1
|
Okitsu-Sakurayama S, Higa-Nakamine S, Torihara H, Higashiyama S, Yamamoto H. Roles of Pyk2 in signal transduction after gonadotropin-releasing hormone receptor stimulation. J Cell Physiol 2020; 236:3033-3043. [PMID: 32984962 DOI: 10.1002/jcp.30077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/03/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022]
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) is highly expressed in hypothalamic neurons. It has been reported that GnRH treatment of cultured GnRH neurons (GT1-7 cells) activated proline-rich tyrosine kinase 2 (Pyk2), and Pyk2 was involved in the activation of extracellular signal-regulated protein kinase 1 (ERK1) and ERK2 (ERK1/2). In the present study, we first examined the possibility that GnRH treatment might activate epidermal growth factor receptor (EGFR). We found that activation of EGFR after GnRH treatment for 5 min was much less than after EGF or heparin-binding EGF treatment. Next, we examined whether or not Pyk2 bound to growth factor receptor-binding protein 2 (Grb2). We overexpressed FLAG-fused Pyk2 in GT1-7 cells, and immunoprecipitated Pyk2 using an anti-FLAG antibody. The binding of Pyk2 to Grb2 was detected only after GnRH treatment. In contrast, a site-directed mutant of Pyk2 wherein tyrosine 881 was mutated to phenylalanine did not bind to Grb2. Studies with small interfering RNA and inhibitors indicated that the activation of Grb2/Ras/Raf/MEK was a major pathway to ERK1/2 activation after the short-term treatment of GT1-7 cells with GnRH.
Collapse
Affiliation(s)
- Shiho Okitsu-Sakurayama
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Hidetsugu Torihara
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Department of Biochemistry and Molecular Genetics, Proteo-Science Center, Ehime University Graduate School of Medicine, Ehime University, Toon, Ehime, Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
2
|
Higa‐Nakamine S, Okitsu‐Sakurayama S, Kina S, Yamamoto H. Fyn‐mediated phosphorylation of Pyk2 promotes its activation and dissociation downstream of gonadotropin‐releasing hormone receptor. FEBS J 2020; 287:3551-3564. [DOI: 10.1111/febs.15231] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/13/2019] [Accepted: 01/27/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Sayomi Higa‐Nakamine
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shiho Okitsu‐Sakurayama
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Shinichiro Kina
- Department of Oral and Maxillofacial Functional Rehabilitation Graduate School of Medicine University of the Ryukyus Okinawa Japan
| | - Hideyuki Yamamoto
- Department of Biochemistry Graduate School of Medicine University of the Ryukyus Okinawa Japan
| |
Collapse
|
3
|
Higa T, Takahashi H, Higa-Nakamine S, Suzuki M, Yamamoto H. Up-regulation of DUSP5 and DUSP6 by gonadotropin-releasing hormone in cultured hypothalamic neurons, GT1-7 cells. Biomed Res 2018; 39:149-158. [PMID: 29899190 DOI: 10.2220/biomedres.39.149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Gonadotropin-releasing hormone (GnRH) is secreted from hypothalamic neurons (GnRH neurons) and stimulates anterior pituitary gonadotrophs to synthesize and secrete gonadotropins. In addition to gonadotrophs, GnRH neurons also express GnRH receptors, and the autocrine action of GnRH is reportedly involved in the regulation of functions of GnRH neurons. There is accumulating evidence that extracellular signal-regulated kinase (ERK), one of mitogen-activated protein kinases (MAPKs), is activated by GnRH and involved in various effects of GnRH in GnRH neurons. In the present study, we performed microarray analysis to examine the types of genes whose expression was regulated by GnRH in immortalized mouse GnRH neurons (GT1-7 cells). We found that 257 genes among 55,681 genes examined were up-regulated after 30-min treatment of GT1-7 cells with GnRH. These up-regulated genes included four dual-specificity MAPK phosphatases (DUSPs), DUSP1, DUSP2, DUSP5, and DUSP6. Reverse transcription-polymerase chain reaction analysis confirmed that the mRNA levels of DUSP5 and DUSP6 were robustly increased within 30 min. U0126, an inhibitor of ERK activation, completely inhibited the increases in the mRNA levels of DUSP5 and DUSP6. Immunoblotting analysis revealed that ERK activation peaked at 5 min and declined steeply at 60 min, whereas DUSP5 and DUSP6 proteins were increased from 60 min. It was notable that down-regulation of DUSP6 augmented GnRH-induced ERK activation approximately 1.7-fold at 60 min. These results suggested that the up-regulation of DUSP6 regulates the duration of ERK activation at least in part.
Collapse
Affiliation(s)
- Teruyuki Higa
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus.,Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus
| | - Hana Takahashi
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Sayomi Higa-Nakamine
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| | - Mikio Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus
| | - Hideyuki Yamamoto
- Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus
| |
Collapse
|
4
|
Omoto Y, Higa-Nakamine S, Higa A, Yamamoto H. ErbB4 cleavage by gonadotropin-releasing hormone receptor stimulation in cultured gonadotroph cells. Eur J Pharmacol 2017; 799:171-179. [DOI: 10.1016/j.ejphar.2017.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 11/29/2022]
|
5
|
Higa-Nakamine S, Maeda N, Toku S, Yamamoto H. Involvement of Protein Kinase D1 in Signal Transduction from the Protein Kinase C Pathway to the Tyrosine Kinase Pathway in Response to Gonadotropin-releasing Hormone. J Biol Chem 2015; 290:25974-85. [PMID: 26338704 DOI: 10.1074/jbc.m115.681700] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Indexed: 11/06/2022] Open
Abstract
The receptor for gonadotropin-releasing hormone (GnRH) belongs to the G protein-coupled receptors (GPCRs), and its stimulation activates extracellular signal-regulated protein kinase (ERK). We found that the transactivation of ErbB4 was involved in GnRH-induced ERK activation in immortalized GnRH neurons (GT1-7 cells). We found also that GnRH induced the cleavage of ErbB4. In the present study, we examined signal transduction for the activation of ERK and the cleavage of ErbB4 after GnRH treatment. Both ERK activation and ErbB4 cleavage were completely inhibited by YM-254890, an inhibitor of Gq/11 proteins. Down-regulation of protein kinase C (PKC) markedly decreased both ERK activation and ErbB4 cleavage. Experiments with two types of PKC inhibitors, Gö 6976 and bisindolylmaleimide I, indicated that novel PKC isoforms but not conventional PKC isoforms were involved in ERK activation and ErbB4 cleavage. Our experiments indicated that the novel PKC isoforms activated protein kinase D (PKD) after GnRH treatment. Knockdown and inhibitor experiments suggested that PKD1 stimulated the phosphorylation of Pyk2 by constitutively activated Src and Fyn for ERK activation. Taken together, it is highly possible that PKD1 plays a critical role in signal transduction from the PKC pathway to the tyrosine kinase pathway. Activation of the tyrosine kinase pathway may be involved in the progression of cancer.
Collapse
Affiliation(s)
- Sayomi Higa-Nakamine
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Noriko Maeda
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Seikichi Toku
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Hideyuki Yamamoto
- From the Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
6
|
Nishi H, Maeda N, Izumi S, Higa-Nakamine S, Toku S, Kakinohana M, Sugahara K, Yamamoto H. Differential regulation of epidermal growth factor receptor by hydrogen peroxide and flagellin in cultured lung alveolar epithelial cells. Eur J Pharmacol 2015; 748:133-42. [DOI: 10.1016/j.ejphar.2014.12.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/10/2014] [Accepted: 12/11/2014] [Indexed: 01/05/2023]
|
7
|
Knight JRP, Willis AE, Milner J. Active regulator of SIRT1 is required for ribosome biogenesis and function. Nucleic Acids Res 2013; 41:4185-97. [PMID: 23462953 PMCID: PMC3627601 DOI: 10.1093/nar/gkt129] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Active regulator of SIRT1 (AROS) binds and upregulates SIRT1, an NAD(+)-dependent deacetylase. In addition, AROS binds RPS19, a structural ribosomal protein, which also functions in ribosome biogenesis and is implicated in multiple disease states. The significance of AROS in relation to ribosome biogenesis and function is unknown. Using human cells, we now show that AROS localizes to (i) the nucleolus and (ii) cytoplasmic ribosomes. Co-localization with nucleolar proteins was verified by confocal immunofluorescence of endogenous protein and confirmed by AROS depletion using RNAi. AROS association with cytoplasmic ribosomes was analysed by sucrose density fractionation and immunoprecipitation, revealing that AROS selectively associates with 40S ribosomal subunits and also with polysomes. RNAi-mediated depletion of AROS leads to deficient ribosome biogenesis with aberrant precursor ribosomal RNA processing, reduced 40S subunit ribosomal RNA and 40S ribosomal proteins (including RPS19). Together, this results in a reduction in 40S subunits and translating polysomes, correlating with reduced overall cellular protein synthesis. Interestingly, knockdown of AROS also results in a functionally significant increase in eIF2α phosphorylation. Overall, our results identify AROS as a factor with a role in both ribosome biogenesis and ribosomal function.
Collapse
Affiliation(s)
- John R P Knight
- Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | | | | |
Collapse
|
8
|
Phosphorylation of epidermal growth factor receptor at serine 1047 by MAP kinase-activated protein kinase-2 in cultured lung epithelial cells treated with flagellin. Arch Biochem Biophys 2013; 529:75-85. [DOI: 10.1016/j.abb.2012.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 11/16/2012] [Accepted: 11/17/2012] [Indexed: 11/23/2022]
|
9
|
Kondo Y, Higa-Nakamine S, Noguchi N, Maeda N, Toku S, Isohama Y, Sugahara K, Kukita I, Yamamoto H. Induction of epithelial-mesenchymal transition by flagellin in cultured lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 2012; 303:L1057-69. [DOI: 10.1152/ajplung.00096.2012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptor 5 (TLR5) recognizes bacterial flagellin and activates host inflammatory responses, mainly through activation of the NF-κB pathway. Although pulmonary fibrosis occurs in some cases of lung infection by flagellated bacteria, the pathological roles of TLR5 stimulation in pulmonary fibrosis have yet to be elucidated. In the present study, we first confirmed that flagellin activated the NF-κB pathway in cultured A549 alveolar epithelial cells. Next, we examined the types of genes whose expression was modulated by flagellin in the cells. Microarray analysis of gene expression indicated that flagellin induced a change in gene expression that had a similar trend to transforming growth factor-β1 (TGF-β1), a key factor in the induction of epithelial-mesenchymal transition (EMT). Biochemical analysis revealed that TGF-β1 and flagellin increased the level of fibronectin protein, while they reduced the level of E-cadherin protein after 30 h of treatment. Interestingly, simultaneous treatment with TGF-β1 and flagellin significantly augmented these EMT-related changes. Flagellin strongly activated p38 MAP kinase, and the activation was sustained for longer than 30 h. SB203580, an inhibitor of p38 MAP kinase, inhibited the upregulation of fibronectin by both flagellin and TGF-β1. Simultaneous treatment with TGF-β1 and flagellin augmented the activation of p38 MAP kinase by TGF-β1 or flagellin alone. These results strongly suggest that flagellin cooperates with TGF-β1 in the induction of EMT in alveolar epithelial cells.
Collapse
Affiliation(s)
- Yutaka Kondo
- Departments of 1Biochemistry,
- Emergency Medicine, and
| | | | - Nobuhiro Noguchi
- Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; and
| | | | | | - Yoichiro Isohama
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuhiro Sugahara
- Anesthesiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan; and
| | | | | |
Collapse
|
10
|
Behnen P, Davis E, Delaney E, Frohm B, Bauer M, Cedervall T, O'Connell D, Åkerfeldt KS, Linse S. Calcium-dependent interaction of calmodulin with human 80S ribosomes and polyribosomes. Biochemistry 2012; 51:6718-27. [PMID: 22856685 DOI: 10.1021/bi3005939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Ribosomes are the protein factories of every living cell. The process of protein translation is highly complex and tightly regulated by a large number of diverse RNAs and proteins. Earlier studies indicate that Ca(2+) plays a role in protein translation. Calmodulin (CaM), a ubiquitous Ca(2+)-binding protein, regulates a large number of proteins participating in many signaling pathways. Several 40S and 60S ribosomal proteins have been identified to interact with CaM, and here, we report that CaM binds with high affinity to 80S ribosomes and polyribosomes in a Ca(2+)-dependent manner. No binding is observed in buffer with 6 mM Mg(2+) and 1 mM EGTA that chelates Ca(2+), suggesting high specificity of the CaM-ribosome interaction dependent on the Ca(2+) induced conformational change of CaM. The interactions between CaM and ribosomes are inhibited by synthetic peptides comprising putative CaM-binding sites in ribosomal proteins S2 and L14. Using a cell-free in vitro translation system, we further found that these synthetic peptides are potent inhibitors of protein synthesis. Our results identify an involvement of CaM in the translational activity of ribosomes.
Collapse
Affiliation(s)
- Petra Behnen
- Biophysical Chemistry and Biochemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Higa-Nakamine S, Maeda N, Toku S, Yamamoto T, Yingyuenyong M, Kawahara M, Yamamoto H. Selective cleavage of ErbB4 by G-protein-coupled Gonadotropin-Releasing Hormone Receptor in Cultured Hypothalamic Neurons. J Cell Physiol 2012; 227:2492-501. [DOI: 10.1002/jcp.22988] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
12
|
Takata T, Kimura J, Tsuchiya Y, Naito Y, Watanabe Y. Calcium/calmodulin-dependent protein kinases as potential targets of nitric oxide. Nitric Oxide 2011; 25:145-52. [PMID: 21255668 DOI: 10.1016/j.niox.2011.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 01/21/2023]
Abstract
Nitric oxide (NO) synthesis is controlled by Ca(2+)/calmodulin (CaM) binding with and kinase-dependent phosphorylation of constitutive NO synthases, which catalyze the formation of NO and L-citrulline from L-arginine. NO operates as a mediator of important cell signaling pathways, such as cGMP signaling cascade. Another mechanism by which NO exerts biological effects is mediated via post-translational modification of redox-sensitive cysteine thiols of proteins. The Ca(2+)/CaM-dependent protein kinases (CaM kinases) such as CaM kinase I, CaM kinase II, and CaM kinase IV, are a family of protein kinases which requires binding of Ca(2+)/CaM to and subsequent phosphorylation of the enzymes to initiate its activation process. We report other regulation mechanisms of CaM kinases, such as S-glutathionylation of CaM kinase I at Cys(179) and S-nitrosylation of CaM kinase II at Cys(6/30). Such unique post-translational modification of CaMKs by NO shed light on a new area of mutual regulation of NO- and CaM kinases-signals. Based on the novel direct regulation of these kinases, we propose that CaM kinases/NO signaling would be good targets for understanding how they can participate in neuronal physiology and disease.
Collapse
Affiliation(s)
- Tsuyoshi Takata
- Department of Pharmacology, High Technology Research Center, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | | | | | | | | |
Collapse
|
13
|
Mizutani A, Maeda N, Toku S, Higa-Nakamine S, Isohama Y, Sunakawa H, Sugahara K, Yamamoto H. Interaction of ethyl pyruvate in vitro with NF-κB subunits, RelA and p50. Eur J Pharmacol 2011; 650:151-6. [DOI: 10.1016/j.ejphar.2010.10.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/27/2010] [Accepted: 10/06/2010] [Indexed: 11/28/2022]
|
14
|
Nishiura H, Chen J, Ota Y, Semba U, Higuchi H, Nakashima T, Yamamoto T. Base of molecular mimicry between human ribosomal protein S19 dimer and human C5a anaphylatoxin. Int Immunopharmacol 2010; 10:1541-7. [DOI: 10.1016/j.intimp.2010.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 01/26/2023]
|
15
|
Inhibition by ethyl pyruvate of the nuclear translocation of nuclear factor-κB in cultured lung epithelial cells. Pulm Pharmacol Ther 2010; 23:308-15. [DOI: 10.1016/j.pupt.2010.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/15/2010] [Accepted: 03/04/2010] [Indexed: 11/18/2022]
|
16
|
Current world literature. Curr Opin Pediatr 2010; 22:117-26. [PMID: 20068414 DOI: 10.1097/mop.0b013e32833539b5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|