1
|
Dos Reis BG, Becker GS, Marchetti DP, de Moura Coelho D, Sitta A, Wajner M, Vargas CR. Neurodegenerative biomarkers and inflammation in patients with propionic and methylmalonic acidemias: effect of L-carnitine treatment. Metab Brain Dis 2024; 40:6. [PMID: 39549096 DOI: 10.1007/s11011-024-01475-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/02/2024] [Indexed: 11/18/2024]
Abstract
Propionic and methylmalonic acidemias (PAcidemia and MMAcidemia, respectively) are genetic disorders characterized by acute metabolic decompensation and neurological complications. L-carnitine (LC) is effective in reducing toxic metabolites that are related to the pathophysiology of these diseases. Therefore we investigated biomarkers of inflammation (cytokines and C-reactive protein (CRP)), neurodegeneration (BDNF, NCAM-1 and cathepsin-D) and biomolecules oxidation (sulfhydryl content and thiobarbituric acid-reactive species (TBARS)), as well as carnitine concentrations in untreated patients with PAcidemia and MMAcidemia, in patients under treatment with LC and a protein-restricted diet for until 2 years and in patients under the same treatment for more than 2 years. It was verified an increase of CRP, IL-6, IL-8, TNF-α, IL-10, NCAM-1 and cathepsin-D in untreated patients compared to controls. On the other hand, reduced levels of TNF-α, CRP, IL-10, NCAM-1 and cathepsin-D were found in plasma from treated patients, as well as increased concentrations of LC. Furthermore, oxidative biomarkers were increased in untreated patients and were normalized with the prolonged treatment with LC. In conclusion, this work shows, for the first time, that inflammatory and neurodegenerative peripheral biomarkers are increased in patients with PAcidemia and MMAcidemia and that treatment with LC is effective to protect against these alterations.
Collapse
Affiliation(s)
- Bianca Gomes Dos Reis
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Graziela Schmitt Becker
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Desirèe Padilha Marchetti
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Daniella de Moura Coelho
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Angela Sitta
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Moacir Wajner
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil
| | - Carmen Regla Vargas
- Departamento de Análises Clínicas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Serviço de Genética Médica, Hospital de Clíınicas de Porto Alegre, Ramiro Barcelos, 2350, CEP 90035-003, RS, Porto Alegre, Brazil.
| |
Collapse
|
2
|
Disorders of cancer metabolism: The therapeutic potential of cannabinoids. Biomed Pharmacother 2023; 157:113993. [PMID: 36379120 DOI: 10.1016/j.biopha.2022.113993] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
Abstract
Abnormal energy metabolism, as one of the important hallmarks of cancer, was induced by multiple carcinogenic factors and tumor-specific microenvironments. It comprises aerobic glycolysis, de novo lipid biosynthesis, and glutamine-dependent anaplerosis. Considering that metabolic reprogramming provides various nutrients for tumor survival and development, it has been considered a potential target for cancer therapy. Cannabinoids have been shown to exhibit a variety of anticancer activities by unclear mechanisms. This paper first reviews the recent progress of related signaling pathways (reactive oxygen species (ROS), AMP-activated protein kinase (AMPK), mitogen-activated protein kinases (MAPK), phosphoinositide 3-kinase (PI3K), hypoxia-inducible factor-1alpha (HIF-1α), and p53) mediating the reprogramming of cancer metabolism (including glucose metabolism, lipid metabolism, and amino acid metabolism). Then we comprehensively explore the latest discoveries and possible mechanisms of the anticancer effects of cannabinoids through the regulation of the above-mentioned related signaling pathways, to provide new targets and insights for cancer prevention and treatment.
Collapse
|
3
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
4
|
Shadfar S, Brocardo M, Atkin JD. The Complex Mechanisms by Which Neurons Die Following DNA Damage in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23052484. [PMID: 35269632 PMCID: PMC8910227 DOI: 10.3390/ijms23052484] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/17/2022] [Indexed: 01/18/2023] Open
Abstract
Human cells are exposed to numerous exogenous and endogenous insults every day. Unlike other molecules, DNA cannot be replaced by resynthesis, hence damage to DNA can have major consequences for the cell. The DNA damage response contains overlapping signalling networks that repair DNA and hence maintain genomic integrity, and aberrant DNA damage responses are increasingly described in neurodegenerative diseases. Furthermore, DNA repair declines during aging, which is the biggest risk factor for these conditions. If unrepaired, the accumulation of DNA damage results in death to eliminate cells with defective genomes. This is particularly important for postmitotic neurons because they have a limited capacity to proliferate, thus they must be maintained for life. Neuronal death is thus an important process in neurodegenerative disorders. In addition, the inability of neurons to divide renders them susceptible to senescence or re-entry to the cell cycle. The field of cell death has expanded significantly in recent years, and many new mechanisms have been described in various cell types, including neurons. Several of these mechanisms are linked to DNA damage. In this review, we provide an overview of the cell death pathways induced by DNA damage that are relevant to neurons and discuss the possible involvement of these mechanisms in neurodegenerative conditions.
Collapse
Affiliation(s)
- Sina Shadfar
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Mariana Brocardo
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
| | - Julie D. Atkin
- Centre for Motor Neuron Disease Research, Macquarie Medical School, Macquarie University, Sydney, NSW 2109, Australia; (S.S.); (M.B.)
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
5
|
Heath DM, Koslosky EJ, Bartush KC, Hogue GD. Marijuana in Orthopaedics: Effects on Bone Health, Wound-Healing, Surgical Complications, and Pain Management. JBJS Rev 2022; 10:01874474-202202000-00011. [PMID: 35180183 DOI: 10.2106/jbjs.rvw.21.00184] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
» Marijuana use is on the rise in the United States, and there is a paucity of information on the effects of cannabis and its chemical constituents on bone health, wound-healing, surgical complications, and pain management. » Current evidence suggests that cannabidiol (CBD) may enhance bone health and metabolism, while Δ9-tetrahydrocannabinol (Δ9-THC), the major psychoactive component in marijuana, has an inhibitory effect. » Marijuana users are at higher risk for delayed bone-healing, demonstrate lower bone mineral density, are at increased risk for fracture, and may experience postoperative complications such as increased opioid use and hyperemesis.
Collapse
Affiliation(s)
- David M Heath
- Department of Orthopaedics, UT Health San Antonio, San Antonio, Texas
| | | | | | - Grant D Hogue
- Department of Orthopaedics, Boston Children's Hospital/Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
Ahmadi K, Roshan-Milani S, Asgharzadeh F, Pourjabali M, Fard AA. In Vitro and In Vivo Pretreatment with Selenium Mitigates Tetrahydrocannabinol-Induced Testicular Cell Apoptosis: the Role of AKT and p53 Pathways. Biol Trace Elem Res 2021; 199:2278-2287. [PMID: 32815089 DOI: 10.1007/s12011-020-02322-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/03/2020] [Indexed: 01/27/2023]
Abstract
Exocannabinoids such as tetrahydrocannabinol (THC) may alter the physiological function of endocannabinoids in male reproduction and thus affect male fertility. This study aimed to investigate the apoptotic effects of THC via mechanisms related to p53 and AKT signaling pathways on Sertoli cells and seminiferous germinal cells, as well as the possible protective role of selenium pretreatment in both in vitro and in vivo models. The Mus musculus Sertoli cell line, TM4, was used for in vitro experiments. The TM4 cells were cultured and exposed to selenium (2 μM, 48 h) and THC (470 μM, 24 h). The MTT test was performed to evaluate cell viability. Fifteen male Wistar rats (220 ± 20 g) were used for in vivo experiments and divided into three groups: (1) control, (2) tetrahydrocannabinol (THC, 5 mg/kg, dissolved in DMSO 5%, i.p., for 21 consecutive days), and (3) THC + selenium (selenium, 0.5 mg/kg per day, i.p.). At the end of the experiments, Sertoli cells and testis tissue samples were collected for biochemical (AKT, P53), cell apoptosis, and histological analyses. The results of the in vitro study revealed that THC significantly decreases the cell viability (p < 0.001) and expression of the p-AKt protein (p < 0.05) and increases Sertoli cells' apoptosis (p < 0.001) and p53 protein expression (p < 0.001). The in vivo effects of THC were in line with the in vitro results. Pretreatment with selenium (as sodium selenite) significantly decreased the THC-induced Sertoli cell and testicular tissue damages in the rats. Pathological changes were significantly alleviated in the selenium-pretreated rats. Collectively, these data suggest that pretreatment with selenium is able to protect against THC-induced testicular cell damage. The attenuating effect of selenium may be due to its anti-apoptotic activity through the p53 and AKT modulation.
Collapse
Affiliation(s)
- Kimia Ahmadi
- Faculty of Medicine, Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Shiva Roshan-Milani
- Neurophysiology Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Asgharzadeh
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Masoumeh Pourjabali
- Faculty of Medicine, Department of Pathology, Urmia University of Medical Sciences, Urmia, Iran
| | - Amin Abdollahzade Fard
- Nephrology and Kidney Transplant Research Center & Department of Physiology, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
7
|
Lee HY, Oh SH. Autophagy-mediated cytoplasmic accumulation of p53 leads to apoptosis through DRAM-BAX in cadmium-exposed human proximal tubular cells. Biochem Biophys Res Commun 2020; 534:128-133. [PMID: 33321290 DOI: 10.1016/j.bbrc.2020.12.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
The tumor suppressor p53 is involved in cadmium (Cd)-induced apoptosis and autophagy. However, the regulatory mechanisms of p53 in Cd-induced kidney injury are not well established. Here, we report the role of autophagy in Cd-induced p53 induction in human proximal tubular cells (HK-2). HK-2 cells treated with Cd induced the expression of p53, DNA damage autophagy modulator (DRAM), and Bcl-2-associated X protein (BAX), as well as caused poly [ADP-ribose] polymerase 1 (PARP-1) cleavage. Cd exposure also induced autophagy with the accumulation of monomeric p62 and multiple high molecular weight form (HMW)-p62. The expression levels of p53, p62, microtubule-associated protein 1A/1B-light chain 3 (LC3)-1, and LC3-II were similar in the sense that they increased up to 12 h and then gradually decreased. DRAM and BAX levels began to increase post autophagy induction and continued to increase, indicating that autophagy preceded apoptosis. While the genetic knockdown of p53 downregulated HWM-p62, DRAM, and BAX, the expression levels of these proteins were upregulated by p53 overexpression. The genetic knockdown of p62 downregulated p53, autophagy, DRAM, and BAX. The inhibition of autophagy through pharmacological and genetic knockdown reduced p53 and inhibited Cd-induced apoptosis. Collectively, Cd induces apoptosis through p53-mediated DRAM-BAX signaling, which can be regulated by autophagy.
Collapse
Affiliation(s)
- Hyun-Young Lee
- Department of Anesthesiology and Pain Medicine, South Korea
| | - Seon-Hee Oh
- School of Medicine, Chosun University, 309 Pilmundaero, Dong-gu, Gwangju, 61452, South Korea.
| |
Collapse
|
8
|
Nagakannan P, Tabeshmehr P, Eftekharpour E. Oxidative damage of lysosomes in regulated cell death systems: Pathophysiology and pharmacologic interventions. Free Radic Biol Med 2020; 157:94-127. [PMID: 32259579 DOI: 10.1016/j.freeradbiomed.2020.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/16/2022]
Abstract
Lysosomes are small specialized organelles containing a variety of different hydrolase enzymes that are responsible for degradation of all macromolecules, entering the cells through the endosomal system or originated from the internal sources. This allows for transport and recycling of nutrients and internalization of surface proteins for antigen presentation as well as maintaining cellular homeostasis. Lysosomes are also important storage compartments for metal ions and nutrients. The integrity of lysosomal membrane is central to maintaining their normal function, but like other cellular membranes, lysosomal membrane is subject to damage mediated by reactive oxygen species. This results in spillage of lysosomal enzymes into the cytoplasm, leading to proteolytic damage to cellular systems and organelles. Several forms of lysosomal dependent cell death have been identified in diseases. Examination of these events are important for finding treatment strategies relevant to cancer or neurodegenerative diseases as well as autoimmune deficiencies. In this review, we have examined the current literature on involvement of lysosomes in induction of programed cell death and have provided an extensive list of therapeutic approaches that can modulate cell death. Exploitation of these mechanisms can lead to novel therapies for cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pandian Nagakannan
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Parisa Tabeshmehr
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Eftekhar Eftekharpour
- Regenerative Medicine Program and Spinal Cord Research Centre, Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
9
|
Wang Y, Wu Q, Anand BG, Karthivashan G, Phukan G, Yang J, Thinakaran G, Westaway D, Kar S. Significance of cytosolic cathepsin D in Alzheimer's disease pathology: Protective cellular effects of PLGA nanoparticles against β-amyloid-toxicity. Neuropathol Appl Neurobiol 2020; 46:686-706. [PMID: 32716575 DOI: 10.1111/nan.12647] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 06/25/2020] [Accepted: 07/12/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Evidence suggests that amyloid β (Aβ) peptides play an important role in the degeneration of neurons during the development of Alzheimer's disease (AD), the prevalent cause of dementia affecting the elderly. The endosomal-lysosomal system, which acts as a major site for Aβ metabolism, has been shown to exhibit abnormalities in vulnerable neurons of the AD brain, reflected by enhanced levels/expression of lysosomal enzymes including cathepsin D (CatD). At present, the implication of CatD in selective neuronal vulnerability in AD pathology remains unclear. METHODS We evaluated the role of CatD in the degeneration of neurons in Aβ-treated cultures, transgenic AD mouse model (that is 5xFAD) and post mortem AD brain samples. RESULTS Our results showed that Aβ1-42 -induced toxicity in cortical cultured neurons is associated with impaired lysosomal integrity, enhanced levels of carbonylated proteins and tau phosphorylation. The cellular and cytosolic levels/activity of CatD are also elevated in cultured neurons following exposure to Aβ peptide. Additionally, we observed that CatD cellular and subcellular levels/activity are increased in the affected cortex, but not in the unaffected cerebellum, of 5xFAD mice and post mortem AD brains. Interestingly, treatment of cultured neurons with nanoparticles PLGA, which targets lysosomal system, attenuated Aβ toxicity by reducing the levels of carbonylated proteins, tau phosphorylation and the level/distribution/activity of CatD. CONCLUSION Our study reveals that increased cytosolic level/activity of CatD play an important role in determining neuronal vulnerability in AD. Additionally, native PLGA can protect neurons against Aβ toxicity by restoring lysosomal membrane integrity, thus signifying its implication in attenuating AD.
Collapse
Affiliation(s)
- Y Wang
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Q Wu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - B G Anand
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Karthivashan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Phukan
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - J Yang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - G Thinakaran
- Department of Molecular Medicine, and Byrd Alzheimer's Institute, University of South Florida, Tampa, FL, 33613, USA
| | - D Westaway
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada.,Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - S Kar
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada.,Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
O’Connor CM, Anoushiravani AA, Adams C, Young JR, Richardson K, Rosenbaum AJ. Cannabinoid Use in Musculoskeletal Illness: a Review of the Current Evidence. Curr Rev Musculoskelet Med 2020; 13:379-384. [PMID: 32383037 PMCID: PMC7340702 DOI: 10.1007/s12178-020-09635-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
PURPOSE OF REVIEW The use of cannabinoids has increased since legalization of recreational and medical use in the USA. It is likely that many orthopaedic patients consume cannabinoid products during the traumatic or perioperative period. The purpose of this study was to investigate the pre-clinical data evaluating the mechanism of action of cannabidiol (CBD) and Δ9-Tetrahydrocannabinol (Δ9-THC) and to evaluate the current clinical data on the use of cannabinoids in musculoskeletal illness. RECENT FINDINGS Recent pre-clinical studies have demonstrated that cannabinoid use and the endocannabinoid system (ECS) has an important role in bone healing and bone homeostasis. There is data that suggests that the use of cannabidiol (CBD) may increase bone healing, whereas the use of Δ9-Tetrahydrocannabinol (Δ9-THC), the major psychoactive ingredient in marijuana, likely inhibits bone metabolism and repair. The clinical implications and consumption of marijuana by orthopaedic patients have not been thoroughly evaluated. Studies have demonstrated concern for negative cardiovascular and psychiatric effects caused by marijuana use, but have not yet elucidated outcomes in the orthopaedic literature. With the recent increase in advertising of CBD products and legalization of marijuana, it is likely that many orthopaedic patients are consuming cannabinoid products. The clinical implications and consumption of these products are unclear. We need more robust and well-designed clinical studies prior to making further recommendations to our patients on the consumption of these products.
Collapse
Affiliation(s)
- Casey M. O’Connor
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Afshin A. Anoushiravani
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Curtis Adams
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Joe R. Young
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Kyle Richardson
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| | - Andrew J. Rosenbaum
- Department of Orthopaedic Surgery, Albany Medical Center, 43 New Scotland Road, Albany, NY USA
| |
Collapse
|
11
|
Liu DC, Eagleman DE, Tsai NP. Novel roles of ER stress in repressing neural activity and seizures through Mdm2- and p53-dependent protein translation. PLoS Genet 2019; 15:e1008364. [PMID: 31557161 PMCID: PMC6762060 DOI: 10.1371/journal.pgen.1008364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 08/08/2019] [Indexed: 12/30/2022] Open
Abstract
Seizures can induce endoplasmic reticulum (ER) stress, and sustained ER stress contributes to neuronal death after epileptic seizures. Despite the recent debate on whether inhibiting ER stress can reduce neuronal death after seizures, whether and how ER stress impacts neural activity and seizures remain unclear. In this study, we discovered that the acute ER stress response functions to repress neural activity through a protein translation-dependent mechanism. We found that inducing ER stress promotes the expression and distribution of murine double minute-2 (Mdm2) in the nucleus, leading to ubiquitination and down-regulation of the tumor suppressor p53. Reduction of p53 subsequently maintains protein translation, before the onset of translational repression seen during the latter phase of the ER stress response. Disruption of Mdm2 in an Mdm2 conditional knockdown (cKD) mouse model impairs ER stress-induced p53 down-regulation, protein translation, and reduction of neural activity and seizure severity. Importantly, these defects in Mdm2 cKD mice were restored by both pharmacological and genetic inhibition of p53 to mimic the inactivation of p53 seen during ER stress. Altogether, our study uncovered a novel mechanism by which neurons respond to acute ER stress. Further, this mechanism plays a beneficial role in reducing neural activity and seizure severity. These findings caution against inhibition of ER stress as a neuroprotective strategy for seizures, epilepsies, and other pathological conditions associated with excessive neural activity. One-third of epilepsy patients respond poorly to current anti-epileptic drugs. Thus, there is an urgent need to characterize cellular behavior during seizures, and the corresponding molecular mechanisms in order to develop better therapies. Seizures are known to induce ER stress but how the ER stress response functions to modulate seizure activity is unknown. Our study provides evidence to demonstrate a novel and beneficial role for the ER stress response in reducing neural activity and seizure severity. Mechanistically, we found that these beneficial effects are mediated by elevated protein translation, which is triggered by the activation of Mdm2-p53 signaling, during the early ER stress response. Our findings suggest that therapeutic attempts to reduce ER stress in epilepsies may result in worsening seizure activity and therefore caution against inhibition of ER stress as a neuroprotective strategy for epilepsies.
Collapse
Affiliation(s)
- Dai-Chi Liu
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daphne E. Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nien-Pei Tsai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
12
|
Jewett KA, Lee KY, Eagleman DE, Soriano S, Tsai NP. Dysregulation and restoration of homeostatic network plasticity in fragile X syndrome mice. Neuropharmacology 2018; 138:182-192. [PMID: 29890190 DOI: 10.1016/j.neuropharm.2018.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/01/2018] [Accepted: 06/06/2018] [Indexed: 01/06/2023]
Abstract
Chronic activity perturbations in neurons induce homeostatic plasticity through modulation of synaptic strength or other intrinsic properties to maintain the correct physiological range of excitability. Although similar plasticity can also occur at the population level, what molecular mechanisms are involved remain unclear. In the current study, we utilized a multielectrode array (MEA) recording system to evaluate homeostatic neural network activity of primary mouse cortical neuron cultures. We demonstrated that chronic elevation of neuronal activity through the inhibition of GABA(A) receptors elicits synchronization of neural network activity and homeostatic reduction of the amplitude of spontaneous neural network spikes. We subsequently showed that this phenomenon is mediated by the ubiquitination of tumor suppressor p53, which is triggered by murine double minute-2 (Mdm2). Using a mouse model of fragile X syndrome, in which fragile X mental retardation protein (FMRP) is absent (Fmr1 knockout), we found that Mdm2-p53 signaling, network synchronization, and the reduction of network spike amplitude upon chronic activity stimulation were all impaired. Pharmacologically inhibiting p53 with Pifithrin-α or genetically employing p53 heterozygous mice to enforce the inactivation of p53 in Fmr1 knockout cultures restored the synchronization of neural network activity after chronic activity stimulation and partially corrects the homeostatic reduction of neural network spike amplitude. Together, our findings reveal the roles of both Fmr1 and Mdm2-p53 signaling in the homeostatic regulation of neural network activity and provide insight into the deficits of excitability homeostasis seen when Fmr1 is compromised, such as occurs with fragile X syndrome.
Collapse
Affiliation(s)
- Kathryn A Jewett
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kwan Young Lee
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daphne E Eagleman
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Stephanie Soriano
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Nien-Pei Tsai
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Fricker M, Tolkovsky AM, Borutaite V, Coleman M, Brown GC. Neuronal Cell Death. Physiol Rev 2018; 98:813-880. [PMID: 29488822 PMCID: PMC5966715 DOI: 10.1152/physrev.00011.2017] [Citation(s) in RCA: 711] [Impact Index Per Article: 101.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/23/2017] [Accepted: 07/10/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal cell death occurs extensively during development and pathology, where it is especially important because of the limited capacity of adult neurons to proliferate or be replaced. The concept of cell death used to be simple as there were just two or three types, so we just had to work out which type was involved in our particular pathology and then block it. However, we now know that there are at least a dozen ways for neurons to die, that blocking a particular mechanism of cell death may not prevent the cell from dying, and that non-neuronal cells also contribute to neuronal death. We review here the mechanisms of neuronal death by intrinsic and extrinsic apoptosis, oncosis, necroptosis, parthanatos, ferroptosis, sarmoptosis, autophagic cell death, autosis, autolysis, paraptosis, pyroptosis, phagoptosis, and mitochondrial permeability transition. We next explore the mechanisms of neuronal death during development, and those induced by axotomy, aberrant cell-cycle reentry, glutamate (excitoxicity and oxytosis), loss of connected neurons, aggregated proteins and the unfolded protein response, oxidants, inflammation, and microglia. We then reassess which forms of cell death occur in stroke and Alzheimer's disease, two of the most important pathologies involving neuronal cell death. We also discuss why it has been so difficult to pinpoint the type of neuronal death involved, if and why the mechanism of neuronal death matters, the molecular overlap and interplay between death subroutines, and the therapeutic implications of these multiple overlapping forms of neuronal death.
Collapse
Affiliation(s)
- Michael Fricker
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Aviva M Tolkovsky
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Vilmante Borutaite
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Michael Coleman
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| | - Guy C Brown
- Hunter Medical Research Institute, University of Newcastle, Callaghan, New South Wales , Australia ; Department of Clinical Neurosciences, University of Cambridge , Cambridge , United Kingdom ; Neuroscience Institute, Lithuanian University of Health Sciences , Kaunas , Lithuania ; and Department of Biochemistry, University of Cambridge , Cambridge , United Kingdom
| |
Collapse
|
14
|
Serum Markers of Neurodegeneration in Maple Syrup Urine Disease. Mol Neurobiol 2016; 54:5709-5719. [PMID: 27660262 DOI: 10.1007/s12035-016-0116-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/09/2016] [Indexed: 12/14/2022]
Abstract
Maple syrup urine disease (MSUD) is an inherited disorder caused by deficient activity of the branched-chain α-keto acid dehydrogenase complex involved in the degradation pathway of branched-chain amino acids (BCAAs) and their respective α-keto-acids. Patients affected by MSUD present severe neurological symptoms and brain abnormalities, whose pathophysiology is poorly known. However, preclinical studies have suggested alterations in markers involved with neurodegeneration. Because there are no studies in the literature that report the neurodegenerative markers in MSUD patients, the present study evaluated neurodegenerative markers (brain-derived neurotrophic factor (BDNF), cathepsin D, neural cell adhesion molecule (NCAM), plasminogen activator inhibitor-1 total (PAI-1 (total)), platelet-derived growth factor AA (PDGF-AA), PDGF-AB/BB) in plasma from 10 MSUD patients during dietary treatment. Our results showed a significant decrease in BDNF and PDGF-AA levels in MSUD patients. On the other hand, NCAM and cathepsin D levels were significantly greater in MSUD patients compared to the control group, while no significant changes were observed in the levels of PAI-1 (total) and PDGF-AB/BB between the control and MSUD groups. Our data show that MSUD patients present alterations in proteins involved in the neurodegenerative process. Thus, the present findings corroborate previous studies that demonstrated that neurotrophic factors and lysosomal proteases may contribute, along with other mechanisms, to the intellectual deficit and neurodegeneration observed in MSUD.
Collapse
|
15
|
Vidoni C, Follo C, Savino M, Melone MAB, Isidoro C. The Role of Cathepsin D in the Pathogenesis of Human Neurodegenerative Disorders. Med Res Rev 2016; 36:845-70. [DOI: 10.1002/med.21394] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/29/2016] [Accepted: 03/29/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Chiara Vidoni
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Carlo Follo
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Miriam Savino
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
| | - Mariarosa A. B. Melone
- Division of Neurology, Department of Clinic and Experimental Medicine and Surgery; Second University of Naples; Naples Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| | - Ciro Isidoro
- Laboratory of Molecular Pathology, Department of Health Sciences; Università del Piemonte Orientale “A. Avogadro,”; Novara Italy
- InterUniversity Center for Research in Neurosciences; Second University of Naples; Naples Italy
| |
Collapse
|
16
|
Increased levels and activity of cathepsins B and D in kainate-induced toxicity. Neuroscience 2014; 284:360-373. [PMID: 25307300 DOI: 10.1016/j.neuroscience.2014.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 08/21/2014] [Accepted: 10/01/2014] [Indexed: 12/25/2022]
Abstract
Administration of kainic acid induces acute seizures that result in the loss of neurons, gliosis and reorganization of mossy fiber pathways in the hippocampus resembling those observed in human temporal lobe epilepsy. Although these structural changes have been well characterized, the mechanisms underlying the degeneration of neurons following administration of kainic acid remain unclear. Since the lysosomal enzymes, cathepsins B and D, are known to be involved in the loss of neurons and clearance of degenerative materials in a variety of experimental conditions, we evaluated their potential roles in kainic acid-treated rats. In parallel, we also measured the levels and expression of insulin-like growth factor-II/mannose 6-phosphate (IGF-II/M6P) receptors, which mediate the intracellular trafficking of these enzymes, in kainic acid-treated rats. Our results showed that systemic administration of kainic acid evoked severe loss of neurons along with hypertrophy of astrocytes and microglia in the hippocampus of the adult rat brain. The levels and activity of cathepsins B and D increased with time in the hippocampus of kainic acid-treated rats compared to the saline-injected control animals. The expression of both cathepsins B and D, as evident by immunolabeling studies, was also markedly increased in activated astrocytes and microglia of the kainic acid-treated rats. Additionally, cytosolic levels of the cathepsins were enhanced along with cytochrome c and to some extent Bax in the hippocampus in kainic acid-treated rats. These changes were accompanied by appearance of cleaved caspase-3-positive neurons in the hippocampus of kainic acid-treated animals. The levels of IGF-II/M6P receptors, on the other hand, were not significantly altered, but these receptors were found to be present in a subset of reactive astrocytes following administration of kainic acid. These results, taken together, suggest that enhanced levels/expression and activity of lysosomal enzymes may have a role in the loss of neurons and/or clearance of degenerative materials observed in kainic acid-treated rats.
Collapse
|
17
|
Loss of CB1 receptors leads to decreased cathepsin D levels and accelerated lipofuscin accumulation in the hippocampus. Mech Ageing Dev 2013; 134:391-9. [PMID: 23954857 DOI: 10.1016/j.mad.2013.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 07/10/2013] [Accepted: 08/03/2013] [Indexed: 02/08/2023]
Abstract
Early onset of age-related changes in the brain of cannabinoid 1 receptor knockout (Cnr1(-/-)) mice suggests that cannabinoid 1 (CB1) receptor activity significantly influences the progression of brain aging. In the present study we show that lack of CB1 receptors leads to a significant increase in lipofuscin accumulation and a reduced expression and activity of cathepsin D, lysosomal protease implicated in the degradation of damaged macromolecules, in the hippocampus of 12-month-old mice. The impaired clearance of damaged macromolecules due to the low cathepsin D levels and not enhanced oxidative stress may be responsible for the lipofuscin accumulation because macromolecule oxidation levels were comparable between the genotypes within the same age group. The altered levels of autophagy markers p62 and LC3-II suggest that autophagy is upregulated in CB1 knockout mice. Increased autophagic flux in the absence of CB1 receptors is probably a compensatory mechanism to partially counteract decreased lysosomal degradation capacity. Together, these results suggest that CB1 receptor activity affects lysosomal activity, degradation of damaged macromolecules and thus it may influence the course and onset of brain aging.
Collapse
|
18
|
Gowran A, McKayed K, Campbell VA. The cannabinoid receptor type 1 is essential for mesenchymal stem cell survival and differentiation: implications for bone health. Stem Cells Int 2013; 2013:796715. [PMID: 23864865 PMCID: PMC3707275 DOI: 10.1155/2013/796715] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 05/30/2013] [Accepted: 06/04/2013] [Indexed: 12/27/2022] Open
Abstract
Significant loss of bone due to trauma, underlying metabolic disease, or lack of repair due to old age surpasses the body's endogenous bone repair mechanisms. Mesenchymal stem cells (MSCs) are adult stem cells which may represent an ideal cell type for use in cell-based tissue engineered bone regeneration strategies. The body's endocannabinoid system has been identified as a central regulator of bone metabolism. The aim of the study was to elucidate the role of the cannabinoid receptor type 1 in the differentiation and survival of MSCs. We show that the cannabinoid receptor type 1 has a prosurvival function during acute cell stress. Additionally, we show that the phytocannabinoid, Δ(9)-Tetrahydrocannabinol, has a negative impact on MSC survival and osteogenesis. Overall, these results show the potential for the modulation of the cannabinoid system in cell-based tissue engineered bone regeneration strategies whilst highlighting cannabis use as a potential cause for concern in the management of orthopaedic patients.
Collapse
Affiliation(s)
- Aoife Gowran
- Discipline of Physiology, School of Medicine, Trinity Biomedical Sciences Institute, University of Dublin, Trinity College, Dublin 2, Ireland
| | | | | |
Collapse
|
19
|
Abstract
Lysosomes serve as the cellular recycling centre and are filled with numerous hydrolases that can degrade most cellular macromolecules. Lysosomal membrane permeabilization and the consequent leakage of the lysosomal content into the cytosol leads to so-called "lysosomal cell death". This form of cell death is mainly carried out by the lysosomal cathepsin proteases and can have necrotic, apoptotic or apoptosis-like features depending on the extent of the leakage and the cellular context. This article summarizes our current knowledge on lysosomal cell death with an emphasis on the upstream mechanisms that lead to lysosomal membrane permeabilization.
Collapse
Affiliation(s)
- Sonja Aits
- Danish Cancer Society Research Center, Cell Death and Metabolism, Strandboulevarden 49, DK-2100 Copenhagen, Denmark
| | | |
Collapse
|
20
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
21
|
Amritraj A, Wang Y, Revett TJ, Vergote D, Westaway D, Kar S. Role of cathepsin D in U18666A-induced neuronal cell death: potential implication in Niemann-Pick type C disease pathogenesis. J Biol Chem 2012; 288:3136-52. [PMID: 23250759 DOI: 10.1074/jbc.m112.412460] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cathepsin D is an aspartyl protease that plays a crucial role in normal cellular functions and in a variety of neurodegenerative disorders, including Niemann-Pick type C (NPC) disease, which is characterized by intracellular accumulation of cholesterol and glycosphingolipids in many tissues, including the brain. There is evidence that the level and activity of cathepsin D increased markedly in vulnerable neurons in NPC pathology, but its involvement in neurodegeneration remains unclear. In the present study, using mouse hippocampal cultured neurons, we evaluated the significance of cathepsin D in toxicity induced by U18666A, a class II amphiphile, which triggers cell death by impairing the trafficking of cholesterol, as observed in NPC pathology. Our results showed that U18666A-mediated toxicity is accompanied by an increase in cathepsin D mRNA and enzyme activity but a decrease in the total peptide content. The cytosolic level of cathepsin D, on the other hand, was increased along with cytochrome c and activated caspase-3 in U18666A-treated neurons. The cathepsin D inhibitor, pepstatin A, partially protected neurons against toxicity by attenuating these signaling mechanisms. Additionally, down-regulation of cathepsin D level prevented, whereas overexpression of the protease increased, vulnerability of cultured N2a cells to U18666A-induced toxicity. We also showed that extracellular cathepsin D from U18666A-treated neurons or application of exogenous enzyme can induce neurotoxicity by activating the autophagic pathway. These results suggest that increased release/activation of cathepsin D can trigger neurodegeneration and possibly development of NPC pathology. Thus, targeting cathepsin D level/activity may provide a new therapeutic opportunity for the treatment of NPC pathology.
Collapse
Affiliation(s)
- Asha Amritraj
- Department of Psychiatry, Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2M8, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Evading programmed cell death is one of the hallmarks of cancer. Conversely, inducing cell death by pharmacological means is the basis of almost every non-invasive cancer therapy. Research over the past decade has greatly increased our understanding of non-apoptotic programmed cell death events, such as lysosomal-mediated cell death, necroptosis and cell death with autophagy. It is becoming clear that an intricate effector network connects many of these classical and non-classical death pathways. In this Review, we discuss converging and diverging features of these pathways, as well as attempts to exploit this newly gained knowledge pharmacologically to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Peter Kreuzaler
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK
| | | |
Collapse
|
23
|
Jebelli JD, Hooper C, Garden GA, Pocock JM. Emerging roles of p53 in glial cell function in health and disease. Glia 2011; 60:515-25. [PMID: 22105777 DOI: 10.1002/glia.22268] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 10/21/2011] [Indexed: 12/12/2022]
Abstract
Emerging evidence suggests that p53, a tumor suppressor protein primarily involved in cancer biology, coordinates a wide range of novel functions in the CNS including the mediation of pathways underlying neurodegenerative disease pathogenesis. Moreover, an evolving concept in cell and molecular neuroscience is that glial cells are far more fundamental to disease progression than previously thought, which may occur via a noncell-autonomous mechanism that is heavily dependent on p53 activities. As a crucial hub connecting many intracellular control pathways, including cell-cycle control and apoptosis, p53 is ideally placed to coordinate the cellular response to a range of stresses. Although neurodegenerative diseases each display a distinct and diverse molecular pathology, apoptosis is a widespread hallmark feature and the multimodal capacity of the p53 system to orchestrate apoptosis and glial cell behavior highlights p53 as a potential unifying target for therapeutic intervention in neurodegeneration.
Collapse
Affiliation(s)
- Joseph D Jebelli
- Department of Neuroinflammation, UCL Institute of Neurology, London, United Kingdom
| | | | | | | |
Collapse
|
24
|
Cathepsin D plays a crucial role in the trimethyltin-induced hippocampal neurodegeneration process. Neuroscience 2011; 174:160-70. [DOI: 10.1016/j.neuroscience.2010.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/21/2010] [Accepted: 11/11/2010] [Indexed: 11/20/2022]
|
25
|
Fogarty MP, McCormack RM, Noonan J, Murphy D, Gowran A, Campbell VA. A role for p53 in the β-amyloid-mediated regulation of the lysosomal system. Neurobiol Aging 2010; 31:1774-86. [DOI: 10.1016/j.neurobiolaging.2008.09.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 09/08/2008] [Accepted: 09/30/2008] [Indexed: 11/30/2022]
|
26
|
Groth-Pedersen L, Jäättelä M. Combating apoptosis and multidrug resistant cancers by targeting lysosomes. Cancer Lett 2010; 332:265-74. [PMID: 20598437 DOI: 10.1016/j.canlet.2010.05.021] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 05/27/2010] [Accepted: 05/27/2010] [Indexed: 11/28/2022]
Abstract
Acquired therapy resistance is one of the prime obstacles for successful cancer treatment. Partial resistance is often acquired already during an early face of tumor development when genetic changes causing defects in classical caspase-dependent apoptosis pathway provide transformed cells with a growth advantage by protecting them against various apoptosis inducing stimuli including transforming oncogenes themselves and host immune system. Apoptosis defective cells are further selected during tumor progression and finally by apoptosis inducing treatments. Another form of resistance, multidrug resistance, arises during cancer treatment when cancer cells with effective efflux of cytotoxic agents escape the therapy. Remarkably, induction of lysosomal membrane permeabilization has recently emerged as an effective way to kill apoptosis resistant cancer cells and some lysosome targeting drugs can also re-sensitize multidrug resistant cells to classical chemotherapy. In this review, we highlight recent data on lysosomal cell death pathways and their implications for the future treatment of apoptosis defective and multidrug resistant aggressive tumors.
Collapse
Affiliation(s)
- Line Groth-Pedersen
- Pediatrics and Adolescent Medicine, The Juliane Marie Centre, University Hospital Rigshospitalet, Copenhagen, Denmark
| | | |
Collapse
|
27
|
Johansson AC, Appelqvist H, Nilsson C, Kågedal K, Roberg K, Ollinger K. Regulation of apoptosis-associated lysosomal membrane permeabilization. Apoptosis 2010; 15:527-40. [PMID: 20077016 PMCID: PMC2850995 DOI: 10.1007/s10495-009-0452-5] [Citation(s) in RCA: 340] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lysosomal membrane permeabilization (LMP) occurs in response to a large variety of cell death stimuli causing release of cathepsins from the lysosomal lumen into the cytosol where they participate in apoptosis signaling. In some settings, apoptosis induction is dependent on an early release of cathepsins, while under other circumstances LMP occurs late in the cell death process and contributes to amplification of the death signal. The mechanism underlying LMP is still incompletely understood; however, a growing body of evidence suggests that LMP may be governed by several distinct mechanisms that are likely engaged in a death stimulus- and cell-type-dependent fashion. In this review, factors contributing to permeabilization of the lysosomal membrane including reactive oxygen species, lysosomal membrane lipid composition, proteases, p53, and Bcl-2 family proteins, are described. Potential mechanisms to safeguard lysosomal integrity and confer resistance to lysosome-dependent cell death are also discussed.
Collapse
|
28
|
Abstract
Although p53 is a major cancer preventive factor, under certain extreme stress conditions it may induce severe pathologies. Analyses of animal models indicate that p53 is largely responsible for the toxicity of ionizing radiation or DNA damaging drugs contributing to hematopoietic component of acute radiation syndrome and largely determining severe adverse effects of cancer treatment. p53-mediated damage is strictly tissue specific and occurs in tissues prone to p53-dependent apoptosis (e.g., hematopoietic system and hair follicles); on the contrary, p53 can serve as a survival factor in tissues that respond to p53 activation by cell cycle arrest (e.g., endothelium of small intestine). There are multiple experimental indications that p53 contributes to pathogenicity of acute ischemic diseases. Temporary reversible suppression of p53 by small molecules can be an effective and safe approach to reduce severity of p53-associated pathologies.
Collapse
Affiliation(s)
- Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | |
Collapse
|
29
|
Gowran A, Murphy CE, Campbell VA. Delta(9)-tetrahydrocannabinol regulates the p53 post-translational modifiers Murine double minute 2 and the Small Ubiquitin MOdifier protein in the rat brain. FEBS Lett 2009; 583:3412-8. [PMID: 19819240 DOI: 10.1016/j.febslet.2009.09.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 09/22/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
The phytocannabinoid Delta(9)-Tetrahydrocannabinol (Delta(9)-THC), the main psychoactive cannabinoid in cannabis, activates a number of signalling cascades including p53. This study examines the role of Delta(9)-THC in regulating the p53 post-translational modifier proteins, Murine double minute (Mdm2) and Small Ubquitin-like MOdifier protein 1 (SUMO-1) in cortical neurons. Delta(9)-THC increased both Mdm2 and SUMO-1 protein expression and induced the deSUMOylation of p53 in a cannabinoid receptor type 1 (CB(1))-receptor dependent manner. We demonstrate that Delta(9)-THC decreased the SUMOylation of the CB(1) receptor. The data reveal a novel role for cannabinoid receptor activation in modulating the SUMO regulatory system.
Collapse
Affiliation(s)
- Aoife Gowran
- Department of Physiology, Trinity College Institute of Neuroscience, Trinity College, Dublin 2, Ireland.
| | | | | |
Collapse
|
30
|
Zhu H, Evans B, O'Neill P, Ren X, Xu Z, Hait WN, Yang JM. A role for p53 in the regulation of extracellular matrix metalloproteinase inducer in human cancer cells. Cancer Biol Ther 2009; 8:1722-8. [PMID: 19597352 DOI: 10.4161/cbt.8.18.9207] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
EMMPRIN, a transmembrane glycoprotein known to promote survival, invasion and metastasis of tumor cells through multiple pathways and mechanisms, has been found to be overexpressed in various types of cancer cells. Here we report that loss of the function of p53, a tumor suppressor protein that is mutated in approximately 50% of human cancers, contributes to the upregulation of EMMPRIN protein. We observed an inverse association between the activity of p53 and the level of EMMPRIN protein in several cancer cell lines. We further demonstrated that p53 is able to negatively regulate EMMPRIN protein, but downregulation of EMMPRIN by p53 is independent of repression of the EMMPRIN transcription. Furthermore, downregulation of EMMPRIN by p53 can be rescued by chloroquine, a lysosome inhibitor, but not by MG132, a proteasome inhibitor, suggesting an involvement of the lysosomal pathway in the p53-regulated degradation of EMMPRIN. Downregulation of EMMPRIN by p53 leads to a decrease in the activity of MMP-9 and an inhibition of tumor cell invasion. Our study suggests that the upregulation of EMMPRIN seen in many cancers can be attributed to, at least in part, the dysfunction of p53 and thus provides new evidence for the roles of p53 in tumor development and progression.
Collapse
Affiliation(s)
- Hua Zhu
- Department of Pharmacology and The Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA 17033-0850, USA
| | | | | | | | | | | | | |
Collapse
|