1
|
King H, Reiber M, Philippi V, Stirling H, Aulehner K, Bankstahl M, Bleich A, Buchecker V, Glasenapp A, Jirkof P, Miljanovic N, Schönhoff K, von Schumann L, Leenaars C, Potschka H. Anesthesia and analgesia for experimental craniotomy in mice and rats: a systematic scoping review comparing the years 2009 and 2019. Front Neurosci 2023; 17:1143109. [PMID: 37207181 PMCID: PMC10188949 DOI: 10.3389/fnins.2023.1143109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/21/2023] Open
Abstract
Experimental craniotomies are a common surgical procedure in neuroscience. Because inadequate analgesia appears to be a problem in animal-based research, we conducted this review and collected information on management of craniotomy-associated pain in laboratory mice and rats. A comprehensive search and screening resulted in the identification of 2235 studies, published in 2009 and 2019, describing craniotomy in mice and/or rats. While key features were extracted from all studies, detailed information was extracted from a random subset of 100 studies/year. Reporting of perioperative analgesia increased from 2009 to 2019. However, the majority of studies from both years did not report pharmacologic pain management. Moreover, reporting of multimodal treatments remained at a low level, and monotherapeutic approaches were more common. Among drug groups, reporting of pre- and postoperative administration of non-steroidal anti-inflammatory drugs, opioids, and local anesthetics in 2019 exceeded that of 2009. In summary, these results suggest that inadequate analgesia and oligoanalgesia are persistent issues associated with experimental intracranial surgery. This underscores the need for intensified training of those working with laboratory rodents subjected to craniotomies. Systematic review registration https://osf.io/7d4qe.
Collapse
Affiliation(s)
- Hannah King
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Reiber
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Vanessa Philippi
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Helen Stirling
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Aulehner
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Marion Bankstahl
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - André Bleich
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Verena Buchecker
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Aylina Glasenapp
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Paulin Jirkof
- Office for Animal Welfare and 3Rs, University of Zurich, Zurich, Switzerland
| | - Nina Miljanovic
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katharina Schönhoff
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Lara von Schumann
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
| | - Cathalijn Leenaars
- Hannover Medical School, Institute for Laboratory Animal Science, Hanover, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology, and Pharmacy, Ludwig Maximilian University of Munich, Munich, Germany
- *Correspondence: Heidrun Potschka,
| |
Collapse
|
2
|
Brunner B, Ari C, D’Agostino DP, Kovács Z. Adenosine Receptors Modulate the Exogenous Ketogenic Supplement-Evoked Alleviating Effect on Lipopolysaccharide-Generated Increase in Absence Epileptic Activity in WAG/Rij Rats. Nutrients 2021; 13:nu13114082. [PMID: 34836344 PMCID: PMC8623289 DOI: 10.3390/nu13114082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
It has been previously demonstrated that KEKS food containing exogenous ketogenic supplement ketone salt (KS) and ketone ester (KE) decreased the lipopolysaccharide (LPS)-generated increase in SWD (spike-wave discharge) number in Wistar Albino Glaxo/Rijswijk (WAG/Rij) rats, likely through ketosis. KEKS-supplemented food-generated ketosis may increase adenosine levels, and may thus modulate both neuroinflammatory processes and epileptic activity through adenosine receptors (such as A1Rs and A2ARs). To determine whether these adenosine receptors are able to modify the KEKS food-generated alleviating effect on LPS-evoked increases in SWD number, an antagonist of A1R DPCPX (1,3-dipropyl-8-cyclopentylxanthine; 0.2 mg/kg) with LPS (50 µg/kg) and an antagonist of A2AR SCH58261 (7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c]pyrimidine; 0.5 mg/kg) with LPS were co-injected intraperitoneally (i.p.) on the ninth day of KEKS food administration, and their influence not only on the SWD number, but also on blood glucose, R-beta-hydroxybutyrate (R-βHB) levels, and body weight were measured. We showed that inhibition of A1Rs abolished the alleviating effect of KEKS food on LPS-generated increases in the SWD number, whereas blocking A2ARs did not significantly modify the KEKS food-generated beneficial effect. Our results suggest that the neuromodulatory benefits of KEKS-supplemented food on absence epileptic activity are mediated primarily through A1R, not A2AR.
Collapse
Affiliation(s)
- Brigitta Brunner
- Faculty of Sciences, Institute of Biology, University of Pécs, Ifjúság Str. 6, 7624 Pécs, Hungary;
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| | - Csilla Ari
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Behavioral Neuroscience Research Laboratory, Department of Psychology, University of South Florida, Tampa, FL 33620, USA
- Correspondence: ; Tel.: +1-(813)-2409925
| | - Dominic P. D’Agostino
- Ketone Technologies LLC, Tampa, FL 33612, USA;
- Laboratory of Metabolic Medicine, Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Institute for Human and Machine Cognition, Ocala, FL 34471, USA
| | - Zsolt Kovács
- Savaria University Centre, Department of Biology, ELTE Eötvös Loránd University, Károlyi Gáspár tér 4, 9700 Szombathely, Hungary;
| |
Collapse
|
3
|
Brigo F, Striano P, Belcastro V. A reappraisal of atypical absence seizures in children and adults: therapeutic implications. Expert Opin Pharmacother 2019; 20:2115-2120. [PMID: 31446808 DOI: 10.1080/14656566.2019.1656716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Introduction: Atypical absences are generalized epileptic seizures typically affecting children with severe epilepsies and learning difficulties along with other seizure types. Video-EEG is essential for their diagnosis. Recently, atypical absence seizures have been reported as a hallmark of some developmental and epileptic encephalopathies.Areas covered: This is a narrative review of the literature which describes the electroclinical features of atypical seizures, the characteristics of developmental epileptic encephalopathies in which this seizure type can occur, and the evidence supporting the use of individual antiseizure drugs for the treatment of atypical absences.Expert opinion: Treatment of absence seizures typically relies on ethosuximide (ineffective against tonic-clonic seizures), valproate (associated with larger proportion of adverse events), or lamotrigine (less effective than the other two). However, unlike typical absences, atypical absences are usually intractable, persist lifetime, and their prognosis depends on the underlying etiology or associated epilepsy syndrome. Besides efficacy, other relevant factors, such as drug formulation, ease of titration and dosing, and drug interactions, should be considered. Drugs that may worsen epilepsy, cognition and behavior should be avoided. In the vast majority of patients, a polytherapy is required, although usually with limited efficacy. Finally, epilepsy syndromes featuring atypical absences require a multidisciplinary approach.
Collapse
Affiliation(s)
- Francesco Brigo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.,Department of Neurology, Franz Tappeiner Hospital, Merano, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, DINOGMI-Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health University of Genoa, "G. Gaslini" Institute, Genova, Italy
| | | |
Collapse
|
4
|
Forero-Quintero LS, Deitmer JW, Becker HM. Reduction of epileptiform activity in ketogenic mice: The role of monocarboxylate transporters. Sci Rep 2017; 7:4900. [PMID: 28687765 PMCID: PMC5501801 DOI: 10.1038/s41598-017-05054-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/23/2017] [Indexed: 02/05/2023] Open
Abstract
Epilepsy is a chronic neurological disorder that affects approximately 50 million people worldwide. Ketogenic diet (KD) can be a very effective treatment for intractable epilepsy. Potential mechanisms of action for KD have been proposed, including the re-balance among excitatory and inhibitory neurotransmission and decrease in the glycolytic rate in brain cells. KD has been shown to have an effect on the expression pattern of monocarboxylate transporters (MCT), however, it is unknown whether MCT transport activity is affected by KD and linked to the reduction of seizures during KD. Therefore, we studied the influence of KD on MCT transport activity and the role of MCTs during epileptiform activity. Our results showed a decrease in the epileptiform activity in cortical slices from mice fed on KD and in the presence of beta-hydroxybutyrate. KD increased transport capacity for ketone bodies and lactate in cortical astrocytes by raising the MCT1 expression level. Inhibition of MCT1 and MCT2 in control conditions decreases epileptiform activity, while in KD it induced an increase in epileptiform activity. Our results suggest that MCTs not only play an important role in the transport of ketone bodies, but also in the modulation of brain energy metabolism under normal and ketogenic conditions.
Collapse
Affiliation(s)
- Linda S Forero-Quintero
- Division of General Zoology, Department of Biology, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
| | - Joachim W Deitmer
- Division of General Zoology, Department of Biology, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany
| | - Holger M Becker
- Division of General Zoology, Department of Biology, University of Kaiserslautern, P.O. Box 3049, D-67653, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Varlamis S, Vavatsi N, Pavlou E, Kotsis V, Spilioti M, Kavga M, Varlamis G, Sotiriadou F, Agakidou E, Voutoufianakis S, Evangeliou AE. Evaluation of Oral Glucose Tolerance Test in Children With Epilepsy. J Child Neurol 2013; 28:1437-1442. [PMID: 23071070 DOI: 10.1177/0883073812460919] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Glucose metabolism of children with drug-resistant epilepsy, controlled by antiepileptic drugs epilepsy, and first-time nonfebrile seizures was studied through the performance of an oral glucose tolerance test and through insulin, C-peptide, and glycosylated hemoglobin measurements. In the refractory epilepsy group, there were more abnormal oral glucose tolerance test results (62.07%) in comparison to the controlled epilepsy group (25%) and the group of first-time seizures (21.21%). There was a significant difference between the group of refractory epilepsy and every other group concerning the abnormality of the oral glucose tolerance test (P < .05). The mean values of insulin, HbA1c, and C-peptide levels were normal for all groups. The results of the present study suggest that there is a distinction of refractory epilepsies from the drug-controlled ones and the first-induced seizures relating to their metabolic profile, regardless of the type of seizures.
Collapse
Affiliation(s)
- Sotirios Varlamis
- 1Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, Papageorgiou General Hospital, Thessaloniki, Greece
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Abstract
In this report, we review the pharmacological and non-pharmacological treatments of the different absence seizure types as recently recognized by the International League Against Epilepsy: typical absences, atypical absences, myoclonic absences, and eyelid myoclonia with absences. Overall, valproate and ethosuximide remain the principal anti-absence drugs. Typical absence seizures exhibit a specific electroclinical semiology, pathophysiology, and pharmacological response profile. A large-scale comparative study has recently confirmed the key role of ethosuximide in the treatment of childhood absence epilepsy, more than 50 years after its introduction. No new antiepileptic drug has proven major efficacy against typical absences. Of the medications under development, brivaracetam might be an efficacious anti-absence drug. Some experimental drugs also show efficacy in animal models of typical absence seizures. The treatment of other absence seizure types is not supported with a high level of evidence. Rufinamide appears to be the most promising new antiepileptic drug for atypical absences and possibly for myoclonic absences. The efficacy of vagal nerve stimulation should be further evaluated for atypical absences. Levetiracetam appears to display a particular efficacy in eyelid myoclonia with absences. Finally, it is important to remember that the majority of antiepileptic drugs, whether they be old or new, may aggravate typical and atypical absence seizures.
Collapse
Affiliation(s)
- Pascal Vrielynck
- William Lennox Neurological Center, Reference Centre for Refractory Epilepsy, Catholic University of Louvain, Belgium
| |
Collapse
|
7
|
Pifferi F, Tremblay S, Croteau E, Fortier M, Tremblay-Mercier J, Lecomte R, Cunnane SC. Mild experimental ketosis increases brain uptake of 11C-acetoacetate and 18F-fluorodeoxyglucose: a dual-tracer PET imaging study in rats. Nutr Neurosci 2011; 14:51-8. [PMID: 21605500 DOI: 10.1179/1476830510y.0000000001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Brain glucose and ketone uptake was investigated in Fisher rats subjected to mild experimental ketonemia induced by a ketogenic diet (KD) or by 48 hours fasting (F). Two tracers were used, (11)C-acetoacetate ((11)C-AcAc) for ketones and (18)F-fluorodeoxyglucose for glucose, in a dual-tracer format for each animal. Thus, each animal was its own control, starting first on the normal diet, then undergoing 48 hours F, followed by 2 weeks on the KD. In separate rats on the same diet conditions, expression of the transporters of glucose and ketones (glucose transporter 1 (GLUT1) and monocarboxylic acid transporter (MCT1)) was measured in brain microvessel preparations. Compared to controls, uptake of (11)C-AcAc increased more than 2-fold while on the KD or after 48 hours F (P < 0.05). Similar trends were observed for (18)FDG uptake with a 1.9-2.6 times increase on the KD and F, respectively (P < 0.05). Compared to controls, MCT1 expression increased 2-fold on the KD (P < 0.05) but did not change during F. No significant difference was observed across groups for GLUT1 expression. Significant differences across the three groups were observed for plasma beta-hydroxybutyrate (beta-HB), AcAc, glucose, triglycerides, glycerol, and cholesterol (P < 0.05), but no significant differences were observed for free fatty acids, insulin, or lactate. Although the mechanism by which mild ketonemia increases brain glucose uptake remains unclear, the KD clearly increased both the blood-brain barrier expression of MCT1 and stimulated brain (11)C-AcAc uptake. The present dual-tracer positron emission tomography approach may be particularly interesting in neurodegenerative pathologies such as Alzheimer's disease where brain energy supply appears to decline critically.
Collapse
Affiliation(s)
- Fabien Pifferi
- Research Center on Aging, Sherbrooke University Geriatric Institute, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
8
|
Groomes LB, Pyzik PL, Turner Z, Dorward JL, Goode VH, Kossoff EH. Do patients with absence epilepsy respond to ketogenic diets? J Child Neurol 2011; 26:160-5. [PMID: 20647578 DOI: 10.1177/0883073810376443] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dietary therapies are established as beneficial for symptomatic generalized epilepsies such as Lennox-Gastaut syndrome; however, the outcome for idiopathic generalized epilepsy has never been specifically reported. The efficacy of the ketogenic and modified Atkins diet for childhood and juvenile absence epilepsy was evaluated from both historical literature review and patients treated at Johns Hopkins Hospital. Upon review of 17 published studies in which absence epilepsy was included as a patient subpopulation, approximately 69% of 133 with clear outcomes patients who received the ketogenic diet had a >50% seizure reduction, and 34% of these patients became seizure free. At Johns Hopkins Hospital, the ketogenic diet (n = 8) and modified Atkins diet (n = 13) led to similar outcomes, with 18 (82%) having a >50% seizure reduction, of which 10 (48%) had a >90% seizure reduction and 4 (19%) were seizure free. Neither age at diet onset, number of anticonvulsants used previously, particular diet used, nor gender correlated with success.
Collapse
Affiliation(s)
- Laura B Groomes
- The John M. Freeman Pediatric Epilepsy Center, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | | | | | | | | | | |
Collapse
|