1
|
Nuclear transport and subcellular localization of the dystrophin Dp71 and Dp40 isoforms in the PC12 cell line. Biochem Biophys Res Commun 2022; 630:125-132. [PMID: 36155058 DOI: 10.1016/j.bbrc.2022.09.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/21/2022]
Abstract
The shortest dystrophins, Dp71 and Dp40, are transcribed from the DMD gene through an internal promoter located in intron 62. These proteins are the main product of the DMD gene in the nervous system and have been involved in various functions related to cellular differentiation and proliferation as well as other cellular processes. Dp71 mRNA undergoes alternative splicing that results in different Dp71 protein isoforms. The subcellular localization of some of these isoforms in the PC12 cell line has been previously reported, and a differential subcellular distribution was observed, which suggests a particular role for each isoform. With the aim of obtaining information on their function, this study identified factors involved in the nuclear transport of Dp71 and Dp40 isoforms in the PC12 cell line. Cell cultures were treated with specific nuclear import/export inhibitors to determine the Dp71 isoform transport routes. The results showed that all isoforms of Dp71 and Dp40 included in the analysis have the ability to enter the cell nucleus through α/β importin, and the main route of nuclear export for Dp71 isoforms is through the exportin CRM1, which is not the case for Dp40.
Collapse
|
2
|
Overexpression of the dystrophins Dp40 and Dp40 L170P modifies neurite outgrowth and the protein expression profile of PC12 cells. Sci Rep 2022; 12:1410. [PMID: 35082358 PMCID: PMC8791958 DOI: 10.1038/s41598-022-05271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Dp40 is ubiquitously expressed including the central nervous system. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P during the neuronal differentiation of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis showed that the protein expression profile was modified in nerve growth factor-differentiated PC12-Dp40L170P cells compared to that of the control cells (PC12 Tet-On). The proteins α-internexin and S100a6, involved in cytoskeletal structure, were upregulated. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. These results suggest that Dp40 has an important role in the neuronal differentiation of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.
Collapse
|
3
|
Dystrophin Dp71ab is monoclonally expressed in human satellite cells and enhances proliferation of myoblast cells. Sci Rep 2020; 10:17123. [PMID: 33051488 PMCID: PMC7553993 DOI: 10.1038/s41598-020-74157-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Dystrophin Dp71 is the smallest isoform of the DMD gene, mutations in which cause Duchenne muscular dystrophy (DMD). Dp71 has also been shown to have roles in various cellular processes. Stem cell-based therapy may be effective in treating DMD, but the inability to generate a sufficient number of stem cells remains a significant obstacle. Although Dp71 is comprised of many variants, Dp71 in satellite cells has not yet been studied. Here, the full-length Dp71 consisting of 18 exons from exons G1 to 79 was amplified by reverse transcription-PCR from total RNA of human satellite cells. The amplified product showed deletion of both exons 71 and 78 in all sequenced clones, indicating monoclonal expression of Dp71ab. Western blotting of the satellite cell lysate showed a band corresponding to over-expressed Dp71ab. Transfection of a plasmid expressing Dp71ab into human myoblasts significantly enhanced cell proliferation when compared to the cells transfected with the mock plasmid. However, transfection of the Dp71 expression plasmid encoding all 18 exons did not enhance myoblast proliferation. These findings indicated that Dp71ab, but not Dp71, is a molecular enhancer of myoblast proliferation and that transfection with Dp71ab may generate a high yield of stem cells for DMD treatment.
Collapse
|
4
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
5
|
Tan S, Zhao S, Xiao X, Xiao L, Xie J, Tan S. Dp71 depleted HBE cells displayed increased DNA damage and apoptosis induced by H 2O 2. Cell Mol Biol Lett 2019; 24:42. [PMID: 31236120 PMCID: PMC6580496 DOI: 10.1186/s11658-019-0169-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/05/2019] [Indexed: 11/30/2022] Open
Abstract
Human bronchial epithelium (HBE)-Dp71 anti-sense(AS)cells with stably transfected Dp71 siRNA plasmids were prepared for further exploration of Dp71 biological traits in cells other than PC12. HBE-Dp71AS cells displayed increased DNA damage induced by H2O2. Apoptosis of HBE-Dp71AS cells induced by H2O2 was increased via enhancing caspase 3, caspase 8 and caspase 9. HBE-Dp71AS cells also displayed decreased proliferation and clonogenic formation. RAD51 was proved to be a new binding partner of Dp71 by co-immunoprecipitation (Ip) and immunofluorescence. Reduced RAD51 mRNA and protein levels were observed in HBE-Dp71AS cells. Decreased lamin B1, focal adhesion kinase (FAK), phosphorylated focal adhesion kinase (p-FAK) and phosphorylated protein kinase B (p-AKT) were detected in the HBE-Dp71AS cells, which functioned together with RAD51 as the molecular explanations for the character alterations of HBE-Dp71AS cells.
Collapse
Affiliation(s)
- Sichuang Tan
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, 139 Ren-min Road, Changsha, Hunan Province 410011 People’s Republic of China
| | - Shuai Zhao
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, 139 Ren-min Road, Changsha, Hunan Province 410011 People’s Republic of China
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 People’s Republic of China
| | - Xuefei Xiao
- Department of Emergency and Critical Care Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province People’s Republic of China
| | - Lan Xiao
- Department of Traditional Chinese Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province People’s Republic of China
| | - Jinliang Xie
- Center of Transplant Surgery, Xiangya Hospital, Central South University, Changsha, Hunan Province 410008 People’s Republic of China
| | - Sipin Tan
- Key Laboratory of Sepsis Translational Medicine of Hunan, Department of Pathophysiology, Xiangya School of Medicine, Central South University, Changsha, Hunan Province 410008 People’s Republic of China
| |
Collapse
|
6
|
The dystrophin isoform Dp71e Δ71 is involved in neurite outgrowth and neuronal differentiation of PC12 cells. J Proteomics 2018; 191:80-87. [PMID: 29625189 DOI: 10.1016/j.jprot.2018.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022]
Abstract
The Dp71 protein is the most abundant dystrophin in the central nervous system (CNS). Several dystrophin Dp71 isoforms have been described and are classified into three groups, each with a different C-terminal end. However, the functions of Dp71 isoforms remain unknown. In the present study, we analysed the effect of Dp71eΔ71 overexpression on neuronal differentiation of PC12 Tet-On cells. Overexpression of dystrophin Dp71eΔ71 stimulates neuronal differentiation, increasing the percentage of cells with neurites and neurite length. According to 2-DE analysis, Dp71eΔ71 overexpression modified the protein expression profile of rat pheochromocytoma PC12 Tet-On cells that had been treated with neuronal growth factor (NGF) for nine days. Interestingly, all differentially expressed proteins were up-regulated compared to the control. The proteomic analysis showed that Dp71eΔ71 increases the expression of proteins with important roles in the differentiation process, such as HspB1, S100A6, and K8 proteins involved in the cytoskeletal structure and HCNP protein involved in neurotransmitter synthesis. The expression of neuronal marker TH was also up-regulated. Mass spectrometry data are available via ProteomeXchange with identifier PXD009114. SIGNIFICANCE: This study is the first to explore the role of the specific isoform Dp71eΔ71. The results obtained here support the hypothesis that the dystrophin Dp71eΔ71 isoform has an important role in the neurite outgrowth by regulating the levels of proteins involved in the cytoskeletal structure, such as HspB1, S100A6, and K8, and in neurotransmitter synthesis, such as HCNP and TH, biological processes required to stimulate neuronal differentiation.
Collapse
|
7
|
Dystrophin Dp71 Isoforms Are Differentially Expressed in the Mouse Brain and Retina: Report of New Alternative Splicing and a Novel Nomenclature for Dp71 Isoforms. Mol Neurobiol 2017; 55:1376-1386. [PMID: 28127699 DOI: 10.1007/s12035-017-0405-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 01/12/2017] [Indexed: 12/27/2022]
Abstract
Multiple dystrophin Dp71 isoforms have been identified in rats, mice, and humans and in several cell line models. These Dp71 isoforms are produced by the alternative splicing of exons 71 to 74 and 78 and intron 77. Three main groups of Dp71 proteins are defined based on their C-terminal specificities: Dp71d, Dp71f, and Dp71e. Dp71 is highly expressed in the brain and retina; however, the specific isoforms present in these tissues have not been determined to date. In this work, we explored the expression of Dp71 isoforms in the mouse brain and retina using RT-PCR assays followed by the cloning of PCR products into the pGEM-T Easy vector, which was used to transform DH5α cells. Dp71-positive colonies were later analyzed by PCR multiplex and DNA sequencing to determine the alternative splicing. We thus demonstrated the expression of Dp71 transcripts corresponding to Dp71, Dp71a, Dp71c, Dp71b, Dp71ab, Dp71 Δ110, and novel Dp71 isoforms spliced in exon 74; 71 and 74; 71, 73 and 74; and 74 and 78, which we named Dp71d Δ74 , Dp71d Δ71,74 , Dp71d Δ71,73-74 , and Dp71f Δ74 , respectively. Additionally, we demonstrated that the Dp71d group of isoforms is highly expressed in the brain, while the Dp71f group predominates in the retina, at both the cDNA and protein levels. These findings suggest that distinct Dp71 isoforms may play different roles in the brain and retina.
Collapse
|
8
|
Abstract
Dp71 dystrophin is the main DMD gene product expressed in the central nervous system. Experiments using PC12 cells as a neuronal model have shown that Dp71 isoforms are involved in differentiation, adhesion, cell division, and nuclear architecture. To contribute to the knowledge of Dp71 domains function, we previously reported the isolation and partial characterization of the dystrophin Dp71[INCREMENT]78-79 (a mutant that lacks exons 71, 78, and 79), which stimulates the neuronal differentiation of PC12-C11 clone. In this article, we generated a doxycycline (Dox)-inducible expression system in PC12 Tet-On cells (B10 cells) to overexpress and control the transcription of Dp71[INCREMENT]78-79. Western blotting and confocal microscopy showed an increase in the amount of Dp71[INCREMENT]78-79 (217±75-fold) with the addition of Dox to growth medium. Cell proliferation assays and morphometric analyses demonstrated that Dp71[INCREMENT]78-79 increases the growth rate of B10 cells and reduces the nerve growth factor-neuronal differentiation. Western blotting analysis revealed an upregulation in the expression of proliferating cell nuclear antigen, focal adhesion kinase, and β-dystroglycan in B10 cells compared with control cells. Our results show that the inducible expression of Dp71[INCREMENT]78-79 increases the growth rate of PC12 Tet-On cells, suggesting a role of this protein in cell proliferation.
Collapse
|
9
|
Merino-Jiménez C, Aragón J, Ceja V, Rodríguez-Martínez G, Cázares-Raga FE, Chardonnet S, Pionneau C, Rendon A, Montañez C. Dp71Δ78-79 dystrophin mutant stimulates neurite outgrowth in PC12 cells via upregulation and phosphorylation of HspB1. Proteomics 2016; 16:1331-40. [PMID: 26936078 DOI: 10.1002/pmic.201500211] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 01/24/2016] [Accepted: 02/29/2016] [Indexed: 11/05/2022]
Abstract
PC12 cells acquire a neuronal phenotype in response to nerve growth factor (NGF). However, this phenotype is more efficiently achieved when the Dp71Δ78-79 dystrophin mutant is stably expressed in PC12-C11 cells. To investigate the effect of Dp71Δ78-79 overexpression on the protein profile of PC12-C11 cells, we compared the expression profiles of undifferentiated and NGF-differentiated PC12-C11 and PC12 cells by 2DE. In undifferentiated cultures, one protein was downregulated, and five were upregulated. Dp71Δ78-79 overexpression had a greater effect on differentiated cultures, with ten proteins downregulated and seven upregulated. The protein with the highest upregulation was HspB1. Changes in HspB1 expression were validated by Western blot and immunofluorescence analyses. Interestingly, the neurite outgrowth in PC12-C11 cells was affected by a polyclonal antibody against HspB1, and the level of HspB1 and HspB1Ser86 decreased, suggesting an important role for this protein in this cellular process. Our results show that Dp71Δ78-79 affects the expression level of some proteins and that the stimulated neurite outgrowth produced by this mutant is mainly through upregulation and phosphorylation of HspB1.
Collapse
Affiliation(s)
- Candelaria Merino-Jiménez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Griselda Rodríguez-Martínez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Febe E Cázares-Raga
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| | - Solenne Chardonnet
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Cédric Pionneau
- UPMC Univ Paris 06, UMS 2 Omique, Sorbonne Universités, Plateforme P3S, Paris, France.,UMS 29 Omique, INSERM, Plateforme P3S, Paris, France
| | - Alvaro Rendon
- Institut de la Vision, INSERM UMR_S968, CNRS UMR_7210, Université Pierre et Marie Curie Paris 06, Paris, France
| | - Cecilia Montañez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, México, D.F., México
| |
Collapse
|
10
|
Aragón J, Martínez-Herrera A, Romo-Yáñez J, Ceja V, Azotla-Vilchis C, Siqueiros-Márquez L, Soid-Raggi G, Herrera-Salazar A, Montañez C. Identification of Dp71 Isoforms Expressed in PC12 Cells: Subcellular Localization and Colocalization with β-Dystroglycan and α1-Syntrophin. J Mol Neurosci 2015; 58:201-9. [DOI: 10.1007/s12031-015-0657-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/14/2015] [Indexed: 11/24/2022]
|
11
|
Rodríguez-Muñoz R, Cárdenas-Aguayo MDC, Alemán V, Osorio B, Chávez-González O, Rendon A, Martínez-Rojas D, Meraz-Ríos MA. Novel Nuclear Protein Complexes of Dystrophin 71 Isoforms in Rat Cultured Hippocampal GABAergic and Glutamatergic Neurons. PLoS One 2015; 10:e0137328. [PMID: 26378780 PMCID: PMC4574971 DOI: 10.1371/journal.pone.0137328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/22/2015] [Indexed: 01/19/2023] Open
Abstract
The precise functional role of the dystrophin 71 in neurons is still elusive. Previously, we reported that dystrophin 71d and dystrophin 71f are present in nuclei from cultured neurons. In the present work, we performed a detailed analysis of the intranuclear distribution of dystrophin 71 isoforms (Dp71d and Dp71f), during the temporal course of 7-day postnatal rats hippocampal neurons culture for 1h, 2, 4, 10, 15 and 21 days in vitro (DIV). By immunofluorescence assays, we detected the highest level of nuclear expression of both dystrophin Dp71 isoforms at 10 DIV, during the temporal course of primary culture. Dp71d and Dp71f were detected mainly in bipolar GABAergic (≥60%) and multipolar Glutamatergic (≤40%) neurons, respectively. We also characterized the existence of two nuclear dystrophin-associated protein complexes (DAPC): dystrophin 71d or dystrophin 71f bound to β-dystroglycan, α1-, β-, α2-dystrobrevins, α-syntrophin, and syntrophin-associated protein nNOS (Dp71d-DAPC or Dp71f-DAPC, respectively), in the hippocampal neurons. Furthermore, both complexes were localized in interchromatin granule cluster structures (nuclear speckles) of neuronal nucleoskeleton preparations. The present study evinces that each Dp71's complexes differ slightly in dystrobrevins composition. The results demonstrated that Dp71d-DAPC was mainly localized in bipolar GABAergic and Dp71f-DAPC in multipolar Glutamatergic hippocampal neurons. Taken together, our results show that dystrophin 71d, dystrophin 71f and DAP integrate protein complexes, and both complexes were associated to nuclear speckles structures.
Collapse
Affiliation(s)
- Rafael Rodríguez-Muñoz
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - María del Carmen Cárdenas-Aguayo
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Víctor Alemán
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Beatriz Osorio
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Oscar Chávez-González
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
| | - Alvaro Rendon
- Institut de la Vision, UMR Inserm, Laboratoire de Physiopathologie Cellulaire et Moléculaire de la Rétine, Université Pierre et Marie Curie, Paris, France
| | - Dalila Martínez-Rojas
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| | - Marco Antonio Meraz-Ríos
- Molecular Biomedicine, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), México D.F., México
- * E-mail: (MAMMR); (DMR)
| |
Collapse
|
12
|
Aragón J, Martínez-Herrera A, Bermúdez-Cruz RM, Bazán ML, Soid-Raggi G, Ceja V, Coy-Arechavaleta AS, Alemán V, Depardón F, Montañez C. EF-hand domains are involved in the differential cellular distribution of dystrophin Dp40. Neurosci Lett 2015; 600:115-20. [PMID: 26004254 DOI: 10.1016/j.neulet.2015.05.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 05/11/2015] [Accepted: 05/19/2015] [Indexed: 10/23/2022]
Abstract
Dp40 is the shortest DMD gene product that has been reported to date. It is encoded by exons 63-70, a region required for a β-dystroglycan interaction. Its expression has been identified in rat, mouse, and human; however, its function remains unknown. To explore the expression of Dp40 transcript and subcellular localization of epitope-tagged Dp40 proteins, RT-PCR and immunofluorescence assays were performed in PC12 cells. The expression of Dp40 mRNA was found in undifferentiated and nerve growth factor-differentiated PC12 cells. According to immunofluorescence analyses, the recombinant protein Dp40 was mainly localized in the cell periphery/cytoplasm of undifferentiated and differentiated PC12 cells, a small amount of this protein is localized to the nucleus of differentiated cells. With the aim to identify the amino acids involved in the nuclear localization of Dp40, an in silico analysis was performed and it predicted that prolines 93 and 170, located within EF1 and EF2-hand domains, are involved in the nuclear localization of this protein. This prediction was confirmed by site-directed mutagenesis, the Dp40-L93P mutant was localized to the nucleus and cell periphery, while Dp40-L170P and Dp40-L93/170P showed mainly a nuclear localization. Dp40 co-localizes with β-dystroglycan and the co-localization score was statistically reduced in Dp40-L93P, Dp40-L170P and Dp40-L93/170P mutants.
Collapse
Affiliation(s)
- Jorge Aragón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Alejandro Martínez-Herrera
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Rosa Ma Bermúdez-Cruz
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Ma Luisa Bazán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Gabriela Soid-Raggi
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Víctor Ceja
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Andrea Santos Coy-Arechavaleta
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Víctor Alemán
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Francisco Depardón
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico
| | - Cecilia Montañez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México D. F., Mexico.
| |
Collapse
|
13
|
Saint Martín A, Aragón J, Depardon-Benítez F, Sánchez-Trujillo A, Mendoza-Hernández G, Ceja V, Montañez C. Identification of Dp71e, a new dystrophin with a novel carboxy-terminal end. FEBS J 2011; 279:66-77. [DOI: 10.1111/j.1742-4658.2011.08399.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|