1
|
Gimenez-Gomez P, Le T, Martin GE. Modulation of neuronal excitability by binge alcohol drinking. Front Mol Neurosci 2023; 16:1098211. [PMID: 36866357 PMCID: PMC9971943 DOI: 10.3389/fnmol.2023.1098211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
Drug use poses a serious threat to health systems throughout the world. The number of consumers rises every year being alcohol the drug of abuse most consumed causing 3 million deaths (5.3% of all deaths) worldwide and 132.6 million disability-adjusted life years. In this review, we present an up-to-date summary about what is known regarding the global impact of binge alcohol drinking on brains and how it affects the development of cognitive functions, as well as the various preclinical models used to probe its effects on the neurobiology of the brain. This will be followed by a detailed report on the state of our current knowledge of the molecular and cellular mechanisms underlying the effects of binge drinking on neuronal excitability and synaptic plasticity, with an emphasis on brain regions of the meso-cortico limbic neurocircuitry.
Collapse
Affiliation(s)
- Pablo Gimenez-Gomez
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| | - Timmy Le
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
- Graduate Program in Neuroscience, Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA, United States
| | - Gilles E. Martin
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, MA, United States
- The Brudnick Neuropsychiatric Research Institute, Worcester, MA, United States
| |
Collapse
|
2
|
BK channel inactivation gates daytime excitability in the circadian clock. Nat Commun 2016; 7:10837. [PMID: 26940770 PMCID: PMC4785228 DOI: 10.1038/ncomms10837] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 01/26/2016] [Indexed: 12/05/2022] Open
Abstract
Inactivation is an intrinsic property of several voltage-dependent ion channels, closing the conduction pathway during membrane depolarization and dynamically regulating neuronal activity. BK K+ channels undergo N-type inactivation via their β2 subunit, but the physiological significance is not clear. Here, we report that inactivating BK currents predominate during the day in the suprachiasmatic nucleus, the brain's intrinsic clock circuit, reducing steady-state current levels. At night inactivation is diminished, resulting in larger BK currents. Loss of β2 eliminates inactivation, abolishing the diurnal variation in both BK current magnitude and SCN firing, and disrupting behavioural rhythmicity. Selective restoration of inactivation via the β2 N-terminal ‘ball-and-chain' domain rescues BK current levels and firing rate, unexpectedly contributing to the subthreshold membrane properties that shift SCN neurons into the daytime ‘upstate'. Our study reveals the clock employs inactivation gating as a biophysical switch to set the diurnal variation in suprachiasmatic nucleus excitability that underlies circadian rhythm. BK potassium channels have been previously shown to mediate SCN circadian firing, although the precise mechanisms are unclear. Here, using knockout and rescue approaches, the authors find that the ß2 ‘ball-and-chain' confers BK channel inactivation during the day, promoting SCN electrical upstate.
Collapse
|
3
|
Torres YP, Granados ST, Latorre R. Pharmacological consequences of the coexpression of BK channel α and auxiliary β subunits. Front Physiol 2014; 5:383. [PMID: 25346693 PMCID: PMC4193333 DOI: 10.3389/fphys.2014.00383] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/16/2014] [Indexed: 01/03/2023] Open
Abstract
Coded by a single gene (Slo1, KCM) and activated by depolarizing potentials and by a rise in intracellular Ca(2+) concentration, the large conductance voltage- and Ca(2+)-activated K(+) channel (BK) is unique among the superfamily of K(+) channels. BK channels are tetramers characterized by a pore-forming α subunit containing seven transmembrane segments (instead of the six found in voltage-dependent K(+) channels) and a large C terminus composed of two regulators of K(+) conductance domains (RCK domains), where the Ca(2+)-binding sites reside. BK channels can be associated with accessory β subunits and, although different BK modulatory mechanisms have been described, greater interest has recently been placed on the role that the β subunits may play in the modulation of BK channel gating due to its physiological importance. Four β subunits have currently been identified (i.e., β1, β2, β3, and β4) and despite the fact that they all share the same topology, it has been shown that every β subunit has a specific tissue distribution and that they modify channel kinetics as well as their pharmacological properties and the apparent Ca(2+) sensitivity of the α subunit in different ways. Additionally, different studies have shown that natural, endogenous, and synthetic compounds can modulate BK channels through β subunits. Considering the importance of these channels in different pathological conditions, such as hypertension and neurological disorders, this review focuses on the mechanisms by which these compounds modulate the biophysical properties of BK channels through the regulation of β subunits, as well as their potential therapeutic uses for diseases such as those mentioned above.
Collapse
Affiliation(s)
- Yolima P Torres
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia
| | - Sara T Granados
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana Bogotá, Colombia ; Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| | - Ramón Latorre
- Facultad de Ciencias, Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso Valparaíso, Chile
| |
Collapse
|
4
|
Dopico AM, Bukiya AN. Lipid regulation of BK channel function. Front Physiol 2014; 5:312. [PMID: 25202277 PMCID: PMC4141547 DOI: 10.3389/fphys.2014.00312] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/31/2014] [Indexed: 01/11/2023] Open
Abstract
This mini-review focuses on lipid modulation of BK (MaxiK, BKCa) current by a direct interaction between lipid and the BK subunits and/or their immediate lipid environment. Direct lipid-BK protein interactions have been proposed for fatty and epoxyeicosatrienoic acids, phosphoinositides and cholesterol, evidence for such action being less clear for other lipids. BK α (slo1) subunits are sufficient to support current perturbation by fatty and epoxyeicosatrienoic acids, glycerophospholipids and cholesterol, while distinct BK β subunits seem necessary for current modulation by most steroids. Subunit domains or amino acids that participate in lipid action have been identified in a few cases: hslo1 Y318, cerebral artery smooth muscle (cbv1) R334,K335,K336, cbv1 seven cytosolic CRAC domains, slo1 STREX and β1 T169,L172,L173 for docosahexaenoic acid, PIP2, cholesterol, sulfatides, and cholane steroids, respectively. Whether these protein motifs directly bind lipids or rather transmit the energy of lipid binding to other areas and trigger protein conformation change remains unresolved. The impact of direct lipid-BK interaction on physiology is briefly discussed.
Collapse
Affiliation(s)
- Alex M Dopico
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| | - Anna N Bukiya
- Department of Pharmacology, The University of Tennessee Health Science Center Memphis, TN, USA
| |
Collapse
|
5
|
Abstract
INTRODUCTION Epilepsies are disorders of neuronal excitability characterized by spontaneous and recurrent seizures. Ion channels are critical for regulating neuronal excitability and, therefore, can contribute significantly to epilepsy pathophysiology. In particular, large conductance, Ca2+-activated K+ (BKCa) channels play an important role in seizure etiology. These channels are activated by both membrane depolarization and increased intracellular Ca2+. This unique coupling of Ca2+ signaling to membrane depolarization is important in controlling neuronal hyperexcitability, as outward K+ current through BKCa channels hyperpolarizes neurons. AREAS COVERED BKCa channel structure-function and the role of these channels in epilepsy pathophysiology. EXPERT OPINION Loss-of-function BKCa channel mutations contribute to neuronal hyperexcitability that can lead to temporal lobe epilepsy, tonic-clonic seizures and alcohol withdrawal seizures. Similarly, BKCa channel blockade can trigger seizures and status epilepticus. Paradoxically, some mutations in BKCa channel subunit can give rise to channel gain-of-function that leads to development of idiopathic epilepsy (primarily absence epilepsy). Seizures themselves also enhance BKCa channel currents associated with neuronal hyperexcitability, and blocking BKCa channels suppresses generalized tonic-clonic seizures. Thus, both loss-of-function and gain-of-function BKCa channels might serve as molecular targets for drugs to suppress certain seizure phenotypes including temporal lobe seizures and absence seizures, respectively.
Collapse
Affiliation(s)
- Prosper N'Gouemo
- Georgetown University Medical Center, Interdisciplinary Program in Neuroscience and Department of Pediatrics, Washington, DC 20057, USA.
| |
Collapse
|
6
|
Chatterjee O, Taylor LA, Ahmed S, Nagaraj S, Hall JJ, Finckbeiner SM, Chan PS, Suda N, King JT, Zeeman ML, McCobb DP. Social stress alters expression of large conductance calcium-activated potassium channel subunits in mouse adrenal medulla and pituitary glands. J Neuroendocrinol 2009; 21:167-76. [PMID: 19207824 DOI: 10.1111/j.1365-2826.2009.01823.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Large conductance calcium-activated potassium (BK) channels are very prominently expressed in adrenal chromaffin and many anterior pituitary cells, where they shape intrinsic excitability complexly. Stress- and sex-steroids regulate alternative splicing of Slo-alpha, the pore-forming subunit of BK channels, and chronic behavioural stress has been shown to alter Slo splicing in tree shrew adrenals. In the present study, we focus on mice, measuring the effects of chronic behavioural stress on total mRNA expression of the Slo-alpha gene, two key BK channel beta subunit genes (beta2 and beta4), and the 'STREX' splice variant of Slo-alpha. As a chronic stressor, males of the relatively aggressive SJL strain were housed with a different unfamiliar SJL male every 24 h for 19 days. This 'social-instability' paradigm stressed all individuals, as demonstrated by reduced weight gain and elevated corticosterone levels. Five quantitative reverse transcriptase-polymerase chain assays were performed in parallel, including beta-actin, each calibrated against a dilution series of its corresponding cDNA template. Stress-related changes in BK expression were larger in mice tested at 6 weeks than 9 weeks. In younger animals, Slo-alpha mRNA levels were elevated 44% and 116% in the adrenal medulla and pituitary, respectively, compared to individually-housed controls. beta2 and beta4 mRNAs were elevated 162% and 194% in the pituitary, but slightly reduced in the adrenals of stressed animals. In the pituitary, dominance scores of stressed animals correlated negatively with alpha and beta subunit expression, with more subordinate individuals exhibiting levels that were three- to four-fold higher than controls or dominant individuals. STREX variant representation was lower in the subordinate subset. Thus, the combination of subunits responding to stress differs markedly between adrenal and pituitary glands. These data suggest that early stress will differentially affect neuroendocrine cell excitability, and call for detailed analysis of functional consequences.
Collapse
Affiliation(s)
- O Chatterjee
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Polyunsaturated fatty acid modulation of voltage-gated ion channels. Cell Biochem Biophys 2008; 52:59-84. [PMID: 18830821 DOI: 10.1007/s12013-008-9027-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2008] [Indexed: 01/03/2023]
Abstract
Arachidonic acid (AA) was found to inhibit the function of whole-cell voltage-gated (VG) calcium currents nearly 16 years ago. There are now numerous examples demonstrating that AA and other polyunsaturated fatty acids (PUFAs) modulate the function of VG ion channels, primarily in neurons and muscle cells. We will review and extract some common features about the modulation by PUFAs of VG calcium, sodium, and potassium channels and discuss the impact of this modulation on the excitability of neurons and cardiac myocytes. We will describe the fatty acid nature of the membrane, how fatty acids become available to function as modulators of VG channels, and the physiologic importance of this type of modulation. We will review the evidence for molecular mechanisms and assess our current understanding of the structural basis for modulation. With guidance from research on the structure of fatty acid binding proteins, the role of lipids in gating mechanosensitive (MS) channels, and the impact of membrane lipid composition on membrane-embedded proteins, we will highlight some avenues for future investigations.
Collapse
|