1
|
Toren Y, Ziv Y, Sragovich S, McKinney RA, Barak S, Shazman S, Gozes I. Sex-Specific ADNP/NAP (Davunetide) Regulation of Cocaine-Induced Plasticity. J Mol Neurosci 2024; 74:76. [PMID: 39251453 PMCID: PMC11384652 DOI: 10.1007/s12031-024-02234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 05/29/2024] [Indexed: 09/11/2024]
Abstract
Cocaine use disorder (CUD) is a chronic neuropsychiatric disorder estimated to effect 1-3% of the population. Activity-dependent neuroprotective protein (ADNP) is essential for brain development and functioning, shown to be protective in fetal alcohol syndrome and to regulate alcohol consumption in adult mice. The goal of this study was to characterize the role of ADNP, and its active peptide NAP (NAPVSIPQ), which is also known as davunetide (investigational drug) in mediating cocaine-induced neuroadaptations. Real time PCR was used to test levels of Adnp and Adnp2 in the nucleus accumbens (NAc), ventral tegmental area (VTA), and dorsal hippocampus (DH) of cocaine-treated mice (15 mg/kg). Adnp heterozygous (Adnp +/-)and wild-type (Adnp +/-) mice were further tagged with excitatory neuronal membrane-expressing green fluorescent protein (GFP) that allowed for in vivo synaptic quantification. The mice were treated with cocaine (5 injections; 15 mg/kg once every other day) with or without NAP daily injections (0.4 µg/0.1 ml) and sacrificed following the last treatment. We analyzed hippocampal CA1 pyramidal cells from 3D confocal images using the Imaris x64.8.1.2 (Oxford Instruments) software to measure changes in dendritic spine density and morphology. In silico ADNP/NAP/cocaine structural modeling was performed as before. Cocaine decreased Adnp and Adnp2 expression 2 h after injection in the NAc and VTA of male mice, with mRNA levels returning to baseline levels after 24 h. Cocaine further reduced hippocampal spine density, particularly synaptically weaker immature thin and stubby spines, in male Adnp+/+) mice while increasing synaptically stronger mature (mushroom) spines in Adnp+/-) male mice and thin and stubby spines in females. Lastly, we showed that cocaine interacts with ADNP on a zinc finger domain identical to ketamine and adjacent to a NAP-zinc finger interaction site. Our results implicate ADNP in cocaine abuse, further placing the ADNP gene as a key regulator in neuropsychiatric disorders. Ketamine/cocaine and NAP treatment may be interchangeable to some degree, implicating an interaction with adjacent zinc finger motifs on ADNP and suggestive of a potential sex-dependent, non-addictive NAP treatment for CUD.
Collapse
Affiliation(s)
- Yael Toren
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Yarden Ziv
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - R Anne McKinney
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Segev Barak
- School of Psychological Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Shula Shazman
- Department of Mathematics and Computer Science, The Open University of Israel, Ra'anana, Israel
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, 6997801, Israel.
| |
Collapse
|
2
|
Wang Y, Sun X, Xiong B, Duan M, Sun Y. Genetic and Environmental Factors Co-Contributing to Behavioral Abnormalities in adnp/ adnp2 Mutant Zebrafish. Int J Mol Sci 2024; 25:9469. [PMID: 39273418 PMCID: PMC11395604 DOI: 10.3390/ijms25179469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Human mutations of ADNP and ADNP2 are known to be associated with neural developmental disorders (NDDs), including autism spectrum disorders (ASDs) and schizophrenia (SZ). However, the underlying mechanisms remain elusive. In this study, using CRISPR/Cas9 gene editing technology, we generated adnp and adnp2 mutant zebrafish models, which exhibited developmental delays, brain deficits, and core behavioral features of NDDs. RNA sequencing analysis of adnpa-/-; adnpb-/- and adnp2a-/-; adnp2b-/- larval brains revealed altered gene expression profiles affecting synaptic transmission, autophagy, apoptosis, microtubule dynamics, hormone signaling, and circadian rhythm regulation. Validation using whole-mount in situ hybridization (WISH) and real-time quantitative PCR (qRT-PCR) corroborated these findings, supporting the RNA-seq results. Additionally, loss of adnp and adnp2 resulted in significant downregulation of pan-neuronal HuC and neuronal fiber network α-Tubulin signals. Importantly, prolonged low-dose exposure to environmental endocrine disruptors (EEDs) aggravated behavioral abnormalities in adnp and adnp2 mutants. This comprehensive approach enhances our understanding of the complex interplay between genetic mutations and environmental factors in NDDs. Our findings provide novel insights and experimental foundations into the roles of adnp and adnp2 in neurodevelopment and behavioral regulation, offering a framework for future preclinical drug screening aimed at elucidating the pathogenesis of NDDs and related conditions.
Collapse
Affiliation(s)
- Yongxin Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Sun
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Xiong
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ming Duan
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yuhua Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Lei Y, Al Delbany D, Krivec N, Regin M, Couvreu de Deckersberg E, Janssens C, Ghosh M, Sermon K, Spits C. SALL3 mediates the loss of neuroectodermal differentiation potential in human embryonic stem cells with chromosome 18q loss. Stem Cell Reports 2024; 19:562-578. [PMID: 38552632 PMCID: PMC11096619 DOI: 10.1016/j.stemcr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 04/12/2024] Open
Abstract
Human pluripotent stem cell (hPSC) cultures are prone to genetic drift, because cells that have acquired specific genetic abnormalities experience a selective advantage in vitro. These abnormalities are highly recurrent in hPSC lines worldwide, but their functional consequences in differentiating cells are scarcely described. In this work, we show that the loss of chromosome 18q impairs neuroectoderm commitment and that downregulation of SALL3, a gene located in the common 18q loss region, is responsible for this failed neuroectodermal differentiation. Knockdown of SALL3 in control lines impaired differentiation in a manner similar to the loss of 18q, and transgenic overexpression of SALL3 in hESCs with 18q loss rescued the differentiation capacity of the cells. Finally, we show that loss of 18q and downregulation of SALL3 leads to changes in the expression of genes involved in pathways regulating pluripotency and differentiation, suggesting that these cells are in an altered state of pluripotency.
Collapse
Affiliation(s)
- Yingnan Lei
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Diana Al Delbany
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Nuša Krivec
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Marius Regin
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Edouard Couvreu de Deckersberg
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Charlotte Janssens
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Manjusha Ghosh
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Karen Sermon
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Claudia Spits
- Research Group Reproduction and Genetics, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Brussels, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
4
|
D'Incal CP, Van Rossem KE, De Man K, Konings A, Van Dijck A, Rizzuti L, Vitriolo A, Testa G, Gozes I, Vanden Berghe W, Kooy RF. Chromatin remodeler Activity-Dependent Neuroprotective Protein (ADNP) contributes to syndromic autism. Clin Epigenetics 2023; 15:45. [PMID: 36945042 PMCID: PMC10031977 DOI: 10.1186/s13148-023-01450-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/16/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Individuals affected with autism often suffer additional co-morbidities such as intellectual disability. The genes contributing to autism cluster on a relatively limited number of cellular pathways, including chromatin remodeling. However, limited information is available on how mutations in single genes can result in such pleiotropic clinical features in affected individuals. In this review, we summarize available information on one of the most frequently mutated genes in syndromic autism the Activity-Dependent Neuroprotective Protein (ADNP). RESULTS Heterozygous and predicted loss-of-function ADNP mutations in individuals inevitably result in the clinical presentation with the Helsmoortel-Van der Aa syndrome, a frequent form of syndromic autism. ADNP, a zinc finger DNA-binding protein has a role in chromatin remodeling: The protein is associated with the pericentromeric protein HP1, the SWI/SNF core complex protein BRG1, and other members of this chromatin remodeling complex and, in murine stem cells, with the chromodomain helicase CHD4 in a ChAHP complex. ADNP has recently been shown to possess R-loop processing activity. In addition, many additional functions, for instance, in association with cytoskeletal proteins have been linked to ADNP. CONCLUSIONS We here present an integrated evaluation of all current aspects of gene function and evaluate how abnormalities in chromatin remodeling might relate to the pleiotropic clinical presentation in individual"s" with Helsmoortel-Van der Aa syndrome.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Kirsten Esther Van Rossem
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Kevin De Man
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium
| | - Ludovico Rizzuti
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Alessandro Vitriolo
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Giuseppe Testa
- High Definition Disease Modelling Lab, Stem Cell and Organoid Epigenetics, IEO, European Institute of Oncology, IRCCS, 20141, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, 20122, Milan, Italy
- Human Technopole, V. Le Rita Levi-Montalcini, 1, 20157, Milan, Italy
| | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Sackler School of Medicine, 727, 69978, Tel Aviv, Israel
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling Lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Belgium.
| |
Collapse
|
5
|
Townsend J, Braz CU, Taylor T, Khatib H. Effects of paternal methionine supplementation on sperm DNA methylation and embryo transcriptome in sheep. ENVIRONMENTAL EPIGENETICS 2022; 9:dvac029. [PMID: 36727109 PMCID: PMC9885981 DOI: 10.1093/eep/dvac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/18/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Environmental effects on gene expression and offspring development can be mediated by epigenetic modifications. It is well established that maternal diet influences DNA methylation patterns and phenotypes in the offspring; however, the epigenetic effects of paternal diet on developing offspring warrants further investigation. Here, we examined how a prepubertal methionine-enriched paternal diet affected sperm DNA methylation and its subsequent effects on embryo gene expression. Three treatment and three control rams were bred to seven ewes, and blastocysts were flushed for RNA extraction. Semen was collected from all rams and submitted for reduced representation bisulfite sequencing analysis. In total, 166 differentially methylated cytosines were identified in the sperm from treatment versus control rams. Nine genes were found to be differentially expressed in embryos produced from treatment versus control rams, and seven differentially methylated cytosines in the sperm were found to be highly correlated with gene expression in the embryos. Our results demonstrate that sperm methylation differences induced by diet may influence fetal programming.
Collapse
Affiliation(s)
- Jessica Townsend
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Camila U Braz
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Todd Taylor
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| | - Hasan Khatib
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, 1675 Observatory Dr., Madison, WI 53706, USA
| |
Collapse
|
6
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Ballan M, Bovo S, Schiavo G, Schiavitto M, Negrini R, Fontanesi L. Genomic diversity and signatures of selection in meat and fancy rabbit breeds based on high-density marker data. Genet Sel Evol 2022; 54:3. [PMID: 35062866 PMCID: PMC8780294 DOI: 10.1186/s12711-022-00696-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 01/07/2022] [Indexed: 11/23/2022] Open
Abstract
Background Domestication of the rabbit (Oryctolagus cuniculus) has led to a multi-purpose species that includes many breeds and lines with a broad phenotypic diversity, mainly for external traits (e.g. coat colours and patterns, fur structure, and morphometric traits) that are valued by fancy rabbit breeders. As a consequence of this human-driven selection, distinct signatures are expected to be present in the rabbit genome, defined as signatures of selection or selective sweeps. Here, we investigated the genome of three Italian commercial meat rabbit breeds (Italian Silver, Italian Spotted and Italian White) and 12 fancy rabbit breeds (Belgian Hare, Burgundy Fawn, Champagne d’Argent, Checkered Giant, Coloured Dwarf, Dwarf Lop, Ermine, Giant Grey, Giant White, Rex, Rhinelander and Thuringian) by using high-density single nucleotide polymorphism data. Signatures of selection were identified based on the fixation index (FST) statistic with different approaches, including single-breed and group-based methods, the latter comparing breeds that are grouped based on external traits (different coat colours and body sizes) and types (i.e. meat vs. fancy breeds). Results We identified 309 genomic regions that contained signatures of selection and that included genes that are known to affect coat colour (ASIP, MC1R and TYR), coat structure (LIPH), and body size (LCORL/NCAPG, COL11A1 and HOXD) in rabbits and that characterize the investigated breeds. Their identification proves the suitability of the applied methodologies for capturing recent selection events. Other regions included novel candidate genes that might contribute to the phenotypic variation among the analyzed breeds, including genes for pigmentation-related traits (EDNRA, EDNRB, MITF and OCA2) and body size, with a strong candidate for dwarfism in rabbit (COL2A1). Conclusions We report a genome-wide view of genetic loci that underlie the main phenotypic differences in the analyzed rabbit breeds, which can be useful to understand the shift from the domestication process to the development of breeds in O. cuniculus. These results enhance our knowledge about the major genetic loci involved in rabbit external traits and add novel information to understand the complexity of the genetic architecture underlying body size in mammals. Supplementary Information The online version contains supplementary material available at 10.1186/s12711-022-00696-9.
Collapse
|
8
|
Bainomugisa CK, Sutherland HG, Parker R, Mcrae AF, Haupt LM, Griffiths LR, Heath A, Nelson EC, Wright MJ, Hickie IB, Martin NG, Nyholt DR, Mehta D. Using Monozygotic Twins to Dissect Common Genes in Posttraumatic Stress Disorder and Migraine. Front Neurosci 2021; 15:678350. [PMID: 34239411 PMCID: PMC8258453 DOI: 10.3389/fnins.2021.678350] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 01/03/2023] Open
Abstract
Epigenetic mechanisms have been associated with genes involved in Posttraumatic stress disorder (PTSD). PTSD often co-occurs with other health conditions such as depression, cardiovascular disorder and respiratory illnesses. PTSD and migraine have previously been reported to be symptomatically positively correlated with each other, but little is known about the genes involved. The aim of this study was to understand the comorbidity between PTSD and migraine using a monozygotic twin disease discordant study design in six pairs of monozygotic twins discordant for PTSD and 15 pairs of monozygotic twins discordant for migraine. DNA from peripheral blood was run on Illumina EPIC arrays and analyzed. Multiple testing correction was performed using the Bonferroni method and 10% false discovery rate (FDR). We validated 11 candidate genes previously associated with PTSD including DOCK2, DICER1, and ADCYAP1. In the epigenome-wide scan, seven novel CpGs were significantly associated with PTSD within/near IL37, WNT3, ADNP2, HTT, SLFN11, and NQO2, with all CpGs except the IL37 CpG hypermethylated in PTSD. These results were significantly enriched for genes whose DNA methylation was previously associated with migraine (p-value = 0.036). At 10% FDR, 132 CpGs in 99 genes associated with PTSD were also associated with migraine in the migraine twin samples. Genes associated with PTSD were overrepresented in vascular smooth muscle, axon guidance and oxytocin signaling pathways, while genes associated with both PTSD and migraine were enriched for AMPK signaling and longevity regulating pathways. In conclusion, these results suggest that common genes and pathways are likely involved in PTSD and migraine, explaining at least in part the co-morbidity between the two disorders.
Collapse
Affiliation(s)
- Charlotte K Bainomugisa
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Heidi G Sutherland
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Richard Parker
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Allan F Mcrae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Larisa M Haupt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Lyn R Griffiths
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Kelvin Grove, QLD, Australia
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Elliot C Nelson
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Margaret J Wright
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
| | - Ian B Hickie
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Royal Brisbane Hospital, Herston, QLD, Australia
| | - Dale R Nyholt
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Divya Mehta
- Centre for Genomics and Personalised Health, School of Biomedical Science, Faculty of Health, Queensland University of Technology, Kelvin Grove, QLD, Australia
| |
Collapse
|
9
|
Hacohen-Kleiman G, Moaraf S, Kapitansky O, Gozes I. Sex-and Region-Dependent Expression of the Autism-Linked ADNP Correlates with Social- and Speech-Related Genes in the Canary Brain. J Mol Neurosci 2020; 70:1671-1683. [PMID: 32926339 DOI: 10.1007/s12031-020-01700-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2020] [Indexed: 02/07/2023]
Abstract
The activity-dependent neuroprotective protein (ADNP) syndrome is an autistic-like disorder, instigated by mutations in ADNP. This syndrome is characterized by developmental delays, impairments in speech, motor function, abnormal hearing, and intellectual disabilities. In the Adnp-haploinsufficient mouse model, many of these impediments are evident, appearing in a sex-dependent manner. In zebra finch songbird (ZF; Taeniopygia guttata), an animal model used for song/language studies, ADNP mRNA most robust expression is observed in the cerebrum of young males, potentially corroborating with male ZF exclusive singing behavior and developed cerebral song system. Herein, we report a similar sex-dependent ADNP expression profile, with the highest expression in the cerebrum (qRT-PCR) in the brain of another songbird, the domesticated canary (Serinus canaria domestica). Additional analyses for the mRNA transcripts of the ADNP regulator, vasoactive intestinal peptide (VIP), sister gene ADNP2, and speech-related Forkhead box protein P2 (FoxP2) revealed multiple sex and brain region-dependent positive correlations between the genes (including ADNP). Parallel transcript expression patterns for FoxP2 and VIP were observed alongside specific FoxP2 increase in males compared with females as well as VIP/ADNP2 correlations. In spatial view, a sexually independent extensive form of expression was found for ADNP in the canary cerebrum (RNA in situ hybridization). The songbird cerebral mesopallium area stood out as a potentially high-expressing ADNP tissue, further strengthening the association of ADNP with sense integration and auditory memory formation, previously implicated in mouse and human.
Collapse
Affiliation(s)
- Gal Hacohen-Kleiman
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
- Department of Natural and Life Sciences, The Open University of Israel, 43107, Ra'anana, Israel
| | - Stan Moaraf
- Department of Natural and Life Sciences, The Open University of Israel, 43107, Ra'anana, Israel
- School of Zoology, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Oxana Kapitansky
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
10
|
Age and Sex-Dependent ADNP Regulation of Muscle Gene Expression Is Correlated with Motor Behavior: Possible Feedback Mechanism with PACAP. Int J Mol Sci 2020; 21:ijms21186715. [PMID: 32937737 PMCID: PMC7555576 DOI: 10.3390/ijms21186715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 12/21/2022] Open
Abstract
The activity-dependent neuroprotective protein (ADNP), a double-edged sword, sex-dependently regulates multiple genes and was previously associated with the control of early muscle development and aging. Here we aimed to decipher the involvement of ADNP in versatile muscle gene expression patterns in correlation with motor function throughout life. Using quantitative RT-PCR we showed that Adnp+/− heterozygous deficiency in mice resulted in aberrant gastrocnemius (GC) muscle, tongue and bladder gene expression, which was corrected by the Adnp snippet, drug candidate, NAP (CP201). A significant sexual dichotomy was discovered, coupled to muscle and age-specific gene regulation. As such, Adnp was shown to regulate myosin light chain (Myl) in the gastrocnemius (GC) muscle, the language acquisition gene forkhead box protein P2 (Foxp2) in the tongue and the pituitary-adenylate cyclase activating polypeptide (PACAP) receptor PAC1 mRNA (Adcyap1r1) in the bladder, with PACAP linked to bladder function. A tight age regulation was observed, coupled to an extensive correlation to muscle function (gait analysis), placing ADNP as a muscle-regulating gene/protein.
Collapse
|
11
|
Kapitansky O, Gozes I. ADNP differentially interact with genes/proteins in correlation with aging: a novel marker for muscle aging. GeroScience 2019; 41:321-340. [PMID: 31264075 DOI: 10.1007/s11357-019-00079-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/10/2019] [Indexed: 12/25/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) is essential for embryonic development with ADNP mutations leading to syndromic autism, coupled with intellectual disabilities and motor developmental delays. Here, mining human muscle gene-expression databases, we have investigated the association of ADNP transcripts with muscle aging. We discovered increased ADNP and its paralogue ADNP2 expression in the vastus lateralis muscle of aged compared to young subjects, as well as altered expression of the ADNP and the ADNP2 genes in bicep brachii muscle of elderly people, in a sex-dependent manner. Prolonged exercise resulted in decreased ADNP expression, and increased ADNP2 expression in an age-dependent manner in the vastus lateralis muscle. ADNP expression level was further correlated with 49 genes showing age-dependent changes in muscle transcript expression. A high degree of correlation with ADNP was discovered for 24 genes with the leading gene/protein being NMNAT1 (nicotinamide nucleotide adenylyl transferase 1). Looking at correlations differentiating the young and the old muscles and comparing protein interactions revealed an association of ADNP with the cell division cycle 5-like protein (CDC5L), and an aging-muscle-related interactive pathway in the vastus lateralis. In the bicep brachii, very high correlation was detected with genes associated with immune functions as well as mitochondrial structure and function among others. Taken together, the results suggest a direct association of ADNP with muscle strength and implicate ADNP fortification in the protection against age-associated muscle wasting.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Illana Gozes
- The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
12
|
Wu LS, Cheng WC, Chen CY, Wu MC, Wang YC, Tseng YH, Chuang TJ, Shen CKJ. Transcriptomopathies of pre- and post-symptomatic frontotemporal dementia-like mice with TDP-43 depletion in forebrain neurons. Acta Neuropathol Commun 2019; 7:50. [PMID: 30922385 PMCID: PMC6440020 DOI: 10.1186/s40478-019-0674-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 12/12/2022] Open
Abstract
TAR DNA-binding protein (TDP-43) is a ubiquitously expressed nuclear protein, which participates in a number of cellular processes and has been identified as the major pathological factor in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Here we constructed a conditional TDP-43 mouse with depletion of TDP-43 in the mouse forebrain and find that the mice exhibit a whole spectrum of age-dependent frontotemporal dementia-like behaviour abnormalities including perturbation of social behaviour, development of dementia-like behaviour, changes of activities of daily living, and memory loss at a later stage of life. These variations are accompanied with inflammation, neurodegeneration, and abnormal synaptic plasticity of the mouse CA1 neurons. Importantly, analysis of the cortical RNA transcripts of the conditional knockout mice at the pre-/post-symptomatic stages and the corresponding wild type mice reveals age-dependent alterations in the expression levels and RNA processing patterns of a set of genes closely associated with inflammation, social behaviour, synaptic plasticity, and neuron survival. This study not only supports the scenario that loss-of-function of TDP-43 in mice may recapitulate key behaviour features of the FTLD diseases, but also provides a list of TDP-43 target genes/transcript isoforms useful for future therapeutic research.
Collapse
Affiliation(s)
- Lien-Szu Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Wei-Cheng Cheng
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Che Wu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China
| | - Yi-Chi Wang
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | - C-K James Shen
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, 115, Taiwan, Republic of China.
| |
Collapse
|
13
|
Montalvo-Ortiz JL, Zhang H, Chen C, Liu C, Coccaro EF. Genome-Wide DNA Methylation Changes Associated with Intermittent Explosive Disorder: A Gene-Based Functional Enrichment Analysis. Int J Neuropsychopharmacol 2017; 21:12-20. [PMID: 29106553 PMCID: PMC5789263 DOI: 10.1093/ijnp/pyx087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Intermittent explosive disorder is defined as a recurrent, problematic, and impulsive aggression that affects 3% to 4% of the US population. While behavioral genetic studies report a substantial degree of genetic influence on aggression and impulsivity, epigenetic mechanisms underlying aggression and intermittent explosive disorder are not well known. METHODS The sample included 44 subjects (22 with a DSM-5 diagnosis of intermittent explosive disorder and 22 comparable subjects without intermittent explosive disorder). Peripheral blood DNA methylome was profiled using the Illumina Infinium HumanMethylation450 Beadchip. Intermittent explosive disorder-associated genome-wide DNA methylation changes were analyzed using the CpGassoc R package, with covariates age, sex, and race being adjusted. A gene-based functional enrichment analysis was performed to identify pathways that were overrepresented by genes harboring highly differentially methylated CpG sites. RESULTS A total of 27 CpG sites were differentially methylated in IED participants (P<5.0×10-5), but none reached genome-wide significant threshold. Functional enrichment analysis revealed that genes mapped by these CpG sites are involved in the inflammatory/immune system, the endocrine system, and neuronal differentiation. CONCLUSIONS Consistent with our previous studies showing an association of inflammatory response with aggressive behavior in intermittent explosive disorder subjects, our gene-based pathway analysis using differentially methylated CpG sites supports inflammatory response as an important mechanism involved in intermittent explosive disorder and reveals other novel biological processes possibly associated with intermittent explosive disorder.
Collapse
Affiliation(s)
| | - Huiping Zhang
- Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
| | - Chao Chen
- State Key Laboratory of Medical Genetics, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- University of Illinois at Chicago, Chicago, Illinois
| | - Emil F Coccaro
- Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, University of Chicago, Chicago, Illinois,Correspondence: Emil F. Coccaro, MD, Clinical Neuroscience Research Unit, Department of Psychiatry and Behavioral Neuroscience, Pritzker School of Medicine, University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637 ()
| |
Collapse
|
14
|
Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants. Oncotarget 2016; 7:7497-533. [PMID: 26848775 PMCID: PMC4884935 DOI: 10.18632/oncotarget.7120] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/23/2016] [Indexed: 12/25/2022] Open
Abstract
Trisomy 21-driven transcriptional alterations in human thymus were characterized through gene coexpression network (GCN) and miRNA-target analyses. We used whole thymic tissue--obtained at heart surgery from Down syndrome (DS) and karyotipically normal subjects (CT)--and a network-based approach for GCN analysis that allows the identification of modular transcriptional repertoires (communities) and the interactions between all the system's constituents through community detection. Changes in the degree of connections observed for hierarchically important hubs/genes in CT and DS networks corresponded to community changes. Distinct communities of highly interconnected genes were topologically identified in these networks. The role of miRNAs in modulating the expression of highly connected genes in CT and DS was revealed through miRNA-target analysis. Trisomy 21 gene dysregulation in thymus may be depicted as the breakdown and altered reorganization of transcriptional modules. Leading networks acting in normal or disease states were identified. CT networks would depict the "canonical" way of thymus functioning. Conversely, DS networks represent a "non-canonical" way, i.e., thymic tissue adaptation under trisomy 21 genomic dysregulation. This adaptation is probably driven by epigenetic mechanisms acting at chromatin level and through the miRNA control of transcriptional programs involving the networks' high-hierarchy genes.
Collapse
|
15
|
Malishkevich A, Marshall GA, Schultz AP, Sperling RA, Aharon-Peretz J, Gozes I. Blood-Borne Activity-Dependent Neuroprotective Protein (ADNP) is Correlated with Premorbid Intelligence, Clinical Stage, and Alzheimer's Disease Biomarkers. J Alzheimers Dis 2016; 50:249-60. [PMID: 26639975 DOI: 10.3233/jad-150799] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Biomarkers for Alzheimer's disease (AD) are vital for disease detection in the clinical setting. Discovered in our laboratory, activity-dependent neuroprotective protein (ADNP) is essential for brain formation and linked to cognitive functions. Here, we revealed that blood borne expression of ADNP and its paralog ADNP2 is correlated with premorbid intelligence, AD pathology, and clinical stage. Age adjustment showed significant associations between: 1) higher premorbid intelligence and greater serum ADNP, and 2) greater cortical amyloid and lower ADNP and ADNP2 mRNAs. Significant increases in ADNP mRNA levels were observed in patients ranging from mild cognitive impairment (MCI) to AD dementia. ADNP2 transcripts showed high correlation with ADNP transcripts, especially in AD dementia lymphocytes. ADNP plasma/serum and lymphocyte mRNA levels discriminated well between cognitively normal elderly, MCI, and AD dementia participants. Measuring ADNP blood-borne levels could bring us a step closer to effectively screening and tracking AD.
Collapse
Affiliation(s)
- Anna Malishkevich
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Sagol School of Neuroscience & Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| | - Gad A Marshall
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aaron P Schultz
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Reisa A Sperling
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Illana Gozes
- Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Sagol School of Neuroscience & Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
16
|
Merenlender-Wagner A, Shemer Z, Touloumi O, Lagoudaki R, Giladi E, Andrieux A, Grigoriadis NC, Gozes I. New horizons in schizophrenia treatment: autophagy protection is coupled with behavioral improvements in a mouse model of schizophrenia. Autophagy 2015; 10:2324-32. [PMID: 25484074 DOI: 10.4161/15548627.2014.984274] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Autophagy plays a key role in the pathophysiology of schizophrenia as manifested by a 40% decrease in BECN1/Beclin 1 mRNA in postmortem hippocampal tissues relative to controls. This decrease was coupled with the deregulation of the essential ADNP (activity-dependent neuroprotector homeobox), a binding partner of MAP1LC3B/LC3B (microtubule-associated protein 1 light chain 3 β) another major constituent of autophagy. The drug candidate NAP (davunetide), a peptide fragment from ADNP, enhanced the ADNP-LC3B interaction. Parallel genetic studies have linked allelic variation in the gene encoding MAP6/STOP (microtubule-associated protein 6) to schizophrenia, along with altered MAP6/STOP protein expression in the schizophrenic brain and schizophrenic-like behaviors in Map6-deficient mice. In this study, for the first time, we reveal significant decreases in hippocampal Becn1 mRNA and reversal by NAP but not by the antipsychotic clozapine (CLZ) in Map6-deficient (Map6(+/-)) mice. Normalization of Becn1 expression by NAP was coupled with behavioral protection against hyperlocomotion and cognitive deficits measured in the object recognition test. CLZ reduced hyperlocomotion below control levels and did not significantly affect object recognition. The combination of CLZ and NAP resulted in normalized outcome behaviors. Phase II clinical studies have shown NAP-dependent augmentation of functional activities of daily living coupled with brain protection. The current studies provide a new mechanistic pathway and a novel avenue for drug development.
Collapse
Key Words
- ADNP, activity-dependent neuroprotector homeobox (human)
- Adnp, activity-dependent neuroprotective protein (mouse)
- Adnp2 (mouse), ADNP2 (human), ADNP homeobox 2
- Becn1 (mouse), BECN1 (human), Beclin 1, autophagy-related
- CLZ, clozapine
- HUGO gene nomenclature committee database)
- Hprt/Hprt1, hypoxanthine phosphoribosyl transferase
- MGI database)
- Map1lc3b (mouse), MAP1LC3B (human), microtubule-associated protein 1 light chain 3 β
- Map6 (mouse), MAP6 (human), microtubule-associated protein 6
- NAP (davunetide); object recognition
- activity-dependent neuroprotective protein (ADNP
- activity-dependent neuroprotector homeobox (ADNP
- hyperactivity; immunohistochemistry
- microtubule-associated protein 6 (MAP6)/stable tubule only polypeptide (STOP) deficiency
- real-time PCR
Collapse
Affiliation(s)
- Avia Merenlender-Wagner
- a The Adams Super Center for Brain Studies; The Lily and Avraham Gildor Chair for the Investigation of Growth Factors; The Elton Laboratory for Neuroendocrinology; Department of Human Molecular Genetics and Biochemistry; Sagol School of Neuroscience; Sackler Faculty of Medicine ; Tel Aviv University ; Tel Aviv ; Israel
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Aggressive behavior is highly heritable, while environmental influences, particularly early in life, are also important. Epigenetic mechanisms, such as DNA methylation, regulate gene expression throughout development and adulthood, and may mediate genetic and environmental effects on complex traits. We performed an epigenome-wide association study (EWAS) to identify regions in the genome where DNA methylation level is associated with aggressive behavior. Subjects took part in longitudinal survey studies from the Netherlands Twin Register (NTR) and participated in the NTR biobank project between 2004 and 2011 (N = 2,029, mean age at blood sampling = 36.4 years, SD = 12.4, females = 69.2%). Aggressive behavior was rated with the ASEBA Adult Self-Report (ASR). DNA methylation was measured in whole blood by the Illumina HM450k array. The association between aggressive behavior and DNA methylation level at 411,169 autosomal sites was tested. Association analyses in the entire cohort showed top sites at cg01792876 (chr8; 116,684,801, nearest gene = TRPS1, p = 7.6 × 10−7, False discovery rate (FDR) = 0.18) and cg06092953 (chr18; 77,905,699, nearest gene = PARD6G-AS1, p = 9.0 ×10−7, FDR = 0.18). Next, we compared methylation levels in 20 pairs of monozygotic (MZ) twins highly discordant for aggression. Here the top sites were cg21557159 (chr 11; 107,795,699, nearest gene = RAB39, p = 5.7 × 10−6, FDR = 0.99), cg08648367 (chr 19; 51,925,472, nearest gene = SIGLEC10, p = 7.6 × 10−6, FDR = 0.99), and cg14212412 (chr 6; 105,918,992, nearest gene = PREP, p = 8.0 × 10−6, FDR = 0.99). The two top hits based on the entire cohort showed the same direction of effect in discordant MZ pairs (cg01792876, Pdiscordant twins = 0.09 and cg06092953, Pdiscordant twins = 0.24). The other way around, two of the three most significant sites in discordant MZ pairs showed the same direction of effect in the entire cohort (cg08648367, Pentire EWAS = 0.59 and cg14212412, Pentire EWAS = 3.1 × 10−3). Gene ontology analysis highlighted significant enrichment of various central nervous system categories among higher-ranking methylation sites. Higher-ranking methylation sites also showed enrichment for DNase I hypersensitive sites and promoter regions, showing that DNA methylation in peripheral tissues is likely to be associated with aggressive behavior.
Collapse
|
18
|
Two candidate genes for two quantitative trait loci epistatically attenuate hypertension in a novel pathway. J Hypertens 2015; 33:1791-801; discussion 1801. [DOI: 10.1097/hjh.0000000000000626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
19
|
ADNP/ADNP2 expression in oligodendrocytes: implication for myelin-related neurodevelopment. J Mol Neurosci 2015; 57:304-13. [DOI: 10.1007/s12031-015-0640-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Chung JH, Cai J, Suskin BG, Zhang Z, Coleman K, Morrow BE. Whole-Genome Sequencing and Integrative Genomic Analysis Approach on Two 22q11.2 Deletion Syndrome Family Trios for Genotype to Phenotype Correlations. Hum Mutat 2015; 36:797-807. [PMID: 25981510 DOI: 10.1002/humu.22814] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/01/2015] [Indexed: 12/20/2022]
Abstract
The 22q11.2 deletion syndrome (22q11DS) affects 1:4,000 live births and presents with highly variable phenotype expressivity. In this study, we developed an analytical approach utilizing whole-genome sequencing (WGS) and integrative analysis to discover genetic modifiers. Our pipeline combined available tools in order to prioritize rare, predicted deleterious, coding and noncoding single-nucleotide variants (SNVs), and insertion/deletions from WGS. We sequenced two unrelated probands with 22q11DS, with contrasting clinical findings, and their unaffected parents. Proband P1 had cognitive impairment, psychotic episodes, anxiety, and tetralogy of Fallot (TOF), whereas proband P2 had juvenile rheumatoid arthritis but no other major clinical findings. In P1, we identified common variants in COMT and PRODH on 22q11.2 as well as rare potentially deleterious DNA variants in other behavioral/neurocognitive genes. We also identified a de novo SNV in ADNP2 (NM_014913.3:c.2243G>C), encoding a neuroprotective protein that may be involved in behavioral disorders. In P2, we identified a novel nonsynonymous SNV in ZFPM2 (NM_012082.3:c.1576C>T), a known causative gene for TOF, which may act as a protective variant downstream of TBX1, haploinsufficiency of which is responsible for congenital heart disease in individuals with 22q11DS.
Collapse
Affiliation(s)
- Jonathan H Chung
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Jinlu Cai
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Barrie G Suskin
- Department of Obstetrics & Gynecology and Women's Health, Montefiore Medical Center, Bronx, New York
| | - Zhengdong Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| | - Karlene Coleman
- Children's Healthcare of Atlanta at Egleston, Atlanta, Georgia
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York
| |
Collapse
|
21
|
Merenlender-Wagner A, Malishkevich A, Shemer Z, Udawela M, Gibbons A, Scarr E, Dean B, Levine J, Agam G, Gozes I. Autophagy has a key role in the pathophysiology of schizophrenia. Mol Psychiatry 2015; 20:126-32. [PMID: 24365867 PMCID: PMC4320293 DOI: 10.1038/mp.2013.174] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 11/06/2013] [Accepted: 11/07/2013] [Indexed: 01/07/2023]
Abstract
Autophagy is a process preserving the balance between synthesis, degradation and recycling of cellular components and is therefore essential for neuronal survival and function. Several key proteins govern the autophagy pathway including beclin1 and microtubule associated protein 1 light chain 3 (LC3). Here, we show a brain-specific reduction in beclin1 expression in postmortem hippocampus of schizophrenia patients, not detected in peripheral lymphocytes. This is in contrast with activity-dependent neuroprotective protein (ADNP) and ADNP2, which we have previously found to be deregulated in postmortem hippocampal samples from schizophrenia patients, but that now showed a significantly increased expression in lymphocytes from related patients, similar to increases in the anti-apoptotic, beclin1-interacting, Bcl2. The increase in ADNP was associated with the initial stages of the disease, possibly reflecting a compensatory effect. The increase in ADNP2 might be a consequence of neuroleptic treatment, as seen in rats subjected to clozapine treatment. ADNP haploinsufficiency in mice, which results in age-related neuronal death, cognitive and social dysfunction, exhibited reduced hippocampal beclin1 and increased Bcl2 expression (mimicking schizophrenia and normal human aging). At the protein level, ADNP co-immunoprecipitated with LC3B suggesting a direct association with the autophagy process and paving the path to novel targets for drug design.
Collapse
Affiliation(s)
- A Merenlender-Wagner
- Adams Super Center for Brain Studies, and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Malishkevich
- Adams Super Center for Brain Studies, and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Z Shemer
- Adams Super Center for Brain Studies, and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Udawela
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Victoria, Australia,Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - A Gibbons
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Victoria, Australia,Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - E Scarr
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Victoria, Australia,Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - B Dean
- Molecular Psychiatry Laboratory, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Victoria, Australia,Department of Psychiatry, University of Melbourne, Victoria, Australia
| | - J Levine
- Psychiatry Research Unit, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - G Agam
- Psychiatry Research Unit, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel,Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Department of Clinical Biochemistry and Pharmacology And Psychiatry Research Unit, Faculty of Health Sciences, Ben-Gurion University of the Negev and Mental Health Center, Beer-Sheva, Israel E-mail:
| | - I Gozes
- Adams Super Center for Brain Studies, and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Biochemistry, The Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Director, The Adams Super Center for Brain Studies and The Edersheim Levie-Gitter fMRI Institute, Head, the Dr. Diana and Zelman Elton (Elbaum) Laboratory for Molecular Neuroendocrinology, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel E-mail:
| |
Collapse
|
22
|
Buxton JL, Suderman M, Pappas JJ, Borghol N, McArdle W, Blakemore AIF, Hertzman C, Power C, Szyf M, Pembrey M. Human leukocyte telomere length is associated with DNA methylation levels in multiple subtelomeric and imprinted loci. Sci Rep 2014; 4:4954. [PMID: 24828261 PMCID: PMC4344300 DOI: 10.1038/srep04954] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/17/2014] [Indexed: 11/24/2022] Open
Abstract
In humans, leukocyte telomere length (LTL) is positively correlated with lifespan, and shorter LTL is associated with increased risk of age-related disease. In this study we tested for association between telomere length and methylated cytosine levels. Measurements of mean telomere length and DNA methylation at >450,000 CpG sites were obtained for both blood (N = 24) and EBV-transformed cell-line (N = 36) DNA samples from men aged 44-45 years. We identified 65 gene promoters enriched for CpG sites at which methylation levels are associated with leukocyte telomere length, and 36 gene promoters enriched for CpG sites at which methylation levels are associated with telomere length in DNA from EBV-transformed cell-lines. We observed significant enrichment of positively associated methylated CpG sites in subtelomeric loci (within 4 Mb of the telomere) (P < 0.01), and also at loci in imprinted regions (P < 0.001). Our results pave the way for further investigations to help elucidate the relationships between telomere length, DNA methylation and gene expression in health and disease.
Collapse
Affiliation(s)
- Jessica L. Buxton
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London W12 0NN, UK,These authors contributed equally to this work.,
| | - Matthew Suderman
- University of Bristol, Bristol, UK,McGill University, Montreal, Quebec, Canada,These authors contributed equally to this work
| | - Jane J. Pappas
- McGill University, Montreal, Quebec, Canada,University of Toronto, Toronto, Ontario, Canada
| | - Nada Borghol
- Lebanese International University and Lebanese University, Beirut, Lebanon
| | | | - Alexandra I. F. Blakemore
- Section of Investigative Medicine, Department of Medicine, Imperial College London, London W12 0NN, UK
| | - Clyde Hertzman
- University of British Columbia, Vancouver, British Columbia, Canada, Deceased
| | | | - Moshe Szyf
- McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
23
|
Dresner E, Malishkevich A, Arviv C, Leibman Barak S, Alon S, Ofir R, Gothilf Y, Gozes I. Novel evolutionary-conserved role for the activity-dependent neuroprotective protein (ADNP) family that is important for erythropoiesis. J Biol Chem 2012; 287:40173-85. [PMID: 23071114 DOI: 10.1074/jbc.m112.387027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND ADNP is vital for embryonic development. Is this function conserved for the homologous protein ADNP2? RESULTS Down-regulation/silencing of ADNP or ADNP2 in zebrafish embryos or mouse erythroleukemia cells inhibited erythroid maturation, with ADNP directly associating with the β-globin locus control region. CONCLUSION ADNPs are novel molecular regulators of erythropoiesis. SIGNIFICANCE New regulators of globin synthesis are suggested. Activity-dependent neuroprotective protein (ADNP) and its homologue ADNP2 belong to a homeodomain, the zinc finger-containing protein family. ADNP is essential for mouse embryonic brain formation. ADNP2 is associated with cell survival, but its role in embryogenesis has not been evaluated. Here, we describe the use of the zebrafish model to elucidate the developmental roles of ADNP and ADNP2. Although we expected brain defects, we were astonished to discover that the knockdown zebrafish embryos were actually lacking blood and suffered from defective hemoglobin production. Evolutionary conservation was established using mouse erythroleukemia (MEL) cells, a well studied erythropoiesis model, in which silencing of ADNP or ADNP2 produced similar results as in zebrafish. Exogenous RNA encoding ADNP/ADNP2 rescued the MEL cell undifferentiated state, demonstrating phenotype specificity. Brg1, an ADNP-interacting chromatin-remodeling protein involved in erythropoiesis through regulation of the globin locus, was shown here to interact also with ADNP2. Furthermore, chromatin immunoprecipitation revealed recruitment of ADNP, similar to Brg1, to the mouse β-globin locus control region in MEL cells. This recruitment was apparently diminished upon dimethyl sulfoxide (DMSO)-induced erythrocyte differentiation compared with the nondifferentiated state. Importantly, exogenous RNA encoding ADNP/ADNP2 significantly increased β-globin expression in MEL cells in the absence of any other differentiation factors. Taken together, our results reveal an ancestral role for the ADNP protein family in maturation and differentiation of the erythroid lineage, associated with direct regulation of β-globin expression.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, Lily and Avraham Gildor Chair for the Investigation of Growth Factors, Department of Human Molecular Genetics and Biochemistry, Sagol School of Neuroscience, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Javitt DC, Buchanan RW, Keefe RSE, Kern R, McMahon RP, Green MF, Lieberman J, Goff DC, Csernansky JG, McEvoy JP, Jarskog F, Seidman LJ, Gold JM, Kimhy D, Nolan KS, Barch DS, Ball MP, Robinson J, Marder SR. Effect of the neuroprotective peptide davunetide (AL-108) on cognition and functional capacity in schizophrenia. Schizophr Res 2012; 136:25-31. [PMID: 22169248 DOI: 10.1016/j.schres.2011.11.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/31/2011] [Accepted: 11/03/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND Cognitive dysfunction is a key predictor of functional disability in schizophrenia. Davunetide (AL-108, NAP) is an intranasally administered peptide currently being developed for treatment of Alzheimer's disease and related disorders. This study investigates effects of davunetide on cognition in schizophrenia. METHOD Sixty-three subjects with schizophrenia received davunetide at one of two different doses (5, 30 mg) or placebo for 12 weeks in a multicenter, double-blind, parallel-group randomized clinical trial. The MATRICS Consensus Cognitive Battery (MCCB) assessed cognitive effects. The UCSD Performance-based Skills Assessment (UPSA) and the Schizophrenia Cognition Rating Scale (SCoRS) assessed functional capacity. Subjects continued their current antipsychotic treatment during the trial. RESULTS There were no significant differences in MCCB change between davunetide and placebo over the three treatment arms (p=.45). Estimated effect-size (d) values were .34 and .21 favoring the 5 and 30 mg doses vs. placebo, respectively. For UPSA, there was a significant main effect of treatment across study arms (p=.048). Between-group effect size (d) values were.74 and .48, favoring the 5 and 30 mg doses, respectively. No significant effects were observed on the SCoRS or on symptom ratings. No significant side effects or adverse events were observed. CONCLUSION Davunetide was well tolerated. Effects of davunetide on MCCB-rated cognition were not significant relative to placebo. In contrast, a significant beneficial effect was detected for the UPSA. Based upon effect-size considerations, sample sizes of at least 45-50 subjects/group would be required to obtain significant effects on both MCCB and UPSA, providing guidance for continued clinical development in schizophrenia.
Collapse
Affiliation(s)
- Daniel C Javitt
- Nathan Kline Institute for Psychiatry Research, Orangeburg, NY, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Gozes I. Neuropeptide GPCRs in neuroendocrinology: the case of activity-dependent neuroprotective protein (ADNP). Front Endocrinol (Lausanne) 2012; 3:134. [PMID: 23162535 PMCID: PMC3499767 DOI: 10.3389/fendo.2012.00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 10/23/2012] [Indexed: 11/13/2022] Open
|
26
|
Rosnoblet C, Vandamme J, Völkel P, Angrand PO. Analysis of the human HP1 interactome reveals novel binding partners. Biochem Biophys Res Commun 2011; 413:206-11. [PMID: 21888893 DOI: 10.1016/j.bbrc.2011.08.059] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/12/2011] [Indexed: 10/17/2022]
Abstract
Heterochromatin protein 1 (HP1) has first been described in Drosophila as an essential component of constitutive heterochromatin required for stable epigenetic gene silencing. Less is known about the three mammalian HP1 isotypes CBX1, CBX3 and CBX5. Here, we applied a tandem affinity purification approach coupled with tandem mass spectrometry methodologies in order to identify interacting partners of the mammalian HP1 isotypes. Our analysis identified with high confidence about 30-40 proteins co-eluted with CBX1 and CBX3, and around 10 with CBX5 including a number of novel HP1-binding partners. Our data also suggest that HP1 family members are mainly associated with a single partner or within small protein complexes composed of limited numbers of components. Finally, we showed that slight binding preferences might exist between HP1 family members.
Collapse
Affiliation(s)
- Claire Rosnoblet
- Chromatinomics, Interdisciplinary Research Institute, Université de Lille Nord de France, Université de Lille 1 Sciences et Technologies/CNRS USR 3078, 50 Avenue Halley, Parc Scientifique de Haute Borne, F-59658 Villeneuve d'Ascq Cedex, France
| | | | | | | |
Collapse
|
27
|
Dresner E, Agam G, Gozes I. Activity-dependent neuroprotective protein (ADNP) expression level is correlated with the expression of the sister protein ADNP2: deregulation in schizophrenia. Eur Neuropsychopharmacol 2011; 21:355-61. [PMID: 20598862 DOI: 10.1016/j.euroneuro.2010.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/12/2010] [Accepted: 06/12/2010] [Indexed: 02/01/2023]
Abstract
Activity-dependent neuroprotective protein (ADNP) and the homologous protein ADNP2 provide cell protection. ADNP is essential for brain formation, proper brain development and neuronal plasticity, all reported to be impaired in the schizophrenia patient brains. Furthermore, reduction in ADNP expression affects social interactions, a major hallmark of schizophrenia. To evaluate a possible involvement of ADNP and ADNP2 in the pathophysiology of schizophrenia in humans, we measured relative brain mRNA transcripts of both proteins compared with control subjects. Quantitative real time polymerase chain reaction in postmortem hippocampal specimens from normal control subjects exhibited a significant ADNP to ADNP2 transcript level correlation (r=0.931, p<0.001), also apparent in a neuroglial model system. In contrast, in the hippocampus of matched schizophrenia patients, this correlation (r=0.637, p=0.014) was drastically decreased in a statistically significant manner (p=0.03), mirroring disease-associated increased ADNP2 transcripts. In the prefrontal cortex of schizophrenia patients the correlation between ADNP and ADNP2 mRNA levels was apparently higher than in the hippocampus (r=0.854, p<0.001), but did not reach a significant difference (p=0.25). Thus, imbalance in ADNP/ADNP2 expression in the brain may impact disease progression in schizophrenia.
Collapse
Affiliation(s)
- Efrat Dresner
- Adams Super Center for Brain Studies, and Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Israel
| | | | | |
Collapse
|
28
|
Gozes I. Microtubules, schizophrenia and cognitive behavior: preclinical development of davunetide (NAP) as a peptide-drug candidate. Peptides 2011; 32:428-31. [PMID: 21050875 DOI: 10.1016/j.peptides.2010.10.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 10/22/2010] [Indexed: 10/18/2022]
Abstract
NAP (davunetide) is an active fragment of activity-dependent neuroprotective protein (ADNP). ADNP and the homologous protein ADNP2 provide cell protection. ADNP is essential for brain formation, proper development and neuronal plasticity, all reported to be impaired in schizophrenia. ADNP haploinsufficiecy inhibits social and cognitive functions, major hallmarks in schizophrenia. Imbalance in ADNP/ADNP2 expression in the schizophrenia brain may impact disease progression. NAP treatment partly ameliorates ADNP haploinsufficiecy. The microtubule, stable tubule-only polypeptide (STOP)-deficient mice were shown to provide a reliable model for schizophrenia. Daily intranasal NAP treatment significantly decreased hyperactivity in STOP-deficient mice and protected visual memory, supporting further clinical development.
Collapse
Affiliation(s)
- Illana Gozes
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
29
|
Gozes I. VIP–PACAP 2010: My Own Perspective on Modulation of Cognitive and Emotional Behavior. J Mol Neurosci 2010; 42:261-3. [DOI: 10.1007/s12031-010-9456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|