factor (SP1)sites, one activator protein (AP) site, seven p53 sites, and four YY1 transcription factor(YY1) sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases.
Collapse
|
4
|
Su W, Kang J, Sopher B, Gillespie J, Aloi MS, Odom GL, Hopkins S, Case A, Wang DB, Chamberlain JS, Garden GA. Recombinant adeno-associated viral (rAAV) vectors mediate efficient gene transduction in cultured neonatal and adult microglia. J Neurochem 2016; 136 Suppl 1:49-62. [PMID: 25708596 PMCID: PMC4547919 DOI: 10.1111/jnc.13081] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 12/20/2022]
Abstract
Microglia are a specialized population of myeloid cells that mediate CNS innate immune responses. Efforts to identify the cellular and molecular mechanisms that regulate microglia behaviors have been hampered by the lack of effective tools for manipulating gene expression. Cultured microglia are refractory to most chemical and electrical transfection methods, yielding little or no gene delivery and causing toxicity and/or inflammatory activation. Recombinant adeno-associated viral (rAAVs) vectors are non-enveloped, single-stranded DNA vectors commonly used to transduce many primary cell types and tissues. In this study, we evaluated the feasibility and efficiency of utilizing rAAV serotype 2 (rAAV2) to modulate gene expression in cultured microglia. rAAV2 yields high transduction and causes minimal toxicity or inflammatory response in both neonatal and adult microglia. To demonstrate that rAAV transduction can induce functional protein expression, we used rAAV2 expressing Cre recombinase to successfully excise a LoxP-flanked miR155 gene in cultured microglia. We further evaluated rAAV serotypes 5, 6, 8, and 9, and observed that all efficiently transduced cultured microglia to varying degrees of success and caused little or no alteration in inflammatory gene expression. These results provide strong encouragement for the application of rAAV-mediated gene expression in microglia for mechanistic and therapeutic purposes. Neonatal microglia are functionally distinct from adult microglia, although the majority of in vitro studies utilize rodent neonatal microglia cultures because of difficulties of culturing adult cells. In addition, cultured microglia are refractory to most methods for modifying gene expression. Here, we developed a novel protocol for culturing adult microglia and evaluated the feasibility and efficiency of utilizing Recombinant Adeno-Associated Virus (rAAV) to modulate gene expression in cultured microglia.
Collapse
Affiliation(s)
- Wei Su
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - John Kang
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Bryce Sopher
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - James Gillespie
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Macarena S. Aloi
- Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Guy L. Odom
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Stephanie Hopkins
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - Amanda Case
- Department of Neurology, University of Washington, Seattle, Washington, USA
| | - David B. Wang
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Gwenn A. Garden
- Department of Neurology, University of Washington, Seattle, Washington, USA
- Department of Pathology, University of Washington, Seattle, Washington, USA
- Center on Human Development and Disability
| |
Collapse
|
5
|
Bora A, Ubaida Mohien C, Chaerkady R, Chang L, Moxley R, Sacktor N, Haughey N, McArthur JC, Cotter R, Nath A, Graham DR. Identification of putative biomarkers for HIV-associated neurocognitive impairment in the CSF of HIV-infected patients under cART therapy determined by mass spectrometry. J Neurovirol 2014; 20:457-65. [PMID: 25056907 DOI: 10.1007/s13365-014-0263-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 05/16/2014] [Accepted: 06/12/2014] [Indexed: 12/27/2022]
Abstract
We identified and measured proteins in the cerebral spinal fluid (CSF) involved in HIV-associated neurological disorders. Protein levels were determined by mass spectrometry (MS) in pooled CSF taken from three patient groups (human immunodeficiency virus (HIV)-1-infected patients that developed HIV-associated neurocognitive disorders (HANDs), HIV-1-infected patients without HAND, and healthy controls). Pools were generated from 10 patients each per group. CSF from individual patient groups were digested with trypsin and separately labeled using with isobaric tags for relative and absolute quantitation (iTRAQ). After combining all samples in one, peptides were extensively fractionated by offline two-dimensional separation and identified by tandem MS. One hundred and ninety three proteins were deemed to be interpretable for quantitation based on permutation tests with a 95 % confidence interval with a p value ≤ 0.05. Using a cutoff of 1.5-fold for upregulation and 0.6 for downregulation, 16 proteins were differentially expressed in HIV + HAND (reporter p value ≤0.05) with seven of them previously described as HIV-interacting proteins: endoplasmin, mitochondrial damage mediator-BH3-interacting domanin death agonist, orosomucoid, apolipoprotein E, metalloproteinase inhibitor 2, peroxiredoxin-2, and the nuclear protein, ruvB-like 2. Several previously unidentified proteins with possible neurological implication in HIV patients include forming-binding protein 1, C-reactive protein, leukocyte-associated immunoglobulin receptor 1, renin receptor, mediator of RNA polymerase II transcription subunit 14, multimerin-2, alpha-N-acetylglucosaminidase, caldesmon, and cadherin EGF LAG G-type receptor. Our results suggest that not only a few but possibly a combination of biomarkers that are highly correlated can predict neurocognitive status in HIV-infected patients and might be involved in monocyte or macrophage activation.
Collapse
Affiliation(s)
- Adriana Bora
- Department of Molecular and Comparative Pathobiology-Retrovirus Laboratory, Baltimore, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Hartwig FP, Entiauspe LG, Nunes EM, Rodrigues FM, Collares T, Seixas FK, da Silveira MF. Evidence for an epistatic effect between TP53 R72P and MDM2 T309G SNPs in HIV infection: a cross-sectional study in women from South Brazil. PLoS One 2014; 9:e89489. [PMID: 24586820 PMCID: PMC3938491 DOI: 10.1371/journal.pone.0089489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/22/2014] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE To investigate the associations of TP53 R72P and MDM2 T309G SNPs with HPV infection status, HPV oncogenic risk and HIV infection status. DESIGN Cross-sectional study combining two groups (150 HIV-negative and 100 HIV-positive) of women. METHODS Data was collected using a closed questionnaire. DNA was extracted from cervical samples. HPV infection status was determined by nested-PCR, and HPV oncogenic risk group by Sanger sequencing. Both SNPS were genotyped by PCR-RFLP. Crude and adjusted associations involving each exposure (R72P and T309G SNPs, as well as 13 models of epistasis) and each outcome (HPV status, HPV oncogenic risk group and HIV infection) were assessed using logistic regression. RESULTS R72P SNP was protectively associated with HPV status (overdominant model), as well as T309G SNP with HPV oncogenic risk (strongest in the overdominant model). No epistatic model was associated with HPV status, but a dominant (R72P over T309G) protective epistatic effect was observed for HPV oncogenic risk. HIV status was strongly associated (risk factor) with different epistatic models, especially in models based on a visual inspection of the results. Moreover, HIV status was evidenced to be an effect mediator of the associations involving HPV oncogenic risk. CONCLUSIONS We found evidence for a role of R72P and T309G SNPs in HPV status and HPV oncogenic risk (respectively), and strong associations were found for an epistatic effect in HIV status. Prospective studies in larger samples are warranted to validate our findings, which point to a novel role of these SNPs in HIV infection.
Collapse
Affiliation(s)
- Fernando Pires Hartwig
- Postgraduate Program in Epidemiology, Department of Social Medicine, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Ludmila Gonçalves Entiauspe
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Emily Montosa Nunes
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fernanda Martins Rodrigues
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Tiago Collares
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Fabiana Kömmling Seixas
- Postgraduate Program in Biotechnology, Technology Development Center (Biotechnology Unit), Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Molecular and Cellular Oncology Research Group, Biotechnology Unit, Technology Development Center, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Mariângela Freitas da Silveira
- Postgraduate Program in Epidemiology, Department of Social Medicine, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
- Maternal and Child Department, Faculty of Medicine, Federal University of Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
7
|
Liu H, Liu J, Liang S, Xiong H. Plasma gelsolin protects HIV-1 gp120-induced neuronal injury via voltage-gated K+ channel Kv2.1. Mol Cell Neurosci 2013. [DOI: 10.1016/j.mcn.2013.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Zou QF, Du JK, Zhang H, Wang HB, Hu ZD, Chen SP, Du Y, Li MZ, Xie D, Zou J, Sun HD, Pu JX, Zeng MS. Anti-tumour activity of longikaurin A (LK-A), a novel natural diterpenoid, in nasopharyngeal carcinoma. J Transl Med 2013; 11:200. [PMID: 23985029 PMCID: PMC3847153 DOI: 10.1186/1479-5876-11-200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 08/16/2013] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Longikaurin A is a natural ent-kaurene diterpenoid isolated from Isodon genus. The ent-kaurene diterpenoids isolated from medicinal plants have been shown to have anti-disease effects. The present study was designed to examine the anti-tumour effects of longikaurin A (LK-A) in nasopharyngeal carcinoma in vitro and in vivo. METHODS Apoptosis and cell cycle arrest were determined by flow cytometry analysis of the cells treated with Longikaurin A. The proteins of apoptosis signaling pathway were detected by western blotting analysis. Finally, we examined whether LK-A exhibits anti-tumour activity in xenograft models. RESULTS Longikaurin A inhibited the cell growth by inducing apoptosis and cell cycle arrest. At low concentrations, longikaurin A induced S phase arrest and at higher concentrations, longikaurin A induced caspase-dependent apoptosis by regulating apoptotic molecules. Finally, longikaurin A significantly inhibited the tumour growth of CNE2 xenografts in vivo and showed no obvious effect on the body weights of the mice. CONCLUSION Our results suggest that Longikaurin A exhibited anti-tumour activity in nasopharyngeal carcinoma in vitro and in vivo.
Collapse
Affiliation(s)
- Qing-Feng Zou
- State Key Laboratory of Oncology in South China, Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tomicic MT, Kaina B. Topoisomerase degradation, DSB repair, p53 and IAPs in cancer cell resistance to camptothecin-like topoisomerase I inhibitors. Biochim Biophys Acta Rev Cancer 2012; 1835:11-27. [PMID: 23006513 DOI: 10.1016/j.bbcan.2012.09.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 09/13/2012] [Accepted: 09/15/2012] [Indexed: 12/11/2022]
Abstract
Topoisomerase I (TOP1) inhibitors applied in cancer therapy such as topotecan and irinotecan are derivatives of the natural alkaloid camptothecin (CPT). The mechanism of CPT poisoning of TOP1 rests on inhibition of the re-ligation function of the enzyme resulting in the stabilization of the TOP1-cleavable complex. In the presence of CPTs this enzyme-DNA complex impairs transcription and DNA replication, resulting in fork stalling and the formation of DNA double-strand breaks (DSB) in proliferating cells. As with most chemotherapeutics, intrinsic and acquired drug resistance represents a hurdle that limits the success of CPT therapy. Preclinical data indicate that resistance to CPT-based drugs might be caused by factors such as (a) poor drug accumulation in the tumor, (b) high rate of drug efflux, (c) mutations in TOP1 leading to failure in CPT docking, or (d) altered signaling triggered by the drug-TOP1-DNA complex, (e) expression of DNA repair proteins, and (f) failure to activate cell death pathways. This review will focus on the issues (d-f). We discuss degradation of TOP1 as part of the repair pathway in the processing of TOP1 associated DNA damage, give a summary of proteins involved in repair of CPT-induced replication mediated DSB, and highlight the role of p53 and inhibitors of apoptosis proteins (IAPs), particularly XIAP and survivin, in cancer cell resistance to CPT-like chemotherapeutics.
Collapse
Affiliation(s)
- Maja T Tomicic
- Department of Toxicology, University Medical Center Mainz, Germany.
| | | |
Collapse
|
10
|
Faccion RS, Rezende LMM, Romano SDO, Bigni RDS, Mendes GLQ, Maia RC. Centroblastic diffuse large B cell lymphoma displays distinct expression pattern and prognostic role of apoptosis resistance related proteins. Cancer Invest 2012; 30:404-14. [PMID: 22571341 DOI: 10.3109/07357907.2012.672844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Centroblastic diffuse large B cell lymphoma (DLBCL) samples were analyzed by immunohistochemistry to evaluate the expression of p53, Bcl-2, Survivin, XIAP, and Ki-67. Survivin was the only protein which expression exhibited a trend for impact in progression-free (p = .077) and overall survival (p = .054). In the Mann-Whitney test, Survivin expression correlated with a negative overall survival (p = .045). These results appeared to be intimately related to Survivin cytoplasmic localization. Moreover, the anti-apoptotic proteins Bcl-2 and Survivin were less frequent in centroblastic DLBCL. Our results indicate that centroblastic DLBCL may be a disease with characteristic biology and clinical course and, therefore, specific prognostic factors.
Collapse
Affiliation(s)
- Roberta Soares Faccion
- Laboratório de Hemato-Oncologia Celular e Molecular, Programa de Pesquisa em Hemato-Oncologia Molecular, Coordenação Geral Técnico-Científica, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Rena Hesse A, Hagemeier K, Lürbke A, Held J, Friedman H, Peterson A, Brück W, Kuhlmann T. XIAP protects oligodendrocytes against cell death in vitro but has no functional role in toxic demyelination. Glia 2011; 60:271-80. [DOI: 10.1002/glia.21261] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 12/13/2022]
|
12
|
Chang JR, Ghafouri M, Mukerjee R, Bagashev A, Chabrashvili T, Sawaya BE. Role of p53 in neurodegenerative diseases. NEURODEGENER DIS 2011; 9:68-80. [PMID: 22042001 DOI: 10.1159/000329999] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 06/09/2011] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND p53 plays an important role in many areas of cellular physiology and biology, ranging from cellular development and differentiation to cell cycle arrest and apoptosis. Many of its functions are attributed to its role in assuring proper cellular division. However, since the establishment of its role in cell cycle arrest, damage repair, and apoptosis (thus also establishing its importance in cancer development), numerous reports have demonstrated additional functions of p53 in various cells. In particular, p53 appears to have important functions as it relates to neurodegeneration and synaptic plasticity. OBJECTIVE In this review, we will address p53 functions as it relates to various neurodegenerative diseases, mainly its implications in the development of HIV-associated neurocognitive disorders. CONCLUSION p53 plays a pivotal role in the development of neurodegenerative diseases through its interaction with cellular factors, viral factors, and/or small RNAs that have the ability to promote the development of these diseases. Hence, inhibition of p53 may present an ideal target to restore neuronal functions.
Collapse
Affiliation(s)
- J Robert Chang
- Molecular Studies of Neurodegenerative Diseases Laboratory, Department of Neurology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | | | | | |
Collapse
|
13
|
Danthi P, Pruijssers AJ, Berger AK, Holm GH, Zinkel SS, Dermody TS. Bid regulates the pathogenesis of neurotropic reovirus. PLoS Pathog 2010; 6:e1000980. [PMID: 20617182 PMCID: PMC2895667 DOI: 10.1371/journal.ppat.1000980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 06/02/2010] [Indexed: 11/19/2022] Open
Abstract
Reovirus infection leads to apoptosis in both cultured cells and the murine central nervous system (CNS). NF-kappaB-driven transcription of proapoptotic cellular genes is required for the effector phase of the apoptotic response. Although both extrinsic death-receptor signaling pathways and intrinsic pathways involving mitochondrial injury are implicated in reovirus-induced apoptosis, mechanisms by which either of these pathways are activated and their relationship to NF-kappaB signaling following reovirus infection are unknown. The proapoptotic Bcl-2 family member, Bid, is activated by proteolytic cleavage following reovirus infection. To understand how reovirus integrates host signaling circuits to induce apoptosis, we examined proapoptotic signaling following infection of Bid-deficient cells. Although reovirus growth was not affected by the absence of Bid, cells lacking Bid failed to undergo apoptosis. Furthermore, we found that NF-kappaB activation is required for Bid cleavage and subsequent proapoptotic signaling. To examine the functional significance of Bid-dependent apoptosis in reovirus disease, we monitored fatal encephalitis caused by reovirus in the presence and absence of Bid. Survival of Bid-deficient mice was significantly enhanced in comparison to wild-type mice following either peroral or intracranial inoculation of reovirus. Decreased reovirus virulence in Bid-null mice was accompanied by a reduction in viral yield. These findings define a role for NF-kappaB-dependent cleavage of Bid in the cell death program initiated by viral infection and link Bid to viral virulence.
Collapse
Affiliation(s)
- Pranav Danthi
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Andrea J. Pruijssers
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Angela K. Berger
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Geoffrey H. Holm
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Sandra S. Zinkel
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Terence S. Dermody
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| |
Collapse
|
14
|
Qian J, Zhang JS, Wang XQ, Ji JL, Mei S. Fenretinide stimulates the apoptosis of hepatic stellate cells and ameliorates hepatic fibrosis in mice. Hepatol Res 2009; 39:1229-47. [PMID: 19788699 DOI: 10.1111/j.1872-034x.2009.00562.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AIM To investigate whether fenretinide, a clinically proved apoptosis-inducing chemopreventive agent in tumor cells, can induce apoptosis in hepatic stellate cells (HSCs) and resolve hepatic fibrosis. METHODS CCl(4)-induced liver fibrosis in mice and rat activated hepatic stellate cells (HSC-T6) as well as hepatocytes (BRL-3A) were studied. RESULTS The duplex staining of proliferating cell nuclear antigen and alpha- smooth muscle actin or terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and alpha- smooth muscle actin demonstrated that fenretinide executed its anti-fibrosis effect in liver by inducing apoptosis rather than inhibiting proliferation of HSCs, while it had no apparently apoptotic effect on hepatocytes. Fenretinide could elicit apoptosis of HSC-T6 in vitro at the concentration range from 0.5 to 5 microM, but at higher concentrations >/=5 microM was required to induce apoptosis in hepatocytes (BRL-3A). CONCLUSION Further studies using malondialdehyde measurement, Western blot, antioxidant, inhibitors for p53, caspase 8 and 9 - as well as anti-Fas neutralizing antibody - have shown that in HSC-T6, fenretinide-induced apoptosis involves a reactive oxygen species (ROS)-generated, P53-independent, mitochondria-associated intrinsic pathway, whereas in hepatocytes (BRL-3A), a ROS-generated, P53-dependent, Fas-related extrinsic pathway is triggered only at high concentration.
Collapse
Affiliation(s)
- Jin Qian
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
15
|
Simultaneous activation of p53 and inhibition of XIAP enhance the activation of apoptosis signaling pathways in AML. Blood 2009; 115:306-14. [PMID: 19897582 DOI: 10.1182/blood-2009-03-212563] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Activation of p53 by murine double minute (MDM2) antagonist nutlin-3a or inhibition of X-linked inhibitor of apoptosis (XIAP) induces apoptosis in acute myeloid leukemia (AML) cells. We demonstrate that concomitant inhibition of MDM2 by nutlin-3a and of XIAP by small molecule antagonists synergistically induced apoptosis in p53 wild-type OCI-AML3 and Molm13 cells. Knockdown of p53 by shRNA blunted the synergy, and down-regulation of XIAP by antisense oligonucleotide (ASO) enhanced nutlin-3a-induced apoptosis, suggesting that the synergy was mediated by p53 activation and XIAP inhibition. This is supported by data showing that inhibition of both MDM2 and XIAP by their respective ASOs induced significantly more cell death than either ASO alone. Importantly, p53 activation and XIAP inhibition enhanced apoptosis in blasts from patients with primary AML, even when the cells were protected by stromal cells. Mechanistic studies demonstrated that XIAP inhibition potentiates p53-induced apoptosis by decreasing p53-induced p21 and that p53 activation enhances XIAP inhibition-induced cell death by promoting mitochondrial release of second mitochondria-derived activator of caspases (SMAC) and by inducing the expression of caspase-6. Because both XIAP and p53 are presently being targeted in ongoing clinical trials in leukemia, the combination strategy holds promise for expedited translation into the clinic.
Collapse
|
16
|
Liu J, Naegele JR, Lin SL. The DNA-PK catalytic subunit regulates Bax-mediated excitotoxic cell death by Ku70 phosphorylation. Brain Res 2009; 1296:164-75. [PMID: 19664609 DOI: 10.1016/j.brainres.2009.07.101] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 10/20/2022]
Abstract
DNA repair deficiency results in neurodegenerative disease and increased susceptibility to excitotoxic cell death, suggesting a critical but undefined role for DNA damage in neurodegeneration. We compared DNA damage, Ku70-Bax interaction, and Bax-dependent excitotoxic cell death in kainic acid-treated primary cortical neurons derived from both wild-type mice and mice deficient in the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) encoded by the Prkdc gene. In both wild-type and Prkdc(-/-) neurons, kainic acid treatment resulted in rapid induction of DNA damage (53BP1 foci formation) followed by nuclear pyknosis. Bax deficiency, by either Bax shRNA-mediated knockdown or gene deletion, protected wild-type and heterozygous but not Prkdc(-/-) neurons from kainate-induced excitotoxicity. Cotransfection of DNA-PKcs with Bax shRNA restored Bax shRNA-mediated neuroprotection in Prkdc(-/-) neurons, suggesting that DNA-PKcs is required for kainate-induced activation of the pro-apoptotic Bax pathway. Immunoprecipitation studies revealed that the DNA-PKcs-nonphosphorylatable Ku70 (S6A/S51A) bound 3- to 4-fold greater Bax than wild-type Ku70, suggesting that DNA-PKcs-mediated Ku70 phosphorylation causes release of Bax from Ku70. In support of this, kainic acid induced translocation of a Bax-EGFP fusion protein to the mitochondria in the presence of a cotransfected wild-type, but not mutant Ku70 (S6A/S51A) gene when examined at 4 and 8 h following kainate addition. We conclude that DNA-PKcs links DNA damage to Bax-dependent excitotoxic cell death, by phosphorylating Ku70 on serines 6 and/or 51, to initiate Bax translocation to the mitochondria and directly activate a pro-apoptotic Bax-dependent death cascade.
Collapse
Affiliation(s)
- Jia Liu
- Program in Neuroscience and Behavior, Department of Biology, Wesleyan University, Middletown, CT 06459-0170, USA
| | | | | |
Collapse
|
17
|
Kaul M. HIV's double strike at the brain: neuronal toxicity and compromised neurogenesis. FRONT BIOSCI-LANDMRK 2008; 13:2484-94. [PMID: 17981728 DOI: 10.2741/2860] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Infection with the human immunodeficiency virus-1 (HIV-1) and acquired immunodeficiency syndrome (AIDS) are often associated with severe and debilitating neurological problems that include behavioral abnormalities, motor dysfunction and frank dementia. HIV-1-infected peripheral immune cells, in particular macrophages, appear to infiltrate the CNS, release neurotoxins and provoke a neuropathological response involving all cell types in the brain. In the CNS, HIV-1 and its components initiate activation of chemokine receptors, inflammatory mediators and glutamate receptor-mediated excitotoxicity, all of which can activate numerous downstream signaling pathways and disturb neuronal and glial function. Recent experimental evidence suggests that disturbance by HIV-1 results not only in neuronal injury and death but also in impairment of neurogenesis. This article will review recently identified pathological mechanisms which potentially contribute to the development of neurocognitive impairment and dementia in association with HIV-1 infection.
Collapse
Affiliation(s)
- Marcus Kaul
- Infectious and Inflammatory Disease Center, Burnham Institute for Medical Research, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|