1
|
He C, Wu Z, Zhou Y, Cao W, Feng X. Asymmetric catalytic nitrooxylation and azidation of β-keto amides/esters with hypervalent iodine reagents. Org Chem Front 2022. [DOI: 10.1039/d1qo01634b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral Lewis acid-catalyzed enantioselective nitrooxylation and azidation of cyclic and acyclic β-keto amides/esters with hypervalent iodine(iii) reagents.
Collapse
Affiliation(s)
- Changqiang He
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhikun Wu
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Calvo R, Le Tellier A, Nauser T, Rombach D, Nater D, Katayev D. Synthesis, Characterization, and Reactivity of a Hypervalent-Iodine-Based Nitrooxylating Reagent. Angew Chem Int Ed Engl 2020; 59:17162-17168. [PMID: 32530081 DOI: 10.1002/anie.202005720] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Indexed: 11/11/2022]
Abstract
Herein, the synthesis and characterization of a hypervalent-iodine-based reagent that enables a direct and selective nitrooxylation of enolizable C-H bonds to access a broad array of organic nitrate esters is reported. This compound is bench stable, easy-to-handle, and delivers the nitrooxy (-ONO2 ) group under mild reaction conditions. Activation of the reagent by Brønsted and Lewis acids was demonstrated in the synthesis of nitrooxylated β-keto esters, 1,3-diketones, and malonates, while its activity under photoredox catalysis was shown in the synthesis of nitrooxylated oxindoles. Detailed mechanistic studies including pulse radiolysis, Stern-Volmer quenching studies, and UV/Vis spectroelectrochemistry reveal a unique single-electron-transfer (SET)-induced concerted mechanistic pathway not reliant upon generation of the nitrate radical.
Collapse
Affiliation(s)
- Roxan Calvo
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Antoine Le Tellier
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Thomas Nauser
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - David Rombach
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Darryl Nater
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology ETH Zürich, Vladimir-Prelog-Weg 2, 8093, Zürich, Switzerland
| |
Collapse
|
3
|
Calvo R, Le Tellier A, Nauser T, Rombach D, Nater D, Katayev D. Synthese, Charakterisierung und Reaktivität eines Nitrooxylierungsreagenzes basierend auf einer hypervalenten Iodverbindung. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Roxan Calvo
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Antoine Le Tellier
- Department of Organic Chemistry University of Geneva Quai Ernest Ansermet 30 1211 Geneva 4 Schweiz
| | - Thomas Nauser
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - David Rombach
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Darryl Nater
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| | - Dmitry Katayev
- Department of Chemistry and Applied Biosciences Swiss Federal Institute of Technology ETH Zürich Vladimir-Prelog-Weg 2 8093 Zürich Schweiz
| |
Collapse
|
4
|
Horton A, Schiefer IT. Pharmacokinetics and pharmacodynamics of nitric oxide mimetic agents. Nitric Oxide 2019; 84:69-78. [PMID: 30641123 DOI: 10.1016/j.niox.2019.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Drug discovery focusing on NO mimetics has been hamstrung due to its unconventional nature. Central to these challenges is the fact that direct measurement of molecular NO in biological systems is exceedingly difficulty. Hence, drug development of NO mimetics must rely upon measurement of the NO donating specie (i.e., a prodrug) and a downstream marker of efficacy without directly measuring the molecule, NO, that is responsible for biological effect. The focus of this review is to catalog in vivo attempts to monitor the pharmacokinetics (PK) of the NO donating specie and the pharmacodynamic (PD) readout of NO bioactivity.
Collapse
Affiliation(s)
- Austin Horton
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, USA.
| |
Collapse
|
5
|
Hollas MA, Ben Aissa M, Lee SH, Gordon-Blake JM, Thatcher GRJ. Pharmacological manipulation of cGMP and NO/cGMP in CNS drug discovery. Nitric Oxide 2019; 82:59-74. [PMID: 30394348 PMCID: PMC7645969 DOI: 10.1016/j.niox.2018.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/14/2018] [Accepted: 10/25/2018] [Indexed: 12/21/2022]
Abstract
The development of small molecule modulators of NO/cGMP signaling for use in the CNS has lagged far behind the use of such clinical agents in the periphery, despite the central role played by NO/cGMP in learning and memory, and the substantial evidence that this signaling pathway is perturbed in neurodegenerative disorders, including Alzheimer's disease. The NO-chimeras, NMZ and Nitrosynapsin, have yielded beneficial and disease-modifying responses in multiple preclinical animal models, acting on GABAA and NMDA receptors, respectively, providing additional mechanisms of action relevant to synaptic and neuronal dysfunction. Several inhibitors of cGMP-specific phosphodiesterases (PDE) have replicated some of the actions of these NO-chimeras in the CNS. There is no evidence that nitrate tolerance is a phenomenon relevant to the CNS actions of NO-chimeras, and studies on nitroglycerin in the periphery continue to challenge the dogma of nitrate tolerance mechanisms. Hybrid nitrates have shown much promise in the periphery and CNS, but to date only one treatment has received FDA approval, for glaucoma. The potential for allosteric modulation of soluble guanylate cyclase (sGC) in brain disorders has not yet been fully explored nor exploited; whereas multiple applications of PDE inhibitors have been explored and many have stalled in clinical trials.
Collapse
Affiliation(s)
- Michael A Hollas
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Manel Ben Aissa
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Sue H Lee
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Jesse M Gordon-Blake
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA
| | - Gregory R J Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, USA.
| |
Collapse
|
6
|
Xu YQ, Sun ZQ, Wang YT, Xiao F, Chen MW. Function of Nogo-A/Nogo-A receptor in Alzheimer's disease. CNS Neurosci Ther 2015; 21:479-85. [PMID: 25732725 DOI: 10.1111/cns.12387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 01/01/2015] [Accepted: 01/02/2015] [Indexed: 12/11/2022] Open
Abstract
Nogo-A is a protein inhibiting axonal regeneration, which is considered a major obstacle to nerve regeneration after injury in mammals. Rapid progress has been achieved in new physiopathological function of Nogo-A in Alzheimer's disease in the past decade. Recent research shows that through binding to Nogo-A receptor, Nogo-A plays an important role in Alzheimer's disease (AD) pathogenesis. Particularly, Nogo-A/Nogo-A receptors modulate the generation of amyloid β-protein (Aβ), which is thought to be a major cause of AD. This review describes the recent development of Nogo-A, Nogo-A receptor, and downstream signaling involved in AD and pharmacological basis of therapeutic drugs. We concluded the Nogo-A/Nogo-A receptor provide new insight into potential mechanisms and promising therapy strategies in AD.
Collapse
Affiliation(s)
- Ying-Qi Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zhong-Qing Sun
- Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Fei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China.,Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Mei-Wan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
7
|
Modulating nitric oxide signaling in the CNS for Alzheimer's disease therapy. Future Med Chem 2014; 5:1451-68. [PMID: 23919554 DOI: 10.4155/fmc.13.111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Nitric oxide (NO)/solube GC (sGC)/cGMP signaling is important for modulating synaptic transmission and plasticity in the hippocampus and cerebral cortex, which are critical for learning and memory. Physiological concentrations of NO also elicit anti-apoptotic/prosurvival effects against various neurotoxic challenges and brain insults through multiple mechanisms. Depression of the NO/sGC pathway is a feature of Alzheimer's disease (AD), attributed to amyloid-β neuropathology, and altered expression and activity of NOS, sGC and PDE enzymes. Different classes of NO-releasing hybrid drugs, including nomethiazoles, NO-NSAIDs and NO-acetylcholinesterase inhibitors were designed to deliver low concentrations of exogenous NO to the CNS while targeting other underlying disease mechanisms, such as excitotoxicity, neuro-inflammation and acetylcholine deficiency, respectively. Incorporating a NO-donating moiety may also reduce gastrointestinal and liver toxicity of the parent drugs. Progress has also been made in targeting downstream sGC and PDE enzymes. The PDE9 inhibitor PF-04447943 has completed Phase II clinical trials for AD. The search for effective NO-donating hybrid drugs, CNS-targeting sGC stimulators/activators and selective PDE inhibitors is an important goal for pharmacotherapy that manipulates NO biochemical pathways involved in cognitive function and neuroprotection. Rigorous preclinical validation of target engagement, and optimization of pharmacokinetic and toxicity profiles are likely to advance more drug candidates into clinical trials for mild cognitive impairment and early stage AD.
Collapse
|
8
|
Bolognin S, Lorenzetto E, Diana G, Buffelli M. The potential role of rho GTPases in Alzheimer's disease pathogenesis. Mol Neurobiol 2014; 50:406-22. [PMID: 24452387 DOI: 10.1007/s12035-014-8637-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 01/02/2014] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is characterized by a wide loss of synapses and dendritic spines. Despite extensive efforts, the molecular mechanisms driving this detrimental alteration have not yet been determined. Among the factors potentially mediating this loss of neuronal connectivity, the contribution of Rho GTPases is of particular interest. This family of proteins is classically considered a key regulator of actin cytoskeleton remodeling and dendritic spine maintenance, but new insights into the complex dynamics of its regulation have recently determined how its signaling cascade is still largely unknown, both in physiological and pathological conditions. Here, we review the growing evidence supporting the potential involvement of Rho GTPases in spine loss, which is a unanimously recognized hallmark of early AD pathogenesis. We also discuss some new insights into Rho GTPase signaling framework that might explain several controversial results that have been published. The study of the connection between AD and Rho GTPases represents a quite unchartered avenue that holds therapeutic potential.
Collapse
Affiliation(s)
- Silvia Bolognin
- Department of Neurological and Movement Sciences, Section of Physiology, University of Verona, Strada le Grazie 8, 37134, Verona, Italy,
| | | | | | | |
Collapse
|
9
|
VandeVrede L, Abdelhamid R, Qin Z, Choi J, Piyankarage S, Luo J, Larson J, Bennett BM, Thatcher GRJ. An NO donor approach to neuroprotective and procognitive estrogen therapy overcomes loss of NO synthase function and potentially thrombotic risk. PLoS One 2013; 8:e70740. [PMID: 23976955 PMCID: PMC3745399 DOI: 10.1371/journal.pone.0070740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) are effective therapeutics that preserve favorable actions of estrogens on bone and act as antiestrogens in breast tissue, decreasing the risk of vertebral fractures and breast cancer, but their potential in neuroprotective and procognitive therapy is limited by: 1) an increased lifetime risk of thrombotic events; and 2) an attenuated response to estrogens with age, sometimes linked to endothelial nitric oxide synthase (eNOS) dysfunction. Herein, three 3(rd) generation SERMs with similar high affinity for estrogen receptors (ERα, ERβ) were studied: desmethylarzoxifene (DMA), FDMA, and a novel NO-donating SERM (NO-DMA). Neuroprotection was studied in primary rat neurons exposed to oxygen glucose deprivation; reversal of cholinergic cognitive deficit was studied in mice in a behavioral model of memory; long term potentiation (LTP), underlying cognition, was measured in hippocampal slices from older 3×Tg Alzheimer's transgenic mice; vasodilation was measured in rat aortic strips; and anticoagulant activity was compared. Pharmacologic blockade of GPR30 and NOS; denudation of endothelium; measurement of NO; and genetic knockout of eNOS were used to probe mechanism. Comparison of the three chemical probes indicates key roles for GPR30 and eNOS in mediating therapeutic activity. Procognitive, vasodilator and anticoagulant activities of DMA were found to be eNOS dependent, while neuroprotection and restoration of LTP were both shown to be dependent upon GPR30, a G-protein coupled receptor mediating estrogenic function. Finally, the observation that an NO-SERM shows enhanced vasodilation and anticoagulant activity, while retaining the positive attributes of SERMs even in the presence of NOS dysfunction, indicates a potential therapeutic approach without the increased risk of thrombotic events.
Collapse
Affiliation(s)
- Lawren VandeVrede
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Ramy Abdelhamid
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Zhihui Qin
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jaewoo Choi
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Sujeewa Piyankarage
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - John Larson
- Department of Psychiatry, Neuropsychiatric Institute, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Brian M. Bennett
- Department of Biomedical and Molecular Sciences, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Abstract
Curcumin is a component of turmeric, a spice used in many types of cooking. Epidemiological evidence suggesting that populations that eat food with a substantial amount of curcumin were at lower risk of Alzheimer’s disease (AD) led to the idea that this compound might have a neuroprotective effect. Curcumin has substantial antioxidant and anti-inflammatory effects, and is being used as a potential preventative agent or treatment for many types of cancer. There is evidence to suggest that the addition of curcumin to cultured neuronal cells decreases brain inflammation and protects against β-amyloid-induced neurotoxicity. Curcumin also protects against toxicity when β-amyloid is administered to produce animal models of AD. Curcumin decreases β-amyloid formation from amyloid precursor protein, and also inhibits aggregation of β-amyloid into pleated sheets. Studies in transgenic mice with overproduction of β-amyloid demonstrate a neuroprotective effect of curcumin as well. Cognitive function was also improved in these animal models. Clinical trials of curcumin in AD have not been very promising. It is possible that this is due to poor oral bioavailability of curcumin in humans, and thus several approaches are being developed to improve delivery systems or to create analogs that will mimic the neuroprotective effects and easily reach the brain. The lack of efficacy of curcumin in humans with AD may also result from treating for too short a time or starting treatment too late in the course of the disease, where substantial neuronal death has already occurred and cannot be reversed. Curcumin may be beneficial in protecting against development or progression of AD if taken over the long term and started before symptoms of AD become apparent.
Collapse
Affiliation(s)
- Pamela E Potter
- Department of Pharmacology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
| |
Collapse
|
11
|
Mu C, Dave N, Hu J, Desai P, Pauletti G, Bai S, Hao J. Solubilization of flurbiprofen into aptamer-modified PEG-PLA micelles for targeted delivery to brain-derived endothelial cells in vitro. J Microencapsul 2013; 30:701-8. [PMID: 23517066 DOI: 10.3109/02652048.2013.778907] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Novel aptamer-functionalized polyethylene glycol-polylactic acid (PEG-PLA) (APP) micelles were developed with the objective to target the transferrin receptor on brain endothelial cells. Flurbiprofen, a potential drug for therapeutic management of Alzheimer's disease (AD), was loaded into the APP micelles using the co-solvent evaporation method. Results indicated that 9.03% (w/w) of flurbiprofen was entrapped in APP with good retention capacity in vitro. Targeting potential of APPs was investigated using the transferring receptor-expressing murine brain endothelial bEND5 cell line. APPs significantly enhanced surface association of micelles to bEND5 cells as quantified by fluorescence spectroscopy. Most importantly, APPs significantly enhanced intracellular flurbiprofen delivery when compared to unmodified micelles. These results suggest that APP micelles may offer an effective strategy to deliver therapeutically effective flurbiprofen concentrations into the brain for AD patients.
Collapse
Affiliation(s)
- Chaofeng Mu
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati , Cincinnati, OH , USA and
| | | | | | | | | | | | | |
Collapse
|
12
|
Jung IH, Jang SE, Joh EH, Chung J, Han MJ, Kim DH. Lancemaside A isolated from Codonopsis lanceolata and its metabolite echinocystic acid ameliorate scopolamine-induced memory and learning deficits in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 20:84-88. [PMID: 23079229 DOI: 10.1016/j.phymed.2012.09.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 07/17/2012] [Accepted: 09/05/2012] [Indexed: 06/01/2023]
Abstract
The rhizome of Codonopsis lanceolata (family Campanulaceae), which contains lancemaside A as a main constituent, has been used as herbal medicine to treat inflammation, insomnia, and hypomnesia. Lancemaside A and echinocystic acid, which is its metabolite by intestinal microflora, potently inhibited acetylcholinesterase activity in a dose-dependent manner, with IC₅₀ value 13.6 μM and 12.2 μM, respectively. Its inhibitory potency is comparable with that of donepezil (IC₅₀=10.9 μM). Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on passive avoidance task. Lancemaside A orally administered 5h before treatment with scopolamine reversed scopolamine-induced memory and learning deficits more potently than one orally administered 1h before. Echinocystic acid more potently reversed it than lancemaside A. Lancemaside A and echinocystic acid significantly reversed scopolamine-induced memory and learning deficits on the Y-maze and Morris water maze tasks. Lancemaside A and echinocystic acid also increased the expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding protein (p-CREB). Based on these findings, orally administered lancemaside A may be metabolized to echinocystic acid, which may be absorbed into the blood and ameliorate memory and learning deficits by inhibiting AChE activity and inducing BDNF and p-CREB expressions.
Collapse
Affiliation(s)
- Il-Hoon Jung
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 1 Hoegi, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
Abdul-Hay SO, Sahara T, McBride M, Kang D, Leissring MA. Identification of BACE2 as an avid ß-amyloid-degrading protease. Mol Neurodegener 2012; 7:46. [PMID: 22986058 PMCID: PMC3470943 DOI: 10.1186/1750-1326-7-46] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 08/16/2012] [Indexed: 11/10/2022] Open
Abstract
Background Proteases that degrade the amyloid ß-protein (Aß) have emerged as key players in the etiology and potential treatment of Alzheimer’s disease (AD), but it is unlikely that all such proteases have been identified. To discover new Aß-degrading proteases (AßDPs), we conducted an unbiased, genome-scale, functional cDNA screen designed to identify proteases capable of lowering net Aß levels produced by cells, which were subsequently characterized for Aß-degrading activity using an array of downstream assays. Results The top hit emerging from the screen was ß-site amyloid precursor protein-cleaving enzyme 2 (BACE2), a rather unexpected finding given the well-established role of its close homolog, BACE1, in the production of Aß. BACE2 is known to be capable of lowering Aß levels via non-amyloidogenic processing of APP. However, in vitro, BACE2 was also found to be a particularly avid AßDP, with a catalytic efficiency exceeding all known AßDPs except insulin-degrading enzyme (IDE). BACE1 was also found to degrade Aß, albeit ~150-fold less efficiently than BACE2. Aß is cleaved by BACE2 at three peptide bonds—Phe19-Phe20, Phe20-Ala21, and Leu34-Met35—with the latter cleavage site being the initial and principal one. BACE2 overexpression in cultured cells was found to lower net Aß levels to a greater extent than multiple, well-established AßDPs, including neprilysin (NEP) and endothelin-converting enzyme-1 (ECE1), while showing comparable effectiveness to IDE. Conclusions This study identifies a new functional role for BACE2 as a potent AßDP. Based on its high catalytic efficiency, its ability to degrade Aß intracellularly, and other characteristics, BACE2 represents a particulary strong therapeutic candidate for the treatment or prevention of AD.
Collapse
Affiliation(s)
- Samer O Abdul-Hay
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Birdsall Bldg,, Rm, 117, Jacksonville, FL 32224, USA
| | | | | | | | | |
Collapse
|
14
|
Joh EH, Lee IA, Kim DH. Kalopanaxsaponins A and B isolated from Kalopanax pictus ameliorate memory deficits in mice. Phytother Res 2011; 26:546-51. [PMID: 21928370 DOI: 10.1002/ptr.3596] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 05/26/2011] [Accepted: 05/27/2011] [Indexed: 11/09/2022]
Abstract
The stem-bark of Kalopanax pictus (KP, family Araliaceae), which contains triterpenoid saponins, has been shown to exhibit anticarcinogenic, antiinflammatory, antirheumatoid and antidiabetic activities. In a preliminary study, a KP methanol extract demonstrated acetylcholinesterase activity in vitro and memory enhancement in scopolamine-treated mice. Therefore, we isolated acetylcholinesterase inhibitors, kalopanaxsaponins A and B, from a KP butanol (BuOH) fraction, measured acetylcholinesterase activity in vitro, and investigated their memory-enhancing effects in a passive avoidance test, Y-maze test and Morris water maze test. These constituents inhibited acetylcholinesterase activity and significantly reversed scopolamine-induced deficits. They also increased brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP response element binding (p-CREB) protein expression but reduced TNF-α increased by scopolamine. Based on these findings, kalopanaxsaponins A and B may ameliorate memory deficits by inhibiting acetylcholinesterase activity and inducing BDNF and p-CREB expression.
Collapse
Affiliation(s)
- Eun-Ha Joh
- Department of Life and Nanopharmaceutical Sciences and Department of Pharmaceutical Science, Kyung-Hee University, Seoul 130-701, Korea
| | | | | |
Collapse
|
15
|
Abdul-Hay S, Schiefer IT, Chandrasena REP, Li M, Abdelhamid R, Wang YT, Tavassoli E, Michalsen B, Asghodom RT, Luo J, Thatcher GRJ. NO-SSRIs: Nitric Oxide Chimera Drugs Incorporating a Selective Serotonin Reuptake Inhibitor. ACS Med Chem Lett 2011; 2:656-661. [PMID: 21927645 DOI: 10.1021/ml2000033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Hybrid nitrate drugs have been reported to provide NO bioactivity to ameliorate side effects or to provide ancillary therapeutic activity. Hybrid nitrate selective serotonin reuptake inhibitors (NO-SSRIs) were prepared to improve the therapeutic profile of this drug class. A synthetic strategy for use of a thiocarbamate linker was developed, which in the case of NO-fluoxetine facilitated hydrolysis to fluoxetine at pH 7.4 within 7 hours. In cell culture, NO-SSRIs were weak inhibitors of the serotonin transporter, however, in the forced swimming task (FST) in rats, NO-fluoxetine demonstrated classical antidepressant activity. Comparison of NO-fluoxetine, with fluoxetine, and an NO-chimera nitrate developed for Alzheimer's disease (GT-1061), was made in the step through passive avoidance (STPA) test of learning and memory in rats treated with scopolamine as an amnesic agent. Fluoxetine was inactive, whereas NO-fluoxetine and GT-1061 both restored long-term memory. GT-1061 also produced antidepressant behavior in FST. These data support the potential for NO-SSRIs to overcome the lag in onset of therapeutic action and provide co-therapy of neuropathologies concomitant with depression.
Collapse
Affiliation(s)
- Samer Abdul-Hay
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Isaac T. Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - R. Esala P. Chandrasena
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Min Li
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Ramy Abdelhamid
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Yue-Ting Wang
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Ehsan Tavassoli
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Bradley Michalsen
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Rezene T. Asghodom
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Jia Luo
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | - Gregory R. J. Thatcher
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| |
Collapse
|
16
|
Ciou JF, Wang PY, Wu AC, Tsai SW. Lipase-catalyzed alcoholytic resolution of (R,S)-flurbiprofenyl azolides for preparation of (R)-NO-flurbiprofen ester prodrugs. Process Biochem 2011. [DOI: 10.1016/j.procbio.2011.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
17
|
Schiefer IT, Abdul-Hay S, Wang H, Vanni M, Qin Z, Thatcher GRJ. Inhibition of amyloidogenesis by nonsteroidal anti-inflammatory drugs and their hybrid nitrates. J Med Chem 2011; 54:2293-306. [PMID: 21405086 DOI: 10.1021/jm101450p] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Poor blood-brain barrier penetration of nonsteroidal anti-inflammatory drugs (NSAIDs) has been blamed for the failure of the selective amyloid lowering agent (SALA) R-flurbiprofen in phase 3 clinical trials for Alzheimer's disease (AD). NO-donor NSAIDs (NO-NSAIDs) provide an alternative, gastric-sparing approach to NSAID SALAs, which may improve bioavailability. NSAID analogues were studied for anti-inflammatory activity and for SALA activity in N2a neuronal cells transfected with human amyloid precursor protein (APP). Flurbiprofen (1) analogues were obtained with enhanced anti-inflammatory and antiamyloidogenic properties compared to 1, however, esterification led to elevated Aβ(1-42) levels. Hybrid nitrate prodrugs possessed superior anti-inflammatory activity and reduced toxicity relative to the parent NSAIDs, including clinical candidate CHF5074. Although hybrid nitrates elevated Aβ(1-42) at higher concentration, SALA activity was observed at low concentrations (≤1 μM): both Aβ(1-42) and the ratio of Aβ(1-42)/Aβ(1-40) were lowered. This biphasic SALA activity was attributed to the intact nitrate drug. For several compounds, the selective modulation of amyloidogenesis was tested using an immunoprecipitation MALDI-TOF approach. These data support the development of NO-NSAIDs as an alternative approach toward a clinically useful SALA.
Collapse
Affiliation(s)
- Isaac T Schiefer
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, MC 781, 833 South Wood Street, Chicago, Illinois 60612-7231, United States
| | | | | | | | | | | |
Collapse
|
18
|
L'Episcopo F, Tirolo C, Caniglia S, Testa N, Serra PA, Impagnatiello F, Morale MC, Marchetti B. Combining nitric oxide release with anti-inflammatory activity preserves nigrostriatal dopaminergic innervation and prevents motor impairment in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease. J Neuroinflammation 2010; 7:83. [PMID: 21092260 PMCID: PMC3000390 DOI: 10.1186/1742-2094-7-83] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2010] [Accepted: 11/23/2010] [Indexed: 01/05/2023] Open
Abstract
Background Current evidence suggests a role of neuroinflammation in the pathogenesis of Parkinson's disease (PD) and in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of basal ganglia injury. Reportedly, nonsteroidal anti-inflammatory drugs (NSAIDs) mitigate DAergic neurotoxicity in rodent models of PD. Consistent with these findings, epidemiological analysis indicated that certain NSAIDs may prevent or delay the progression of PD. However, a serious impediment of chronic NSAID therapy, particularly in the elderly, is gastric, renal and cardiac toxicity. Nitric oxide (NO)-donating NSAIDs, have a safer profile while maintaining anti-inflammatory activity of parent compounds. We have investigated the oral activity of the NO-donating derivative of flurbiprofen, [2-fluoro-α-methyl (1,1'-biphenyl)-4-acetic-4-(nitrooxy)butyl ester], HCT1026 (30 mg kg-1 daily in rodent chow) in mice exposed to the parkinsonian neurotoxin MPTP. Methods Ageing mice were fed with a control, flurbiprofen, or HCT1026 diet starting ten days before MPTP administration and continuing for all the experimental period. Striatal high affinity synaptosomial dopamine up-take, motor coordination assessed with the rotarod, tyrosine hydroxylase (TH)- and dopamine transporter (DAT) fiber staining, stereological cell counts, immunoblotting and gene expression analyses were used to assess MPTP-induced nigrostriatal DAergic toxicity and glial activation 1-40 days post-MPTP. Results HCT1026 was well tolerated and did not cause any measurable toxic effect, whereas flurbiprofen fed mice showed severe gastrointestinal side-effects. HCT1026 efficiently counteracted motor impairment and reversed MPTP-induced decreased synaptosomal [3H]dopamine uptake, TH- and DAT-stained fibers in striatum and TH+ neuron loss in subtantia nigra pars compacta (SNpc), as opposed to age-matched mice fed with a control diet. These effects were associated to a significant decrease in reactive macrophage antigen-1 (Mac-1)-positive microglial cells within the striatum and ventral midbrain, decreased expression of iNOS, Mac-1 and NADPH oxidase (PHOX), and downregulation of 3-Nitrotyrosine, a peroxynitrite finger print, in SNpc DAergic neurons. Conclusions Oral treatment with HCT1026 has a safe profile and a significant efficacy in counteracting MPTP-induced dopaminergic (DAergic) neurotoxicity, motor impairment and microglia activation in ageing mice. HCT1026 provides a novel promising approach towards the development of effective pharmacological neuroprotective strategies against PD.
Collapse
Affiliation(s)
- Francesca L'Episcopo
- OASI Institute for Research and Care on Mental Retardation and Brain Aging (IRCCS), Neuropharmacology Section, 94018 Troina, Italy
| | | | | | | | | | | | | | | |
Collapse
|