1
|
Pasanta D, He JL, Ford T, Oeltzschner G, Lythgoe DJ, Puts NA. Functional MRS studies of GABA and glutamate/Glx - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 144:104940. [PMID: 36332780 PMCID: PMC9846867 DOI: 10.1016/j.neubiorev.2022.104940] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022]
Abstract
Functional magnetic resonance spectroscopy (fMRS) can be used to investigate neurometabolic responses to external stimuli in-vivo, but findings are inconsistent. We performed a systematic review and meta-analysis on fMRS studies of the primary neurotransmitters Glutamate (Glu), Glx (Glutamate + Glutamine), and GABA. Data were extracted, grouped by metabolite, stimulus domain, and brain region, and analysed by determining standardized effect sizes. The quality of individual studies was rated. When results were analysed by metabolite type small to moderate effect sizes of 0.29-0.47 (p < 0.05) were observed for changes in Glu and Glx regardless of stimulus domain and brain region, but no significant effects were observed for GABA. Further analysis suggests that Glu, Glx and GABA responses differ by stimulus domain or task and vary depending on the time course of stimulation and data acquisition. Here, we establish effect sizes and directionality of GABA, Glu and Glx response in fMRS. This work highlights the importance of standardised reporting and minimal best practice for fMRS research.
Collapse
Affiliation(s)
- Duanghathai Pasanta
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Jason L He
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Talitha Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Locked Bag 20000, Geelong, Victoria 3220, Australia; Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Victoria, Australia
| | - Georg Oeltzschner
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, 700. N. Broadway, 21207 Baltimore, United States; Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University School of Medicine, 601 N. Wolfe Street, 21205 Baltimore, United States
| | - David J Lythgoe
- Department of Neuroimaging, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom
| | - Nicolaas A Puts
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, London SE5 8AB, United Kingdom; MRC Centre for Neurodevelopmental Disorders, New Hunt's House, Guy's Campus, King's College London, London, SE1 1UL London, United Kingdom.
| |
Collapse
|
2
|
Boillat Y, Xin L, van der Zwaag W, Gruetter R. Metabolite concentration changes associated with positive and negative BOLD responses in the human visual cortex: A functional MRS study at 7 Tesla. J Cereb Blood Flow Metab 2020; 40:488-500. [PMID: 30755134 PMCID: PMC7026843 DOI: 10.1177/0271678x19831022] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Negative blood oxygenation-level dependent (BOLD) signal observed during task execution in functional magnetic resonance imaging (fMRI) can be caused by different mechanisms, such as a blood-stealing effect or neuronal deactivation. Electrophysiological recordings showed that neuronal deactivation underlies the negative BOLD observed in the occipital lobe during visual stimulation. In this study, the metabolic demand of such a response was studied by measuring local metabolite concentration changes during a visual checkerboard stimulation using functional magnetic resonance spectroscopy (fMRS) at 7 Tesla. The results showed increases of glutamate and lactate concentrations during the positive BOLD response, consistent with previous fMRS studies. In contrast, during the negative BOLD response, decreasing concentrations of glutamate, lactate and gamma-aminobutyric acid (GABA) were found, suggesting a reduction of glycolytic and oxidative metabolic demand below the baseline. Additionally, the respective changes of the BOLD signal, glutamate and lactate concentrations of both groups suggest that a local increase of inhibitory activity might occur during the negative BOLD response.
Collapse
Affiliation(s)
- Yohan Boillat
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lijing Xin
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Wietske van der Zwaag
- Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Spinoza Centre for Neuroimaging, Amsterdam, Netherlands
| | - Rolf Gruetter
- Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Animal imaging and technology core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Department of Radiology, University of Geneva, Geneva, Switzerland.,Department of Radiology, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
McNair LF, Kornfelt R, Walls AB, Andersen JV, Aldana BI, Nissen JD, Schousboe A, Waagepetersen HS. Metabolic Characterization of Acutely Isolated Hippocampal and Cerebral Cortical Slices Using [U-13C]Glucose and [1,2-13C]Acetate as Substrates. Neurochem Res 2016; 42:810-826. [DOI: 10.1007/s11064-016-2116-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 11/11/2016] [Accepted: 11/16/2016] [Indexed: 12/21/2022]
|
4
|
Furlong TM, Duncan JR, Corbit LH, Rae CD, Rowlands BD, Maher AD, Nasrallah FA, Milligan CJ, Petrou S, Lawrence AJ, Balleine BW. Toluene inhalation in adolescent rats reduces flexible behaviour in adulthood and alters glutamatergic and GABAergic signalling. J Neurochem 2016; 139:806-822. [PMID: 27696399 DOI: 10.1111/jnc.13858] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 12/24/2022]
Abstract
Toluene is a commonly abused inhalant that is easily accessible to adolescents. Despite the increasing incidence of use, our understanding of its long-term impact remains limited. Here, we used a range of techniques to examine the acute and chronic effects of toluene exposure on glutameteric and GABAergic function, and on indices of psychological function in adult rats after adolescent exposure. Metabolomics conducted on cortical tissue established that acute exposure to toluene produces alterations in cellular metabolism indicative of a glutamatergic and GABAergic profile. Similarly, in vitro electrophysiology in Xenopus oocytes found that acute toluene exposure reduced NMDA receptor signalling. Finally, in an adolescent rodent model of chronic intermittent exposure to toluene (10 000 ppm), we found that, while toluene exposure did not affect initial learning, it induced a deficit in updating that learning when response-outcome relationships were reversed or degraded in an instrumental conditioning paradigm. There were also group differences when more effort was required to obtain the reward; toluene-exposed animals were less sensitive to progressive ratio schedules and to delayed discounting. These behavioural deficits were accompanied by changes in subunit expression of both NMDA and GABA receptors in adulthood, up to 10 weeks after the final exposure to toluene in the hippocampus, prefrontal cortex and ventromedial striatum; regions with recognized roles in behavioural flexibility and decision-making. Collectively, our data suggest that exposure to toluene is sufficient to induce adaptive changes in glutamatergic and GABAergic systems and in adaptive behaviour that may underlie the deficits observed following adolescent inhalant abuse, including susceptibility to further drug-use.
Collapse
Affiliation(s)
- Teri M Furlong
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Jhodie R Duncan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Laura H Corbit
- School of Psychology, University of Sydney, Sydney, New South Wales, Australia
| | - Caroline D Rae
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of NSW, Kensington, New South Wales, Australia
| | - Benjamin D Rowlands
- Neuroscience Research Australia, Randwick, New South Wales, Australia.,School of Medical Sciences, University of NSW, Kensington, New South Wales, Australia
| | - Anthony D Maher
- Neuroscience Research Australia, Randwick, New South Wales, Australia
| | | | - Carol J Milligan
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Steven Petrou
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andrew J Lawrence
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bernard W Balleine
- Brain & Mind Centre, University of Sydney, Sydney, New South Wales, Australia.,School of Psychology, University of NSW, Kensington, New South Wales, Australia
| |
Collapse
|
5
|
Beart PM. Synaptic signalling and its interface with neuropathologies: snapshots from the past, present and future. J Neurochem 2016; 139 Suppl 2:76-90. [PMID: 27144305 DOI: 10.1111/jnc.13598] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 02/09/2016] [Accepted: 02/26/2016] [Indexed: 11/30/2022]
Abstract
This 'Past to Future' Review as part of the 60th anniversary year of the Journal of Neurochemistry focuses on synaptic transmission and associated signalling, and seeks to identify seminal progress in neurochemistry over the last 10 years which has advanced our understanding of neuronal communication in brain. The approach adopted analyses neurotransmitters on a case by case basis (i.e. amino acids, monoamines, acetylcholine, neuropeptides, ATP/purines and gasotransmitters) to highlight novel findings that have changed the way we view each type of transmitter, to explore commonalities and interactions, and to note how new insights have changed the way we view the biology of degenerative, psychiatric and behavioural conditions. Across all transmitter systems there was remarkable growth in the identification of targets likely to provide therapeutic benefit and which undoubtedly was driven by the elucidation of circuit function and new vistas of synaptic signalling. There has been an increasing trend to relate signalling to disease, notably for Alzheimer's and Parkinson's disease and related conditions, and which has occurred for each transmitter family. Forebrain circuitry and tonic excitatory control have been the centre of great attention yielding novel findings that will impact upon cognitive, emotional and addictive behaviours. Other impressive insights focus on gasotransmitters integrating activity as volume transmitters. Exciting developments in how serotonin, cholinergic, l-glutamate, galanin and adenosine receptors and their associated signalling can be beneficially targeted should underpin the development of new therapies. Clearly integrated, multifaceted neurochemistry has changed the way we view synaptic signalling and its relevance to pathobiology. Highlighted are important advances in synaptic signalling over the last decade in the Journal of Neurochemistry. Across all transmitter systems elucidation of circuit function, and notably molecular insights, have underpinned remarkable growth in the identification of targets likely to provide therapeutic benefit in neuropathologies. Another commonality was wide interest in forebrain circuitry and its tonic excitatory control. Increasingly observations relate to signalling in disease and behavioural conditions. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Philip M Beart
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
6
|
Rae C, Nasrallah FA, Balcar VJ, Rowlands BD, Johnston GAR, Hanrahan JR. Metabolomic Approaches to Defining the Role(s) of GABAρ Receptors in the Brain. J Neuroimmune Pharmacol 2015; 10:445-56. [PMID: 25577264 DOI: 10.1007/s11481-014-9579-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 12/26/2014] [Indexed: 10/24/2022]
Abstract
The inhibitory neurotransmitter γ-aminobutyric acid (GABA) acts through various types of receptors in the central nervous system. GABAρ receptors, defined by their characteristic pharmacology and presence of ρ subunits in the channel structure, are poorly understood and their role in the cortex is ill-defined. Here, we used a targeted pharmacological, NMR-based functional metabolomic approach in Guinea pig brain cortical tissue slices to identify a distinct role for these receptors. We compared metabolic fingerprints generated by a range of ligands active at GABAρ and included these in a principal components analysis with a library of other metabolic fingerprints obtained using ligands active at GABAA and GABAB, with inhibitors of GABA uptake and with compounds acting to inhibit enzymes active in the GABAergic system. This enabled us to generate a metabolic "footprint" of the GABAergic system which revealed classes of metabolic activity associated with GABAρ which are distinct from other GABA receptors. Antagonised GABAρ produce large metabolic effects at extrasynaptic sites suggesting they may be involved in tonic inhibition.
Collapse
Affiliation(s)
- Caroline Rae
- Neuroscience Research Australia, Barker St, Randwick, NSW, 2031, Australia,
| | | | | | | | | | | |
Collapse
|
7
|
Rae C, Balcar VJ. A Chip Off the Old Block: The Brain Slice as a Model for Metabolic Studies of Brain Compartmentation and Neuropharmacology. BRAIN ENERGY METABOLISM 2014. [DOI: 10.1007/978-1-4939-1059-5_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Rae CD, Davidson JE, Maher AD, Rowlands BD, Kashem MA, Nasrallah FA, Rallapalli SK, Cook JM, Balcar VJ. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J Neurochem 2013; 129:304-14. [PMID: 24313287 DOI: 10.1111/jnc.12634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, and Brain Sciences UNSW, Randwick, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Rae CD. A Guide to the Metabolic Pathways and Function of Metabolites Observed in Human Brain 1H Magnetic Resonance Spectra. Neurochem Res 2013; 39:1-36. [PMID: 24258018 DOI: 10.1007/s11064-013-1199-5] [Citation(s) in RCA: 336] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/08/2013] [Accepted: 11/11/2013] [Indexed: 12/20/2022]
|
10
|
Nasrallah FA, Balcar VJ, Rae CD. Activity-dependent γ-aminobutyric acid release controls brain cortical tissue slice metabolism. J Neurosci Res 2011; 89:1935-45. [DOI: 10.1002/jnr.22649] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/15/2011] [Accepted: 03/01/2011] [Indexed: 12/16/2022]
|
11
|
Nasrallah FA, Maher AD, Hanrahan JR, Balcar VJ, Rae CD. γ-Hydroxybutyrate and the GABAergic footprint: a metabolomic approach to unpicking the actions of GHB. J Neurochem 2010; 115:58-67. [PMID: 20681954 DOI: 10.1111/j.1471-4159.2010.06901.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Gamma-hydroxybutyrate is found both naturally in the brain and self-administered as a drug of abuse. It has been reported to act at endogenous γ-hydroxybutyrate (GHB) receptors and GABA(B) receptors [GABA(B)R], and may also be metabolized to GABA. Here, the metabolic fingerprints of a range of concentrations of GHB were measured in brain cortical tissue slices and compared with those of ligands active at GHB and GABA-R using principal components analysis (PCA) to identify sites of GHB activity. Low concentrations of GHB (1.0 μM) produced fingerprints similar to those of ligands active at GHB receptors and α4-containing GABA(A)R. A total of 10 μM GHB clustered proximate to mainstream GABAergic synapse ligands, such as 1.0 μM baclofen, a GABA(B)R agonist. Higher concentrations of GHB (30 μM) clustered with GABA(C)R agonists and the metabolic responses induced by blockade of the GABA transporter-1 (GAT1). The metabolic responses induced by 60 and 100 μM GHB were mimicked by simultaneous blockade of GAT1 and GAT3, addition of low concentrations of GABA(C)R antagonists, or increasing cytoplasmic GABA concentrations by incubation with the GABA transaminase inhibitor vigabatrin. These data suggest that at concentrations > 30 μM, GHB may be active via metabolism to GABA, which is then acting upon an unidentified GABAergic master switch receptor (possibly a high-affinity extrasynaptic receptor), or GHB may itself be acting directly on an extrasynaptic GABA-R, capable of turning off large numbers of cells. These results offer an explanation for the steep dose-response curve of GHB seen in vivo, and suggest potential target receptors for further investigation.
Collapse
|
12
|
Sonnewald U, Rae C. Pyruvate carboxylation in different model systems studied by (13)C MRS. Neurochem Res 2010; 35:1916-21. [PMID: 20842423 PMCID: PMC3002159 DOI: 10.1007/s11064-010-0257-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2010] [Indexed: 11/17/2022]
Abstract
Pyruvate carboxylation is of great importance in the brain since it is responsible for adding net carbons to the tricarboxylic acid cycle following removal of carbon backbone for synthesis of the two most abundant neurotransmitters, glutamate and GABA. Despite having such a pivotal role, there is still much uncertainty in the exact metabolic details about where and how this carbon is returned. Pyruvate carboxylation has been studied in various model systems of the brain and 13C magnetic resonance spectroscopy is an excellent tool for doing this. This review will focus on results dealing with the extent and cellular location of pyruvate carboxylation and its role in pathophysiology and concludes that pyruvate carboxylation is an extraordinarily important predominantly astrocytic pathway which plays a pivotal part in a number of diseases.
Collapse
Affiliation(s)
- Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology, 7489 Trondheim, Norway.
| | | |
Collapse
|