1
|
Cortese K, Gagliani MC, Raiteri L. Interactions between Glycine and Glutamate through Activation of Their Transporters in Hippocampal Nerve Terminals. Biomedicines 2023; 11:3152. [PMID: 38137373 PMCID: PMC10740625 DOI: 10.3390/biomedicines11123152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
Evidence supports the pathophysiological relevance of crosstalk between the neurotransmitters Glycine and Glutamate and their close interactions; some reports even support the possibility of Glycine-Glutamate cotransmission in central nervous system (CNS) areas, including the hippocampus. Functional studies with isolated nerve terminals (synaptosomes) permit us to study transporter-mediated interactions between neurotransmitters that lead to the regulation of transmitter release. Our main aims here were: (i) to investigate release-regulating, transporter-mediated interactions between Glycine and Glutamate in hippocampal nerve terminals and (ii) to determine the coexistence of transporters for Glycine and Glutamate in these terminals. Purified synaptosomes, analyzed at the ultrastructural level via electron microscopy, were used as the experimental model. Mouse hippocampal synaptosomes were prelabeled with [3H]D-Aspartate or [3H]Glycine; the release of radiolabeled tracers was monitored with the superfusion technique. The main findings were that (i) exogenous Glycine stimulated [3H]D-Aspartate release, partly by activation of GlyT1 and in part, unusually, through GlyT2 transporters and that (ii) D-Aspartate stimulated [3H]glycine release by a process that was sensitive to Glutamate transporter blockers. Based on the features of the experimental model used, it is suggested that functional transporters for Glutamate and Glycine coexist in a small subset of hippocampal nerve terminals, a condition that may also be compatible with cotransmission; glycinergic and glutamatergic transporters exhibit different functions and mediate interactions between the neurotransmitters. It is hoped that increased information on Glutamate-Glycine interactions in different areas, including the hippocampus, will contribute to a better knowledge of drugs acting at "glycinergic" targets, currently under study in relation with different CNS pathologies.
Collapse
Affiliation(s)
- Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, 16132 Genoa, Italy; (K.C.); (M.C.G.)
| | - Maria Cristina Gagliani
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Lab, University of Genoa, 16132 Genoa, Italy; (K.C.); (M.C.G.)
| | - Luca Raiteri
- Department of Pharmacy (DIFAR), Pharmacology and Toxicology Section, University of Genoa, 16148 Genoa, Italy
| |
Collapse
|
2
|
Ackermann TM, Allmendinger L, Höfner G, Wanner KT. MS Binding Assays for Glycine Transporter 2 (GlyT2) Employing Org25543 as Reporter Ligand. ChemMedChem 2021; 16:199-215. [PMID: 32734692 PMCID: PMC7821181 DOI: 10.1002/cmdc.202000342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/29/2020] [Indexed: 12/13/2022]
Abstract
This study describes the first binding assay for glycine transporter 2 (GlyT2) following the concept of MS Binding Assays. The selective GlyT2 inhibitor Org25543 was employed as a reporter ligand and it was quantified with a highly sensitive and rapid LC-ESI-MS/MS method. Binding of Org25543 at GlyT2 was characterized in kinetic and saturation experiments with an off-rate of 7.07×10-3 s-1 , an on-rate of 1.01×106 M-1 s-1 , and an equilibrium dissociation constant of 7.45 nM. Furthermore, the inhibitory constants of 19 GlyT ligands were determined in competition experiments. The validity of the GlyT2 affinities determined with the binding assay was examined by a comparison with published inhibitory potencies from various functional assays. With the capability for affinity determination towards GlyT2 the developed MS Binding Assays provide the first tool for affinity profiling of potential ligands and it represents a valuable new alternative to functional assays addressing GlyT2.
Collapse
Affiliation(s)
- Thomas M. Ackermann
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Lars Allmendinger
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug ResearchLudwig-Maximilians-Universität MunichButenandtstraße 781377MunichGermany
| |
Collapse
|
3
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
4
|
Advances in understanding the functions of native GlyT1 and GlyT2 neuronal glycine transporters. Neurochem Int 2016; 99:169-177. [DOI: 10.1016/j.neuint.2016.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 07/05/2016] [Accepted: 07/05/2016] [Indexed: 11/20/2022]
|
5
|
Aroeira RI, Vaz SH, Sebastião AM, Valente CA. BDNF modulates glycine uptake in hippocampal synaptosomes by decreasing membrane insertion of glycine transporter 2. Neurochem Int 2016; 99:94-102. [PMID: 27296115 DOI: 10.1016/j.neuint.2016.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022]
Abstract
Glycine transporter 2 (GlyT2) is localized in the nerve terminals of glycinergic neurons, promoting glycine uptake and ensuring the refilling of glycinergic vesicles. Brain-derived neurotrophic factor (BDNF) activates its high affinity TrkB receptors, which occur in two isoforms, full length (TrkB-FL) and truncated (TrkB-T1/T2). After BDNF binding to TrkB receptor, several intracellular cascades are triggered, specifically PLC, Akt and MAPK signalling pathways. We herein show that BDNF decreases [(3)H]glycine uptake mediated by GlyT2 in isolated nerve endings (synaptosomes) obtained from rat hippocampus, by reducing the maximum velocity (Vmax) of transport while not influencing the transporter affinity constant (Km) for glycine. Western Blot analysis detected both TrkB receptor isoforms in the synaptosomes but the BDNF effect seems to be mediated by TrkB-FL since: 1) the tyrosine kinase inhibitor, k252a, prevented the effect of BDNF, and 2) the effect of BDNF was lost in the presence of specific inhibitors of TrkB signalling pathways, namely U73122, LY294002 and U0126 (inhibitors of PLC, Akt and MAPK pathways, respectively). Monensin, a transporter recycling inhibitor, prevented the BDNF action upon glycine uptake, suggesting that BDNF reduces GlyT2 insertion in the plasma membrane. It is concluded that BDNF effect upon glycine uptake into glycinergic nerve terminals requires the activation of the TrkB-FL receptor and its canonical signalling pathways and occurs by inhibiting GlyT2 membrane incorporation.
Collapse
Affiliation(s)
- Rita I Aroeira
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Sandra H Vaz
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana M Sebastião
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal
| | - Cláudia A Valente
- Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028, Lisboa, Portugal.
| |
Collapse
|
6
|
Aroeira RI, Sebastião AM, Valente CA. BDNF, via truncated TrkB receptor, modulates GlyT1 and GlyT2 in astrocytes. Glia 2015. [DOI: 10.1002/glia.22884] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Rita I. Aroeira
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| | - Ana M. Sebastião
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| | - Cláudia A. Valente
- Faculty of Medicine, Institute of Pharmacology and Neurosciences, and Unit of Neurosciences, Institute of Molecular Medicine, University of Lisbon; Av. Prof. Egas Moniz Lisbon Portugal
| |
Collapse
|
7
|
Takahashi E, Arai T, Akahira M, Nakajima M, Nishimura K, Omori Y, Kumagai H, Suzuki T, Hayashi R. The discovery of potent glycine transporter type-2 inhibitors: design and synthesis of phenoxymethylbenzamide derivatives. Bioorg Med Chem Lett 2014; 24:4603-4606. [PMID: 25176190 DOI: 10.1016/j.bmcl.2014.06.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/15/2014] [Accepted: 06/20/2014] [Indexed: 12/28/2022]
Abstract
We describe the discovery of phenoxymethylbenzamide derivatives as a novel class of glycine transporter type-2 (GlyT-2) inhibitors. We found hit compound 1 (human GlyT-2, IC50=4040 nM) in our library and converted its 1-(1-(naphthalen-2-ylmethyl)piperidin-4-yl)pyrrolidin-3-yl group to an 1-(N,N-dimethylaminopropyl)piperidyl group and its tert-butyl group to a trifluoromethyl group to obtain N-(1-(3-(dimethylamino)propyl)piperidin-4-yl)-4-((4-(trifluoromethyl)phenoxy)methyl)benzamide (20). Compound 20 showed good inhibitory activity against human GlyT-2 (IC50=15.3 nM) and exhibited anti-allodynia effects in a mouse neuropathic pain model.
Collapse
Affiliation(s)
- Eiki Takahashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Tadamasa Arai
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Masato Akahira
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Mayumi Nakajima
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Kazumi Nishimura
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Yu Omori
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Hiroki Kumagai
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Tomohiko Suzuki
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| | - Ryoji Hayashi
- Pharmaceutical Research Laboratories, Toray Industries, Inc., 6-10-1 Tebiro, Kamakura, Kanagawa 248-8555, Japan.
| |
Collapse
|
8
|
GABA release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: Roles of Ca2+ channels, Na+/Ca2+ exchangers and GAT1 transporter reversal. Neurochem Int 2014; 72:1-9. [DOI: 10.1016/j.neuint.2014.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/25/2014] [Accepted: 04/03/2014] [Indexed: 11/15/2022]
|
9
|
Milanese M, Romei C, Usai C, Oliveri M, Raiteri L. A new function for glycine GlyT2 transporters: Stimulation of γ-aminobutyric acid release from cerebellar nerve terminals through GAT1 transporter reversal and Ca2+-dependent anion channels. J Neurosci Res 2013; 92:398-408. [DOI: 10.1002/jnr.23321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 10/08/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Marco Milanese
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
| | - Cristina Romei
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
| | - Cesare Usai
- Institute of Biophysics; National Research Council; Genoa Italy
| | - Martina Oliveri
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
| | - Luca Raiteri
- Department of Pharmacy; Pharmacology and Toxicology Section, University of Genoa; Genoa Italy
- Center of Excellence for Biomedical Research; University of Genoa; Genoa Italy
- National Institute of Neuroscience; Genoa Italy
| |
Collapse
|
10
|
GlyT1 and GlyT2 in brain astrocytes: expression, distribution and function. Brain Struct Funct 2013; 219:817-30. [DOI: 10.1007/s00429-013-0537-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 03/02/2013] [Indexed: 11/25/2022]
|
11
|
Romei C, Raiteri M, Raiteri L. Glycine release is regulated by metabotropic glutamate receptors sensitive to mGluR2/3 ligands and activated by N-acetylaspartylglutamate (NAAG). Neuropharmacology 2012; 66:311-6. [PMID: 22659408 DOI: 10.1016/j.neuropharm.2012.05.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/30/2012] [Accepted: 05/22/2012] [Indexed: 10/28/2022]
Abstract
The presence of metabotropic glutamate receptors (mGluRs) of group II modulating glycine exocytosis from glycinergic nerve endings of mouse spinal cord was investigated. Purified synaptosomes were selectively prelabeled with [(3)H]glycine through the neuronal transporter GlyT2 and subsequently depolarized by superfusion with 12 mM KCl. The selective mGluR2/3 agonist LY379268 inhibited the K(+)-evoked overflow of [(3)H]glycine in a concentration-dependent manner (EC(50) about 0.2 nM). The effect of LY379268 was prevented by the selective mGluR2/3 antagonist LY341495 (IC(50) about 1 nM). N-acetylaspartylglutamate (NAAG) inhibited [(3)H]glycine overflow with extraordinary potency (EC(50) about 50 fmol). In contrast, glutamate was ineffective up to 0.1 nM, excluding that glutamate contamination of commercial NAAG samples is responsible for the reported activity of NAAG at mGluR3. LY341495 antagonized the NAAG inhibition of [(3)H]glycine release. The effect of a combination of maximally effective concentrations of LY379268 and NAAG exhibited no additivity. The non-hydrolysable NAAG analogue N-acetylaspartyl-β-linked glutamate (β-NAAG) antagonized NAAG and LY379268. In conclusion, our results show that glycinergic nerve endings in spinal cord are endowed with group II mGluRs mediating inhibition of glycine exocytosis. NAAG can activate these presynaptic receptors with extremely high affinity and with characteristics compatible with the reported mGluR3 pharmacology. This article is part of a Special Issue entitled 'Metabotropic Glutamate Receptors'.
Collapse
Affiliation(s)
- Cristina Romei
- Department of Experimental Medicine, Pharmacology and Toxicology Unit, University of Genoa, Genoa, Italy
| | | | | |
Collapse
|
12
|
Romei C, Di Prisco S, Raiteri M, Raiteri L. Glycine release provoked by disturbed Na+, K+ and Ca2+ homeostasis in cerebellar nerve endings: roles of Ca2+ channels, Na+/Ca2+ exchangers and GlyT2 transporter reversal. J Neurochem 2011; 119:50-63. [DOI: 10.1111/j.1471-4159.2011.07401.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Vargas-Medrano J, Castrejon-Tellez V, Plenge F, Ramirez I, Miranda M. PKCβ-dependent phosphorylation of the glycine transporter 1. Neurochem Int 2011; 59:1123-32. [PMID: 21864610 DOI: 10.1016/j.neuint.2011.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 08/01/2011] [Accepted: 08/05/2011] [Indexed: 10/17/2022]
Abstract
The extracellular levels of the neurotransmitter glycine in the brain are tightly regulated by the glycine transporter 1 (GlyT1) and the clearance rate for glycine depends on its rate of transport and the levels of cell surface GlyT1. Over the years, it has been shown that PKC tightly regulates the activity of several neurotransmitter transporters. In the present work, by stably expressing three N-terminus GlyT1 isoforms in porcine aortic endothelial cells and assaying for [(32)P]-orthophosphate metabolic labeling, we demonstrated that the isoforms GlyT1a, GlyT1b, and GlyT1c were constitutively phosphorylated, and that phosphorylation was dramatically enhanced, in a time dependent fashion, after PKC activation by phorbol ester. The phosphorylation was PKC-dependent, since pre-incubation of the cells with bisindolylmaleimide I, a selective PKC inhibitor, abolished the phorbol ester-induced phosphorylation. Blotting with specific anti-phospho-tyrosine antibodies did not yield any signal that could correspond to GlyT1 tyrosine phosphorylation, suggesting that the phosphorylation occurs at serine and/or threonine residues. In addition, a 23-40%-inhibition on V(max) was obtained by incubation with phorbol ester without a significant change on the apparent Km value. Furthermore, pre-incubation of the cells with the selective PKCα/β inhibitor Gö6976 abolished the downregulation effect of phorbol ester on uptake and phosphorylation, whereas the selective PKCβ inhibitors (PKCβ inhibitor or LY333531) prevented the phosphorylation without affecting glycine uptake, defining a specific role of classical PKC on GlyT1 uptake and phosphorylation. Taken together, these data suggest that conventional PKCα/β regulates the uptake of glycine, whereas PKCβ is responsible for GlyT1 phosphorylation.
Collapse
Affiliation(s)
- Javier Vargas-Medrano
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | | | | | | | | |
Collapse
|
14
|
Kammerer M, Brawek B, Freiman TM, Jackisch R, Feuerstein TJ. Effects of antiepileptic drugs on glutamate release from rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 2011; 383:531-42. [DOI: 10.1007/s00210-011-0620-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 03/02/2011] [Indexed: 11/29/2022]
|
15
|
Luccini E, Romei C, Di Prisco S, Raiteri M, Raiteri L. Ionic dysregulations typical of ischemia provoke release of glycine and GABA by multiple mechanisms. J Neurochem 2010; 114:1074-84. [PMID: 20524963 DOI: 10.1111/j.1471-4159.2010.06829.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Energy deprivation during ischemia causes dysregulations of ions, particularly sodium, potassium and calcium. Under these conditions, release of neurotransmitters is often enhanced and can occur by multiple mechanisms. The aim of this work was to characterize the modes of exit of glycine and GABA from nerve endings exposed to stimuli known to reproduce some of the ionic changes typical of ischemic conditions. Their approach was chosen instead of application of ischemic conditions because the release evoked during ischemia is mechanistically too heterogeneous. Mouse hippocampus and spinal cord synaptosomes, pre-labeled with [(3)H]glycine or [(3)H]GABA, were exposed in superfusion to 50 mM KCl or to 10 microM veratridine. The evoked overflows differed greatly between the two transmitters and between the two regions examined. Significant portions of the K(+)- and the veratridine-evoked overflows occurred by classical exocytosis. Carrier-mediated release of GABA, but not of glycine, was evoked by high K(+); GABA and, less so, glycine were released through transporter reversal by veratridine. External calcium-dependent overflows were only in part sensitive to omega-conotoxins; significant portions occurred following reversal of the plasmalemmal Na(+)/Ca(2+) exchanger. Finally, a relevant contribution to the overall transmitter overflows came from cytosolic calcium originating through the mitochondrial Na(+)/Ca(2+) exchanger. To conclude, ionic dysregulations typical of ischemia cause neurotransmitter release by heterogeneous mechanisms that differ depending on the transmitters and the CNS regions examined.
Collapse
Affiliation(s)
- Elisa Luccini
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | | |
Collapse
|
16
|
Haranishi Y, Hara K, Terada T, Nakamura S, Sata T. The antinociceptive effect of intrathecal administration of glycine transporter-2 inhibitor ALX1393 in a rat acute pain model. Anesth Analg 2010; 110:615-21. [PMID: 20081141 DOI: 10.1213/ane.0b013e3181c7ebbb] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Glycinergic neurons in the spinal dorsal horn have been implicated in the inhibition of spinal pain processing in peripheral inflammation and chronic pain states. Neuronal isoform glycine transporter-2 (GlyT2) reuptakes presynaptically released glycine and regulates the glycinergic neurotransmission. In this study, we examined whether a selective GlyT2 inhibitor, ALX1393, elicits an antinociceptive effect in a rat acute pain model. METHODS Male Sprague-Dawley rats were implanted with a catheter intrathecally. The effects of intrathecal administration of ALX1393 (4, 20, or 40 microg) on thermal, mechanical, and chemical nociception were evaluated by tail flick, hot plate, paw pressure, and formalin tests. Furthermore, to explore whether ALX1393 affects motor function, a rotarod test was performed. RESULTS ALX1393 exhibited antinociceptive effects on the thermal and mechanical stimulations in a dose-dependent manner. The maximal effect of ALX1393 was observed at 15 min after administration, and a significant effect lasted for about 60 min. These antinociceptive effects were reversed completely by strychnine injected immediately after the administration of ALX1393. In the formalin test, ALX1393 inhibited pain behaviors in a dose-dependent manner, both in the early and late phases, although the influence was greater in the late phase. In contrast to antinociceptive action, ALX1393 did not affect motor function up to 40 microg. CONCLUSIONS This study demonstrates the antinociceptive action of ALX1393 on acute pain. These findings suggest that the inhibitory neurotransmitter transporters are promising targets for the treatment of acute pain and that the selective inhibitor of GlyT2 could be a novel therapeutic drug.
Collapse
Affiliation(s)
- Yasunori Haranishi
- Department of Anesthesiology, University of Occupational and Environmental Health, School of Medicine, Kitakyushu, Japan
| | | | | | | | | |
Collapse
|
17
|
Romei C, Luccini E, Raiteri M, Raiteri L. The GABA B receptor antagonists CGP35348 and CGP52432 inhibit glycine exocytosis: study with GABA B1- and GABA B2-deficient mice. Pharmacol Res 2010; 61:547-52. [PMID: 20138995 DOI: 10.1016/j.phrs.2010.01.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 01/28/2010] [Accepted: 01/28/2010] [Indexed: 11/27/2022]
Abstract
GABA(B) receptors mediate inhibition of neurotransmitter exocytosis from nerve endings. Unexpectedly, the well known GABA(B) receptor antagonist CGP35348 and, in part, the compound CGP52432, are now found to inhibit on their own the K(+)-evoked exocytosis of glycine when added at low micromolar concentrations to superfused mouse glycinergic nerve endings prelabelled with [(3)H]glycine through GLYT2 transporters. CGP35348 inhibited [(3)H]glycine release both in spinal cord and in hippocampus, but was also able to prevent the inhibitory effect of (-)-baclofen; CGP52432 exhibited intrinsic activity only in the hippocampus; in spinal cord, it behaved exclusively as a silent orthosteric antagonist by blocking the release inhibition brought about by (-)-baclofen. The intrinsic activity of CGP35348 in spinal cord was not prevented by CGP52432, indicating that CGP35348 is not a partial GABA(B) agonist in this experimental system. CGP54626, an extremely potent antagonist, exhibited only a minimal intrinsic activity. SCH50911, a GABA(B) antagonist belonging to a different chemical class, was devoid of significant activity, while phaclofen was effective only at 100-300 microM. In synaptosomes purified from the spinal cord or the hippocampus of mice lacking either the GABA(B1) (GABA(B1-/-) mice) or the GABA(B2) (GABA(B2-/-) mice) subunit, the evoked exocytosis of [(3)H]glycine was no longer inhibited by (-)-baclofen, whereas the intrinsic activity of CGP35348 and CGP52432 was not decreased. Activation of unknown sites on glycinergic terminals is likely to be involved. These unexpected effects should not be ignored when interpreting results obtained with the above GABA(B) receptor antagonists.
Collapse
Affiliation(s)
- Cristina Romei
- Department of Experimental Medicine, Section of Pharmacology and Toxicology, University of Genoa, Genoa, Italy
| | | | | | | |
Collapse
|
18
|
Morita K, Motoyama N, Kitayama T, Morioka N, Kifune K, Dohi T. Spinal antiallodynia action of glycine transporter inhibitors in neuropathic pain models in mice. J Pharmacol Exp Ther 2008; 326:633-45. [PMID: 18448867 DOI: 10.1124/jpet.108.136267] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuropathic pain is refractory against conventional analgesics, and thus novel medicaments are desired for the treatment. Glycinergic neurons are localized in specific brain regions, including the spinal cord, where they play an important role in the regulation of pain signal transduction. Glycine transporter (GlyT)1, present in glial cells, and GlyT2, located in neurons, play roles in modulating glycinergic neurotransmission by clearing synaptically released glycine or supplying glycine to the neurons and thus could modify pain signal transmission in the spinal cord. In this study, we demonstrated that i.v. or intrathecal administration of GlyT1 inhibitors, cis-N-methyl-N-(6-methoxy-1-phenyl-1,2,3,4-tetrahydronaphthalen-2-yl methyl)amino methylcarboxylic acid (ORG25935) or sarcosine, and GlyT2 inhibitors, 4-benzyloxy-3,5-dimethoxy-N-[1-(dimethylaminocyclopently)-methyl]benzamide (ORG25543) and (O-[(2-benzyloxyphenyl-3-fluorophenyl)methyl]-L-serine) (ALX1393), or knockdown of spinal GlyTs by small interfering RNA of GlyTs mRNA produced a profound antiallodynia effect in a partial peripheral nerve ligation model and other neuropathic pain models in mice. The antiallodynia effect is mediated through spinal glycine receptor alpha3. These results established GlyTs as the target molecules for the development of medicaments for neuropathic pain. However, these manipulations to stimulate glycinergic neuronal activity were without effect during the 4 days after nerve injury, whereas manipulations to inhibit glycinergic neuronal activity protected against the development of allodynia in this phase. The results implied that the timing of medication with their inhibitors should be considered, because glycinergic control of pain was reversed in the critical period of 3 to 4 days after surgery. This may also provide important information for understanding the underlying molecular mechanisms of the development of neuropathic pain.
Collapse
Affiliation(s)
- Katsuya Morita
- Department of Pharmacology, Division of Integrated Medical Science, Hiroshima University Graduate School of Biomedical Sciences, Kasumi 1-2-3, Minami-ku, Hiroshima 734-8553, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Luccini E, Romei C, Raiteri L. Glycinergic nerve endings in hippocampus and spinal cord release glycine by different mechanisms in response to identical depolarizing stimuli. J Neurochem 2008; 105:2179-89. [DOI: 10.1111/j.1471-4159.2008.05309.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|