1
|
Liu M, Si Z. An update: epigenetic mechanisms underlying methamphetamine addiction. Front Cell Dev Biol 2024; 12:1494557. [PMID: 39650725 PMCID: PMC11621221 DOI: 10.3389/fcell.2024.1494557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
Methamphetamine (METH) is one of the most widely abused illicit drugs globally. Despite its widespread abuse, the effects of methamphetamine on the brain and the precise mechanisms underlying addiction remain poorly understood. Elucidating these biological mechanisms and developing effective treatments is of utmost importance. Researchers have adopted a multi-faceted approach, combining studies at the genetic, molecular, organ, and individual levels, to explore the epigenetic changes that methamphetamine use brings to an organism from both micro and macro perspectives. They utilize a comparative analysis of experimental animal data and clinical cases to ascertain differences and identify potential targets for translating METH addiction research from the experimental to the clinical setting. Recent studies have demonstrated that epigenetic regulation plays a pivotal role in neural mechanisms, encompassing DNA methylation, histone modifications (such as acetylation and methylation), ubiquitination, phosphorylation, and the regulation of non-coding RNA. These epigenetic factors influence an individual's susceptibility and response to methamphetamine addiction by regulating the expression of specific genes. Specifically, methamphetamine use has been observed to cause alterations in DNA methylation status, which in turn affects the expression of genes associated with neuroreward pathways, leading to alterations in brain function and structure. Furthermore, histone modifications have significant implications for the neurotoxicity associated with methamphetamine addiction. For instance, the methylation and acetylation of histone H3 modify chromatin structure, consequently influencing the transcriptional activity of genes. Non-coding RNAs, including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), also play a pivotal role in methamphetamine addiction by interacting with messenger RNAs (mRNAs) and regulating gene expression. To further advance our understanding, researchers employ advanced technologies such as high-throughput sequencing, chromatin immunoprecipitation sequencing (ChIP-seq), and RNA sequencing (RNA-seq) to comprehensively analyze epigenetic changes in both animal models and human subjects. These technologies enable researchers to identify specific epigenetic markers associated with methamphetamine addiction and to explore their functional consequences. This article reviews the role of these epigenetic mechanisms in methamphetamine addiction and discusses their potential implications for future clinical treatment strategies, particularly in the development of drugs targeting methamphetamine addiction. By deepening our comprehension of these epigenetic regulatory mechanisms, it is anticipated that targeted therapeutic strategies may be devised to reverse the gene expression alterations associated with methamphetamine addiction, thus enhancing the efficacy of addiction treatment and paving the way for future research in this domain.
Collapse
Affiliation(s)
| | - Zizhen Si
- Department of Medicine, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Yates JR. Pharmacological Treatments for Methamphetamine Use Disorder: Current Status and Future Targets. Subst Abuse Rehabil 2024; 15:125-161. [PMID: 39228432 PMCID: PMC11370775 DOI: 10.2147/sar.s431273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/05/2024] Open
Abstract
The illicit use of the psychostimulant methamphetamine (METH) is a major concern, with overdose deaths increasing substantially since the mid-2010s. One challenge to treating METH use disorder (MUD), as with other psychostimulant use disorders, is that there are no available pharmacotherapies that can reduce cravings and help individuals achieve abstinence. The purpose of the current review is to discuss the molecular targets that have been tested in assays measuring the physiological, the cognitive, and the reinforcing effects of METH in both animals and humans. Several drugs show promise as potential pharmacotherapies for MUD when tested in animals, but fail to produce long-term changes in METH use in dependent individuals (eg, modafinil, antipsychotic medications, baclofen). However, these drugs, plus medications like atomoxetine and varenicline, may be better served as treatments to ameliorate the psychotomimetic effects of METH or to reverse METH-induced cognitive deficits. Preclinical studies show that vesicular monoamine transporter 2 inhibitors, metabotropic glutamate receptor ligands, and trace amine-associated receptor agonists are efficacious in attenuating the reinforcing effects of METH; however, clinical studies are needed to determine if these drugs effectively treat MUD. In addition to screening these compounds in individuals with MUD, potential future directions include increased emphasis on sex differences in preclinical studies and utilization of pharmacogenetic approaches to determine if genetic variances are predictive of treatment outcomes. These future directions can help lead to better interventions for treating MUD.
Collapse
Affiliation(s)
- Justin R Yates
- Department of Psychological Science, Northern Kentucky University, Highland Heights, KY, USA
| |
Collapse
|
3
|
Riyahi J, Taslimi Z, Gelfo F, Petrosini L, Haghparast A. Trans-generational effects of parental exposure to drugs of abuse on offspring memory functions. Neurosci Biobehav Rev 2024; 160:105644. [PMID: 38548003 DOI: 10.1016/j.neubiorev.2024.105644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Recent evidence reported that parental-derived phenotypes can be passed on to the next generations. Within the inheritance of epigenetic characteristics allowing the transmission of information related to the ancestral environment to the offspring, the specific case of the trans-generational effects of parental drug addiction has been extensively studied. Drug addiction is a chronic disorder resulting from complex interactions among environmental, genetic, and drug-related factors. Repeated exposures to drugs induce epigenetic changes in the reward circuitry that in turn mediate enduring changes in brain function. Addictive drugs can exert their effects trans-generally and influence the offspring of addicted parents. Although there is growing evidence that shows a wide range of behavioral, physiological, and molecular phenotypes in inter-, multi-, and trans-generational studies, transmitted phenotypes often vary widely even within similar protocols. Given the breadth of literature findings, in the present review, we restricted our investigation to learning and memory performances, as examples of the offspring's complex behavioral outcomes following parental exposure to drugs of abuse, including morphine, cocaine, cannabinoids, nicotine, heroin, and alcohol.
Collapse
Affiliation(s)
- Javad Riyahi
- Department of Cognitive and Behavioral Science and Technology in Sport, Faculty of Sport Sciences and Health, Shahid Beheshti University, Tehran, Iran
| | - Zahra Taslimi
- Behavioral Disorders and Substance Abuse Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Fertility and Infertility Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Francesca Gelfo
- IRCCS Santa Lucia Foundation, Rome, Italy; Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Hernández-Oliveras A, Zarain-Herzberg A. The role of Ca 2+-signaling in the regulation of epigenetic mechanisms. Cell Calcium 2024; 117:102836. [PMID: 37988873 DOI: 10.1016/j.ceca.2023.102836] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 11/23/2023]
Abstract
Epigenetic mechanisms regulate multiple cell functions like gene expression and chromatin conformation and stability, and its misregulation could lead to several diseases including cancer. Epigenetic drugs are currently under investigation in a broad range of diseases, but the cellular processes involved in regulating epigenetic mechanisms are not fully understood. Calcium (Ca2+) signaling regulates several cellular mechanisms such as proliferation, gene expression, and metabolism, among others. Moreover, Ca2+ signaling is also involved in diseases such as neurological disorders, cardiac, and cancer. Evidence indicates that Ca2+ signaling and epigenetics are involved in the same cellular functions, which suggests a possible interplay between both mechanisms. Ca2+-activated transcription factors regulate the recruitment of chromatin remodeling complexes into their target genes, and Ca2+-sensing proteins modulate their activity and intracellular localization. Thus, Ca2+ signaling is an important regulator of epigenetic mechanisms. Moreover, Ca2+ signaling activates epigenetic mechanisms that in turn regulate genes involved in Ca2+ signaling, suggesting possible feedback between both mechanisms. The understanding of how epigenetics are regulated could lead to developing better therapeutical approaches.
Collapse
Affiliation(s)
- Andrés Hernández-Oliveras
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Angel Zarain-Herzberg
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
5
|
Cheng J, He Z, Chen Q, Lin J, Peng Y, Zhang J, Yan X, Yan J, Niu S. Histone modifications in cocaine, methamphetamine and opioids. Heliyon 2023; 9:e16407. [PMID: 37265630 PMCID: PMC10230207 DOI: 10.1016/j.heliyon.2023.e16407] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Cocaine, methamphetamine and opioids are leading causes of drug abuse-related deaths worldwide. In recent decades, several studies revealed the connection between and epigenetics. Neural cells acquire epigenetic alterations that drive the onset and progress of the SUD by modifying the histone residues in brain reward circuitry. Histone modifications, especially acetylation and methylation, participate in the regulation of gene expression. These alterations, as well as other host and microenvironment factors, are associated with a serious of negative neurocognitive disfunctions in various patient populations. In this review, we highlight the evidence that substantially increase the field's ability to understand the molecular actions underlying SUD and summarize the potential approaches for SUD pharmacotherapy.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ziping He
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Qianqian Chen
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jiang Lin
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Yilin Peng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
| | - Jinlong Zhang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Xisheng Yan
- Department of Cardiovascular Medicine, Wuhan Third Hospital & Tongren Hospital of Wuhan University, Wuhan, Hubei Province, 430074, China
| | - Jie Yan
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| | - Shuliang Niu
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, 410013, China
- Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi, 830001, China
| |
Collapse
|
6
|
Anderson EM, Taniguchi M. Epigenetic Effects of Addictive Drugs in the Nucleus Accumbens. Front Mol Neurosci 2022; 15:828055. [PMID: 35813068 PMCID: PMC9260254 DOI: 10.3389/fnmol.2022.828055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/30/2022] [Indexed: 12/28/2022] Open
Abstract
Substance use induces long-lasting behavioral changes and drug craving. Increasing evidence suggests that epigenetic gene regulation contributes to the development and expression of these long-lasting behavioral alterations. Here we systematically review extensive evidence from rodent models of drug-induced changes in epigenetic regulation and epigenetic regulator proteins. We focus on histone acetylation and histone methylation in a brain region important for drug-related behaviors: the nucleus accumbens. We also discuss how experimentally altering these epigenetic regulators via systemically administered compounds or nucleus accumbens-specific manipulations demonstrate the importance of these proteins in the behavioral effects of drugs and suggest potential therapeutic value to treat people with substance use disorder. Finally, we discuss limitations and future directions for the field of epigenetic studies in the behavioral effects of addictive drugs and suggest how to use these insights to develop efficacious treatments.
Collapse
|
7
|
Xiao J, Ma Y, Wang X, Wang C, Li M, Liu H, Han W, Wang H, Zhang W, Wei H, Zhao L, Zhang T, Lin H, Guan F. The Vulnerability to Methamphetamine Dependence and Genetics: A Case-Control Study Focusing on Genetic Polymorphisms at Chromosomal Region 5q31.3. Front Psychiatry 2022; 13:870322. [PMID: 35669261 PMCID: PMC9163382 DOI: 10.3389/fpsyt.2022.870322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/20/2022] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVES Methamphetamine (METH) is a central nervous psychostimulant and one of the most frequently used illicit drugs. Numerous genetic loci that influence complex traits, including alcohol abuse, have been discovered; however, genetic analyses for METH dependence remain limited. An increased histone deacetylase 3 (HDAC3) expression has been detected in Fos-positive neurons in the dorsomedial striatum following withdrawal after METH self-administration. Herein, we aimed to systematically investigate the contribution of HDAC3 to the vulnerability to METH dependence in a Han Chinese population. METHODS In total, we recruited 1,221 patients with METH dependence and 2,328 age- and gender-matched controls. For genotyping, we selected 14 single nucleotide polymorphisms (SNPs) located within ± 3 kb regions of HDAC3. The associations between genotyped genetic polymorphisms and the vulnerability to METH dependence were examined by single marker- and haplotype-based methods using PLINK. The effects of expression quantitative trait loci (eQTLs) on targeted gene expressions were investigated using the Genotype-Tissue Expression (GTEx) database. RESULTS The SNP rs14251 was identified as a significant association signal (χ2 = 9.84, P = 0.0017). An increased risk of METH dependence was associated with the A allele (minor allele) of rs14251 [odds ratio (95% CI) = 1.25 (1.09-1.43)]. The results of in silico analyses suggested that SNP rs14251 could be a potential eQTL signal for FCHSD1, PCDHGB6, and RELL2, but not for HDAC3, in various human tissues. CONCLUSION We demonstrated that genetic polymorphism rs14251 located at 5q31.3 was significantly associated with the vulnerability to METH dependence in Han Chinese population.
Collapse
Affiliation(s)
- Jing Xiao
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Yitian Ma
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Xiaochen Wang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Changqing Wang
- Department of Health Science, Chang'an Drug Rehabilitation Center, Xi'an, China
| | - Miao Li
- Department of Ultrasound, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Haobiao Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Wei Han
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Huiying Wang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Wenpei Zhang
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Hang Wei
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Longrui Zhao
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| | - Tianxiao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Xi'an Jiaotong University, Xi'an, China
| | - Huali Lin
- Department of Psychiatry, Xi'an Mental Health Center, Xi'an, China
| | - Fanglin Guan
- Department of Forensic Medicine, School of Medicine & Forensics, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
8
|
Epigenetic Regulatory Dynamics in Models of Methamphetamine-Use Disorder. Genes (Basel) 2021; 12:genes12101614. [PMID: 34681009 PMCID: PMC8535492 DOI: 10.3390/genes12101614] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Methamphetamine (METH)-use disorder (MUD) is a very serious, potentially lethal, biopsychosocial disease. Exposure to METH causes long-term changes to brain regions involved in reward processing and motivation, leading vulnerable individuals to engage in pathological drug-seeking and drug-taking behavior that can remain a lifelong struggle. It is crucial to elucidate underlying mechanisms by which exposure to METH leads to molecular neuroadaptive changes at transcriptional and translational levels. Changes in gene expression are controlled by post-translational modifications via chromatin remodeling. This review article focuses on the brain-region specific combinatorial or distinct epigenetic modifications that lead to METH-induced changes in gene expression.
Collapse
|
9
|
Little HJ. L-Type Calcium Channel Blockers: A Potential Novel Therapeutic Approach to Drug Dependence. Pharmacol Rev 2021; 73:127-154. [PMID: 34663686 DOI: 10.1124/pharmrev.120.000245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This review describes interactions between compounds, primarily dihydropyridines, that block L-type calcium channels and drugs that cause dependence, and the potential importance of these interactions. The main dependence-inducing drugs covered are alcohol, psychostimulants, opioids, and nicotine. In preclinical studies, L-type calcium channel blockers prevent or reduce important components of dependence on these drugs, particularly their reinforcing actions and the withdrawal syndromes. The channel blockers also reduce the development of tolerance and/or sensitization, and they have no intrinsic dependence liability. In some instances, their effects include reversal of brain changes established during drug dependence. Prolonged treatment with alcohol, opioids, psychostimulant drugs, or nicotine causes upregulation of dihydropyridine binding sites. Few clinical studies have been carried out so far, and reports are conflicting, although there is some evidence of effectiveness of L-channel blockers in opioid withdrawal. However, the doses of L-type channel blockers used clinically so far have necessarily been limited by potential cardiovascular problems and may not have provided sufficient central levels of the drugs to affect neuronal dihydropyridine binding sites. New L-type calcium channel blocking compounds are being developed with more selective actions on subtypes of L-channel. The preclinical evidence suggests that L-type calcium channels may play a crucial role in the development of dependence to different types of drugs. Mechanisms for this are proposed, including changes in the activity of mesolimbic dopamine neurons, genomic effects, and alterations in synaptic plasticity. Newly developed, more selective L-type calcium channel blockers could be of considerable value in the treatment of drug dependence. SIGNIFICANCE STATEMENT: Dependence on drugs is a very serious health problem with little effective treatment. Preclinical evidence shows drugs that block particular calcium channels, the L-type, reduce dependence-related effects of alcohol, opioids, psychostimulants, and nicotine. Clinical studies have been restricted by potential cardiovascular side effects, but new, more selective L-channel blockers are becoming available. L-channel blockers have no intrinsic dependence liability, and laboratory evidence suggests they reverse previously developed effects of dependence-inducing drugs. They could provide a novel approach to addiction treatment.
Collapse
Affiliation(s)
- Hilary J Little
- Section of Alcohol Research, National Addiction Centre, Institute of Psychiatry, King's College, London, United Kingdom
| |
Collapse
|
10
|
Psychostimulants and opioids differentially influence the epigenetic modification of histone acetyltransferase and histone deacetylase in astrocytes. PLoS One 2021; 16:e0252895. [PMID: 34115777 PMCID: PMC8195369 DOI: 10.1371/journal.pone.0252895] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Illicit drugs are known to affect central nervous system (CNS). Majorly psychostimulants such as cocaine, methamphetamine (METH) and opioids such as morphine are known to induce epigenetic changes of histone modifications and chromatin remodeling which are mediated by histone acetyltransferase (HAT) and histone deacetylase (HDAC). Aberrant changes in histone acetylation-deacetylation process further exacerbate dysregulation of gene expression and protein modification which has been linked with neuronal impairments including memory formation and synaptic plasticity. In CNS, astrocytes play a pivotal role in cellular homeostasis. However, the impact of psychostimulants and opioid mediated epigenetic changes of HAT/HADCs in astrocytes has not yet been fully elucidated. Therefore, we have investigated the effects of the psychostimulants and opioid on the acetylation-regulating enzymes- HAT and HDACs role in astrocytes. In this study, Class I and II HDACs and HATs gene expression, protein changes and global level changes of acetylation of H3 histones at specific lysines were analyzed. In addition, we have explored the neuroprotective “nootropic” drug piracetam were exposed with or without psychostimulants and opioid in the human primary astrocytes. Results revealed that psychostimulants and opioid upregulated HDAC1, HDAC4 and p300 expression, while HDAC5 and GCN5 expression were downregulated. These effects were reversed by piracetam coexposure. Psychostimulants and opioid exposure upregulated global acetylation levels of all H3Ks, except H3K14. These results suggest that psychostimulants and opioids differentially influence HATs and HDACs.
Collapse
|
11
|
Li H, Chen JA, Ding QZ, Lu GY, Wu N, Su RB, Li F, Li J. Behavioral sensitization induced by methamphetamine causes differential alterations in gene expression and histone acetylation of the prefrontal cortex in rats. BMC Neurosci 2021; 22:24. [PMID: 33823794 PMCID: PMC8022387 DOI: 10.1186/s12868-021-00616-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background Methamphetamine (METH) is one of the most widely abused illicit substances worldwide; unfortunately, its addiction mechanism remains unclear. Based on accumulating evidence, changes in gene expression and chromatin modifications might be related to the persistent effects of METH on the brain. In the present study, we took advantage of METH-induced behavioral sensitization as an animal model that reflects some aspects of drug addiction and examined the changes in gene expression and histone acetylation in the prefrontal cortex (PFC) of adult rats. Methods We conducted mRNA microarray and chromatin immunoprecipitation (ChIP) coupled to DNA microarray (ChIP-chip) analyses to screen and identify changes in transcript levels and histone acetylation patterns. Functional enrichment analyses, including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, were performed to analyze the differentially expressed genes. We then further identified alterations in ANP32A (acidic leucine-rich nuclear phosphoprotein-32A) and POU3F2 (POU domain, class 3, transcription factor 2) using qPCR and ChIP-PCR assays. Results In the rat model of METH-induced behavioral sensitization, METH challenge caused 275 differentially expressed genes and a number of hyperacetylated genes (821 genes with H3 acetylation and 10 genes with H4 acetylation). Based on mRNA microarray and GO and KEGG enrichment analyses, 24 genes may be involved in METH-induced behavioral sensitization, and 7 genes were confirmed using qPCR. We further examined the alterations in the levels of the ANP32A and POU3F2 transcripts and histone acetylation at different periods of METH-induced behavioral sensitization. H4 hyperacetylation contributed to the increased levels of ANP32A mRNA and H3/H4 hyperacetylation contributed to the increased levels of POU3F2 mRNA induced by METH challenge-induced behavioral sensitization, but not by acute METH exposure. Conclusions The present results revealed alterations in transcription and histone acetylation in the rat PFC by METH exposure and provided evidence that modifications of histone acetylation contributed to the alterations in gene expression caused by METH-induced behavioral sensitization.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Jing-An Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Qian-Zhi Ding
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Guan-Yi Lu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Ning Wu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Rui-Bin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China. .,Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, 100850, Beijing, China.
| | - Jin Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, Beijing, People's Republic of China. .,Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, 100850, Beijing, China.
| |
Collapse
|
12
|
Xu X, Fan R, Ruan Y, Xu M, He J, Cao M, Li X, Zhou W, Liu Y. Inhibition of PLCβ1 signaling pathway regulates methamphetamine self-administration and neurotoxicity in rats. Food Chem Toxicol 2021; 149:111970. [PMID: 33421459 DOI: 10.1016/j.fct.2021.111970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 11/16/2022]
Abstract
Studies have shown that the central renin-angiotensin system is involved in neurological disorders. Our previous studies have demonstrated that angiotensin II receptor type 1 (AT1R) in the brain could be a potential target against methamphetamine (METH) use disorder. The present study was designed to investigate the underlying mechanisms of the inhibitory effect of AT1R on various behavioural effects of METH. We first examined the effect of AT1R antagonist, candesartan cilexetil (CAN), on behavioural and neurotoxic effects of METH. Furthermore, we studied the role of phospholipase C beta 1 (PLCβ1) blockade behavioural and neurotoxic effects of METH. The results showed that CAN significantly attenuated METH-induced behavioral disorders and neurotoxicity associated with increased oxidative stress. AT1R and PLCβ1 were significantly upregulated in vivo and in vitro. Inhibition of PLCβ1 effectively alleviated METH-induced neurotoxicity and METH self-administration (SA) by central blockade of the PLCβ1 involved signalling pathway. PLCβ1 blockade significantly decreased the reinforcing and motivation effects of METH. PLCβ1 involved signalling pathway, as well as a more specific role of PLCβ1, involved the inhibitory effects of CAN on METH-induced behavioural dysfunction and neurotoxicity. Collectively, our findings reveal a novel role of PLCβ1 in METH-induced neurotoxicity and METH use disorder.
Collapse
Affiliation(s)
- Xing Xu
- The affiliated Hospital of Medical School, Ningbo University, 818 Fenghua Road, Ningbo, Zhejiang, 315211, PR China; Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| | - Runyue Fan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Yanqian Ruan
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengjie Xu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Jiajie He
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Mengye Cao
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China
| | - Xingxing Li
- Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China
| | - Wenhua Zhou
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China; Ningbo Kangning Hospital, 1 South Zhuangyu Road, Ningbo, Zhejiang, 315201, PR China; Ningbo Addiction Research and Treatment Center, 21 Xibei Road, Zhejiang, 315040, PR China
| | - Yu Liu
- Department of Physiology and Pharmacology, School of Medicine, Ningbo University, Zhejiang, 315211, PR China.
| |
Collapse
|
13
|
Wang Z, Mao K, Du W, Cai M, Zhang Z, Li X. Diluted concentrations of methamphetamine in surface water induce behavior disorder, transgenerational toxicity, and ecosystem-level consequences of fish. WATER RESEARCH 2020; 184:116164. [PMID: 32688152 DOI: 10.1016/j.watres.2020.116164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/16/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
Methamphetamine (METH) has been recognized as an emerging organic contaminant as it was widely detected in the aquatic environment via wastewater effluent discharge. However, the ecological hazard posed by METH at environmentally relevant concentrations was remained unclear. In this study, adult medaka fish were exposed to METH at environmental levels (0.05, 0.2, 0.5, 5 μg L-1) and high level (25 and 100 μg L-1) for 90 days to investigate its effect on ecologically behavioral functions, histopathology, bioconcentration, and transgenerational toxicity. The significant increase of locomotion activity, total distance, and max velocity of adult medaka were observed at low METH levels (0.2-0.5 μg L-1), while it markedly decreased at high levels (25-100 μg L-1). This effect may increase the predation risk of the fish. The significant alteration on the relative expressions of the genes (cacna1c, oxtr, erk1, and c-fos), as well as the contents of the proteins (oxytocin (OXT) and protein kinase A (PKA)) involved in Voltage Dependent Calcium Channel (VDCC) and Mitogen-Activated Protein Kinase (MAPK) signaling channel induced by METH could partly elucidate the underlying mechanisms of the changes of the behavioral traits. METH could induce obvious minimal gliosis, neuronal loss, and necrotic in brain tissues. Additionally, the significant increase of hepatic-somatic index (HSI) of male medaka at 0.2-5 μg L-1 groups, and the decrease of female medaka at 100 μg L-1 group indicated male fish was more susceptible to METH. Nephric-somatic index (NSI) of medaka markedly declined induced by METH at 0.05-100 μg L-1. The bioconcentration factor (BCF) (0.4-5.8) in medaka fish revealed the bioconcentration potential of METH in fish. This study for the first time demonstrated METH could induced the development defects of larvae in F1 generation at environmentally relevant concentrations, thereby resulting in a significant decrease in the capacity of fish to produce offspring. Meanwhile, the RQ values (>1) of METH in river in China, USA, and Australia showed a high teratogenic risk level, suggesting the ecosystem-levels consequence posed by METH should be concerned.
Collapse
Affiliation(s)
- Zhenglu Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Nanjing, Jiangsu 210098, PR China; College of Oceanography, Hohai University, Nanjing, Jiangsu 210098, PR China; Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Wei Du
- School of Geographical Sciences, East China Normal University, Shanghai 200241, PR China
| | - Min Cai
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, PR China
| | - Zhaobin Zhang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China
| | - Xiqing Li
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, PR China.
| |
Collapse
|
14
|
Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020; 14:87. [PMID: 32670029 PMCID: PMC7330085 DOI: 10.3389/fnbeh.2020.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Individual variance in vulnerability to develop addictions is influenced by social factors. Specifically, drug-taking in a sexual context appears to enhance further drug-seeking behavior in human users, as these users identify the effects of drugs to enhance sexual pleasure as a primary reason for continued drug use. Methamphetamine (Meth) is commonly used in this context. Similarly, male rats that self-administered Meth immediately followed by sexual behavior display enhanced drug-seeking behavior, including attenuation of extinction and increased reinstatement to seeking of Meth-associated cues. Hence, drug-taking in a sexual context enhances vulnerability for addiction. However, the neural mechanisms by which this occurs are unknown. Here the hypothesis was tested that medial prefrontal cortex is essential for this effect of Meth and sex when experienced concurrently. First it was shown that CaMKII neurons in the anterior cingulate area (ACA) were co-activated by both Meth and sex. Next, chemogenetic inactivation of ACA CaMKII cells using AAV5-CaMKIIa-hM4Di-mCherry was shown not to affect Meth-induced locomotor activity or sexual behavior. Subsequently, chemogenetic inactivation of ACA CaMKII neurons during Meth self-administration followed by sexual behavior was shown to prevent the effects of Meth and sex on enhanced reinstatement of Meth-seeking but did not affect enhanced drug-seeking during extinction tests. These results indicate that ACA CaMKII cell activation during exposure to Meth in a sexual context plays an essential role in the subsequent enhancement of drug-seeking during reinstatement tests.
Collapse
Affiliation(s)
- Lindsey B Kuiper
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Kathryn A Lucas
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Vy Mai
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| | - Lique M Coolen
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States.,Brain Health Research Institute, Kent State University, Kent, OH, United States.,Department of Biological Sciences, Kent State University, Kent, OH, United States
| |
Collapse
|
15
|
Verdejo-Garcia A, Rubenis AJ. Cognitive deficits in people with stimulant use disorders. COGNITION AND ADDICTION 2020:155-163. [DOI: 10.1016/b978-0-12-815298-0.00011-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
16
|
Shin EJ, Dang DK, Hwang YG, Tran HQ, Sharma N, Jeong JH, Jang CG, Nah SY, Nabeshima T, Yoneda Y, Cadet JL, Kim HC. Significance of protein kinase C in the neuropsychotoxicity induced by methamphetamine-like psychostimulants. Neurochem Int 2019; 124:162-170. [PMID: 30654115 DOI: 10.1016/j.neuint.2019.01.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/27/2018] [Accepted: 01/14/2019] [Indexed: 02/06/2023]
Abstract
The abuse of methamphetamine (MA), an amphetamine (AMPH)-type stimulant, has been demonstrated to be associated with various neuropsychotoxicity, including memory impairment, psychiatric morbidity, and dopaminergic toxicity. Compelling evidence from preclinical studies has indicated that protein kinase C (PKC), a large family of serine/threonine protein kinases, plays an important role in MA-induced neuropsychotoxicity. PKC-mediated N-terminal phosphorylation of dopamine transporter has been identified as one of the prerequisites for MA-induced synaptic dopamine release. Consistently, it has been shown that PKC is involved in MA (or AMPH)-induced memory impairment and mania-like behaviors as well as MA drug dependence. Direct or indirect regulation of factors related to neuronal plasticity seemed to be critical for these actions of PKC. In addition, PKC-mediated mitochondrial dysfunction, oxidative stress or impaired antioxidant defense system has been suggested to play a role in psychiatric and cognitive disturbance induced by MA (or AMPH). In MA-induced dopaminergic toxicity, particularly PKCδ has been shown to trigger oxidative stress, mitochondrial dysfunction, pro-apoptotic changes, and neuroinflammation. Importantly, PKCδ may be a key mediator in the positive feedback loop composed of these detrimental events to potentiate MA-induced dopaminergic toxicity. This review outlines the role of PKC and its individual isozymes in MA-induced neuropsychotoxicity. Better understanding on the molecular mechanism of PKCs might provide a great insight for the development of potential therapeutic or preventive candidates for MA (or AMPH)-associated neuropsychotoxicity.
Collapse
Affiliation(s)
- Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Young Gwang Hwang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Hai-Quyen Tran
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Naveen Sharma
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Toshitaka Nabeshima
- Advanced Diagnostic System Research Laboratory, Fujita Health University Graduate School of Health Science, Toyoake 470-1192, Japan
| | - Yukio Yoneda
- Section of Prophylactic Pharmacology, Kanazawa University Venture Business Laboratory, Kanazawa, Ishikawa 920-1192, Japan
| | - Jean Lud Cadet
- NIDA Intramural Program, Molecular Neuropsychiatry Research Branch, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon 24341, Republic of Korea.
| |
Collapse
|
17
|
Beayno A, El Hayek S, Noufi P, Tarabay Y, Shamseddeen W. The Role of Epigenetics in Addiction: Clinical Overview and Recent Updates. Methods Mol Biol 2019; 2011:609-631. [PMID: 31273724 DOI: 10.1007/978-1-4939-9554-7_35] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Addiction is an international public health problem. It is a polygenic disorder best understood by accounting for the interplay between genetic and environmental factors. A recent way of perceiving this interaction is through epigenetics, which help grasp the neurobiological changes that occur in addiction and explain its relapsing-remitting nature. It is now known that every cell has a different way of expressing its phenotype, despite a universal DNA sequence. This is particularly true in the central nervous system where environmental factors influence this expression. Three major epigenetic processes have been found to participate in the perpetuation of addiction by changing the state of the chromatin and the degree of gene transcription: histone acetylation and methylation, DNA methylation, and noncoding RNAs. In the animal model literature, substantial evidence exists about the role of these epigenetic changes in the different phases of substance use disorders. This book chapter is a non-systematic literature review of the recent publications tackling the topic of epigenetics in addiction. Even though this evidence remains scarce and relatively poorly systematized, it is a promising foundation for future research of molecules that target specific brain regions and their functions to address core behavioral changes seen in addiction.
Collapse
Affiliation(s)
- Antoine Beayno
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Samer El Hayek
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Paul Noufi
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Tarabay
- Faculty of Pedagogy, Lebanese University, New Rawda, Lebanon.,Faculty of Natural and Applied Sciences, Notre Dame University, Louaize, Lebanon
| | - Wael Shamseddeen
- Department of Psychiatry, Faculty of Medicine, American University of Beirut, Beirut, Lebanon. .,Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
18
|
Protein Kinase C γ Contributes to Central Sensitization in a Rat Model of Chronic Migraine. J Mol Neurosci 2017; 63:131-141. [PMID: 28842814 DOI: 10.1007/s12031-017-0960-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/31/2017] [Indexed: 01/01/2023]
Abstract
Protein kinase C γ (PKCγ) is a critical regulator of central sensitization and is widely recognized to be involved in the pathogenesis of chronic migraine (CM). However, the function of PKCγ in CM remains unknown. This study investigated the role of PKCγ on pathogenesis of CM. We repeated infusions of inflammatory soup (IS) on the intact dura of conscious rats to model recurrent trigeminovascular or dural nociceptor activation assumed to occur in patients with CM. The von Frey test was then used to detect changes in pain threshold. QT-PCR, western blotting, and double immunofluorescence staining were performed to detect the expression and location of PKCγ in the trigeminal nucleus caudalis (TNC) and the expressions of calcitonin gene-related peptide (CGRP), c-Fos, and phosphorylation level of GluR1 subunit at serine 831. Chelerythrine chloride (CHE) and phorbol 12-myristate 13-acetate (PMA) were administrated to investigate the role of PKCγ in central sensitization. We found that repeated infusions of IS induced mechanical allodynia. PKCγ was significantly increased in TNC after CM. Furthermore, inhibition of PKCγ by CHE relieved allodynia and reduced the expression of CGRP and c-Fos. Activation of PKCγ by PMA aggravated allodynia and increased the expression of CGRP and c-Fos. In addition, inhibition of PKCγ reduced the phosphorylation level of GluR1; in contrast, activation of PKCγ increased the phosphorylation level of GluR1. These results suggest PKCγ-induced GluR1 phosphorylation might participate in central sensitization in a rat model of CM. We suggest that PKCγ is a potential therapeutic target for CM.
Collapse
|
19
|
Methamphetamine Regulation of Firing Activity of Dopamine Neurons. J Neurosci 2017; 36:10376-10391. [PMID: 27707972 DOI: 10.1523/jneurosci.1392-16.2016] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022] Open
Abstract
Methamphetamine (METH) is a substrate for the dopamine transporter that increases extracellular dopamine levels by competing with dopamine uptake and increasing reverse transport of dopamine via the transporter. METH has also been shown to alter the excitability of dopamine neurons. The mechanism of METH regulation of the intrinsic firing behaviors of dopamine neurons is less understood. Here we identified an unexpected and unique property of METH on the regulation of firing activity of mouse dopamine neurons. METH produced a transient augmentation of spontaneous spike activity of midbrain dopamine neurons that was followed by a progressive reduction of spontaneous spike activity. Inspection of action potential morphology revealed that METH increased the half-width and produced larger coefficients of variation of the interspike interval, suggesting that METH exposure affected the activity of voltage-dependent potassium channels in these neurons. Since METH has been shown to affect Ca2+ homeostasis, the unexpected findings that METH broadened the action potential and decreased the amplitude of afterhyperpolarization led us to ask whether METH alters the activity of Ca2+-activated potassium (BK) channels. First, we identified BK channels in dopamine neurons by their voltage dependence and their response to a BK channel blocker or opener. While METH suppressed the amplitude of BK channel-mediated unitary currents, the BK channel opener NS1619 attenuated the effects of METH on action potential broadening, afterhyperpolarization repression, and spontaneous spike activity reduction. Live-cell total internal reflection fluorescence microscopy, electrophysiology, and biochemical analysis suggest METH exposure decreased the activity of BK channels by decreasing BK-α subunit levels at the plasma membrane. SIGNIFICANCE STATEMENT Methamphetamine (METH) competes with dopamine uptake, increases dopamine efflux via the dopamine transporter, and affects the excitability of dopamine neurons. Here, we identified an unexpected property of METH on dopamine neuron firing activity. METH transiently increased the spontaneous spike activity of dopamine neurons followed by a progressive reduction of the spontaneous spike activity. METH broadened the action potentials, increased coefficients of variation of the interspike interval, and decreased the amplitude of afterhyperpolarization, which are consistent with changes in the activity of Ca2+-activated potassium (BK) channels. We found that METH decreased the activity of BK channels by stimulating BK-α subunit trafficking. Thus, METH modulation of dopamine neurotransmission and resulting behavioral responses is, in part, due to METH regulation of BK channel activity.
Collapse
|
20
|
Todd SM, Zhou C, Clarke DJ, Chohan TW, Bahceci D, Arnold JC. Interactions between cannabidiol and Δ 9-THC following acute and repeated dosing: Rebound hyperactivity, sensorimotor gating and epigenetic and neuroadaptive changes in the mesolimbic pathway. Eur Neuropsychopharmacol 2017; 27:132-145. [PMID: 28043732 DOI: 10.1016/j.euroneuro.2016.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 12/07/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022]
Abstract
The evidence base for the use of medical cannabis preparations containing specific ratios of cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) is limited. While there is abundant data on acute interactions between CBD and THC, few studies have assessed the impact of their repeated co-administration. We previously reported that CBD inhibited or potentiated the acute effects of THC dependent on the measure being examined at a 1:1 CBD:THC dose ratio. Further, CBD decreased THC effects on brain regions involved in memory, anxiety and body temperature regulation. Here we extend on these finding by examining over 15 days of treatment whether CBD modulated the repeated effects of THC on behaviour and neuroadaption markers in the mesolimbic dopamine pathway. After acute locomotor suppression, repeated THC caused rebound locomotor hyperactivity that was modestly inhibited by CBD. CBD also slightly reduced the acute effects of THC on sensorimotor gating. These subtle effects were found at a 1:1 CBD:THC dose ratio but were not accentuated by a 5:1 dose ratio. CBD did not alter the trajectory of enduring THC-induced anxiety nor tolerance to the pharmacological effects of THC. There was no evidence of CBD potentiating the behavioural effects of THC. However we demonstrated for the first time that repeated co-administration of CBD and THC increased histone 3 acetylation (H3K9/14ac) in the VTA and ΔFosB expression in the nucleus accumbens. These changes suggest that while CBD may have protective effects acutely, its long-term molecular actions on the brain are more complex and may be supradditive.
Collapse
Affiliation(s)
- Stephanie M Todd
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Cilla Zhou
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - David J Clarke
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Tariq W Chohan
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia
| | - Dilara Bahceci
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia
| | - Jonathon C Arnold
- Brain and Mind Centre, University of Sydney, Sydney, Australia; Discipline of Pharmacology, School of Medical Science, University of Sydney, Sydney, Australia; The Lambert Initiative of Cannabinoid Therapeutics, University of Sydney, Sydney, Australia.
| |
Collapse
|
21
|
Zhu J, Zhao N, Chen Y, Zhu L, Zhong Q, Liu J, Chen T. Sodium butyrate modulates a methamphetamine-induced conditioned place preference. J Neurosci Res 2016; 95:1044-1052. [PMID: 27426635 DOI: 10.1002/jnr.23835] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 12/13/2022]
Abstract
Previous studies demonstrated that histone acetylation modulated the transcription of associated gene expression and thus contributed to the persistence of addictive behaviors and neuroplasticity. Nonetheless, the roles of histone acetylation in distinct phases of methamphetamine (METH)-induced conditioned place preference (CPP) remain unclear. The current study examines the effects of the histone deacetylases (HDACs) inhibitor sodium butyrate (NaB) on the acquisition, extinction, and reinstatement of METH-induced CPP in mice. Our results showed that 1 mg/kg METH induced CPP in mice after four conditioning sessions. METH-induced CPP was extinguished after three extinction training sessions and could be triggered by the same dose (1 mg/kg) of METH on the reinstatement test day. Meanwhile, NaB (400 mg/kg) per se had no effect on the natural preference of mice, but injections of NaB during the conditioning and extinction phases facilitated the acquisition and extinction of METH-induced CPP, respectively. Additionally, although the effect of a single NaB injection prior to the trigger of CPP reinstatement was not observed, repeated NaB injections during the extinction phase totally blocked the reinstatement of METH-induced CPP. Taken together, our results suggested a specific effect of histone acetylation on modulating distinct phases of METH-induced CPP and that treatment of NaB during the extinction phase not only produced beneficial effects on eliminating already established CPP but also blocked the reinstatement of METH-induced CPP. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jie Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Na Zhao
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,Northwest University of Politics and Law School of Police, Xi'an, Shaanxi, People's Republic of China
| | - Yanjiong Chen
- Departments of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China
| | - Li Zhu
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qing Zhong
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Jian Liu
- The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Teng Chen
- College of Forensic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, People's Republic of China.,The Key Laboratory of Health Ministry for Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
22
|
Godino A, Jayanthi S, Cadet JL. Epigenetic landscape of amphetamine and methamphetamine addiction in rodents. Epigenetics 2016; 10:574-80. [PMID: 26023847 PMCID: PMC4622560 DOI: 10.1080/15592294.2015.1055441] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Amphetamine and methamphetamine addiction is described by specific behavioral alterations, suggesting long-lasting changes in gene and protein expression within specific brain subregions involved in the reward circuitry. Given the persistence of the addiction phenotype at both behavioral and transcriptional levels, several studies have been conducted to elucidate the epigenetic landscape associated with persistent effects of drug use on the mammalian brain. This review discusses recent advances in our comprehension of epigenetic mechanisms underlying amphetamine- or methamphetamine-induced behavioral, transcriptional, and synaptic plasticity. Accumulating evidence demonstrated that drug exposure induces major epigenetic modifications-histone acetylation and methylation, DNA methylation-in a very complex manner. In rare instances, however, the regulation of a specific target gene can be correlated to both epigenetic alterations and behavioral abnormalities. Work is now needed to clarify and validate an epigenetic model of addiction to amphetamines. Investigations that include genome-wide approaches will accelerate the speed of discovery in the field of addiction.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- AMPH, amphetamine
- AP1, activator protein 1
- ATF2, activating transcription factor 2
- BASP1, brain abundant signal protein 1
- BDNF, brain derived neurotrophic factor
- CCR2, C‒C chemokine receptor 2
- CPP, conditioned place preference
- CREB, cAMP response element binding protein
- ChIP, chromatin immunoprecipitation
- CoREST, restrictive element 1 silencing transcription factor corepressor
- Cp60, compound 60
- DNA methylation
- DNMT, DNA methyltransferase
- FOS, Finkel–Biskis–Jinkins murine osteosarcoma viral oncogene
- GABA, γ-aminobutyric acid
- GLUA1, glutamate receptor subunit A1
- GLUA2, glutamate receptor subunit A2
- GLUN1, glutamate receptor subunit N1
- H2Bac, pan-acetylation of histone 2B
- H3, histone 3
- H3K14Ac, acetylation of histone 3 at lysine 14
- H3K18, lysine 18 of histone 3
- H3K4, lysine 4 of histone 3
- H3K4me3, trimethylation of histone 3 at lysine 4
- H3K9, lysine 9 of histone 3
- H3K9Ac, acetylation of histone 3 at lysine 9
- H3K9me3, trimethylation of histone 3 at lysine 9
- H4, histone 4
- H4Ac, pan-acetylation of histone 4
- H4K12Ac, acetylation of histone 4 at lysine 12
- H4K16, lysine 16 of histone 4
- H4K5, lysine 5 of histone 4
- H4K8, lysine 8 of histone 4
- HAT, histone acetyltransferase
- HDAC, histone deacetylase
- HDM, histone demethylase
- HMT, histone methyltransferase
- IP, intra-peritoneal
- JUN, jun proto-oncogene
- KDM, lysine demethylase
- KLF10, Kruppel-like factor 10
- KMT, lysine methyltransferase
- METH, methamphetamine
- MeCP2, methyl-CpG binding protein 2
- NAc, nucleus accumbens
- NMDA, N-methyl-D-aspartate
- NaB, sodium butyrate
- OfC, orbitofrontal cortex
- PfC, prefrontal cortex
- REST, restrictive element 1 silencing transcription factor
- RNAi, RNA interference
- Ser241, serine 241
- Sin3A, SIN3 transcription regulator family member A
- TSS, transcription start site
- VPA, valproic acid
- WT1, Wilms tumor protein 1.
- amphetamine
- histone acetylation
- histone methylation
- methamphetamine
- siRNA, silencing RNA
Collapse
Affiliation(s)
- Arthur Godino
- a Département de Biologie; École Normale Supérieure de Lyon ; Lyon , France
| | | | | |
Collapse
|
23
|
Yu SJ, Wu KJ, Bae EK, Hsu MJ, Richie CT, Harvey BK, Wang Y. Methamphetamine induces a rapid increase of intracellular Ca(++) levels in neurons overexpressing GCaMP5. Addict Biol 2016; 21:255-66. [PMID: 25377775 DOI: 10.1111/adb.12193] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, methamphetamine (Meth)- and glutamate (Glu)-mediated intracellular Ca(++) (Ca(++) i) signals were examined in real time in primary cortical neurons overexpressing an intracellular Ca(++) probe, GCaMP5, by adeno-associated viral (AAV) serotype 1. Binding of Ca(++) to GCaMP increased green fluorescence intensity in cells. Both Meth and Glu induced a rapid increase in Ca(++) i, which was blocked by MK801, suggesting that Meth enhanced Ca(++) i through Glu receptor in neurons. The Meth-mediated Ca(++) signal was also blocked by Mg(++) , low Ca(++) or the L-type Ca(++) channel inhibitor nifedipine. The ryanodine receptor inhibitor dantrolene did not alter the initial Ca(++) influx but partially reduced the peak of Ca(++) i. These data suggest that Meth enhanced Ca(++) influx through membrane Ca(++) channels, which then triggered the release of Ca(++) from the endoplasmic reticulum in the cytosol. AAV-GCaMP5 was also injected to the parietal cortex of adult rats. Administration of Meth enhanced fluorescence in the ipsilateral cortex. Using immunohistochemistry, Meth-induced green fluorescence was found in the NeuN-containing cells in the cortex, suggesting that Meth increased Ca(++) in neurons in vivo. In conclusion, we have used in vitro and in vivo techniques to demonstrate a rapid increase of Ca(++) i by Meth in cortical neurons through overexpression of GCaMP5. As Meth induces behavioral responses and neurotoxicity through Ca(++) i, modulation of Ca(++) i may be useful to reduce Meth-related reactions.
Collapse
Affiliation(s)
- Seong-Jin Yu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Kou-Jen Wu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Eun K. Bae
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | - Man-Jung Hsu
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| | | | | | - Yun Wang
- Center for Neuropsychiatric Research; National Health Research Institutes; Taiwan
| |
Collapse
|
24
|
Cadet JL, McCoy MT, Jayanthi S. Epigenetics and addiction. Clin Pharmacol Ther 2016; 99:502-11. [PMID: 26841306 DOI: 10.1002/cpt.345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 12/13/2022]
Abstract
Addictions are public health menaces. However, despite advances in addiction research, the cellular or molecular mechanisms that cause transition from recreational use to addiction remain to be elucidated. We have recently suggested that addiction may be secondary to long-term epigenetic modifications that determine the clinical course of substance use disorders. A better understanding of epigenetic mechanisms in animal models that mimic human conditions should help to usher in a new area of drug development against addiction.
Collapse
Affiliation(s)
- J L Cadet
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - M T McCoy
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - S Jayanthi
- Molecular Neuropsychiatry Research Branch, NIH/NIDA Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Zwiller J. [Epigenetics and drug addiction: a focus on MeCP2 and on histone acetylation]. Med Sci (Paris) 2015; 31:439-46. [PMID: 25958763 DOI: 10.1051/medsci/20153104019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic drug exposure alters gene expression in the brain, which is believed to underlie compulsive drug seeking and drug taking behavior. Recent evidence shows that drug-induced long-term neuroadaptations in the brain are mediated in part by epigenetic mechanisms. By remodeling chromatin, this type of regulation contributes to drug-induced synaptic plasticity that translates into behavioral modifications. How drug-induced alterations in DNA methylation regulate gene expression is reviewed here, with a focus on MeCP2, a protein binding methylated DNA. The importance of histone modifications, especially acetylation is also discussed, with an emphasis on the effects of inhibitors of histone deacetylases on drug-induced behavioral changes. The precise identification of the epigenetic mechanisms that are under the control of drugs of abuse may help to uncover novel targets for the treatment of drug seeking and relapse.
Collapse
Affiliation(s)
- Jean Zwiller
- Laboratoire de neurosciences cognitives et adaptatives, UMR 7364, CNRS, université de Strasbourg, faculté de psychologie, 12 rue Goethe, 67000 Strasbourg, France
| |
Collapse
|
26
|
Chang KW, Huang NA, Liu IH, Wang YH, Wu P, Tseng YT, Hughes MW, Jiang TX, Tsai MH, Chen CY, Oyang YJ, Lin EC, Chuong CM, Lin SP. Emergence of differentially regulated pathways associated with the development of regional specificity in chicken skin. BMC Genomics 2015; 16:22. [PMID: 25612663 PMCID: PMC4326372 DOI: 10.1186/s12864-014-1202-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 12/22/2014] [Indexed: 01/17/2023] Open
Abstract
Background Regional specificity allows different skin regions to exhibit different characteristics, enabling complementary functions to make effective use of the integumentary surface. Chickens exhibit a high degree of regional specificity in the skin and can serve as a good model for when and how these regional differences begin to emerge. Results We used developing feather and scale regions in embryonic chickens as a model to gauge the differences in their molecular pathways. We employed cosine similarity analysis to identify the differentially regulated and co-regulated genes. We applied low cell techniques for expression validation and chromatin immunoprecipitation (ChIP)-based enhancer identification to overcome limited cell availabilities from embryonic chicken skin. We identified a specific set of genes demonstrating a high correlation as being differentially expressed during feather and scale development and maturation. Some members of the WNT, TGF-beta/BMP, and Notch family known to be involved in feathering skin differentiation were found to be differentially regulated. Interestingly, we also found genes along calcium channel pathways that are differentially regulated. From the analysis of differentially regulated pathways, we used calcium signaling pathways as an example for further verification. Some voltage-gated calcium channel subunits, particularly CACNA1D, are expressed spatio-temporally in the skin epithelium. These calcium signaling pathway members may be involved in developmental decisions, morphogenesis, or epithelial maturation. We further characterized enhancers associated with histone modifications, including H3K4me1, H3K27ac, and H3K27me3, near calcium channel-related genes and identified signature intensive hotspots that may be correlated with certain voltage-gated calcium channel genes. Conclusion We demonstrated the applicability of cosine similarity analysis for identifying novel regulatory pathways that are differentially regulated during development. Our study concerning the effects of signaling pathways and histone signatures on enhancers suggests that voltage-gated calcium signaling may be involved in early skin development. This work lays the foundation for studying the roles of these gene pathways and their genomic regulation during the establishment of skin regional specificity. Electronic supplementary material The online version of this article (doi:10.1186/s12864-014-1202-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.
| | - Nancy A Huang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan.
| | - I-Hsuan Liu
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan.
| | - Yi-Hui Wang
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Ping Wu
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Yen-Tzu Tseng
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Michael W Hughes
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA. .,International Research Center for Wound Repair and Regeneration, National Cheng-Kung University, Tainan, Taiwan.
| | - Ting Xin Jiang
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Mong-Hsun Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - Chien-Yu Chen
- Department of Bio-Industrial Mechatronics Engineering, National Taiwan University, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - Yen-Jen Oyang
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| | - En-Chung Lin
- Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Cheng-Ming Chuong
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Department of Pathology, School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Shau-Ping Lin
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan. .,Agricultural Biotechnology Research Centre, Academia Sinica, Taipei, Taiwan. .,Center for Systems Biology, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
27
|
Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ. Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 2014; 149:150-90. [PMID: 25550231 PMCID: PMC4380664 DOI: 10.1016/j.pharmthera.2014.12.004] [Citation(s) in RCA: 275] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 12/24/2014] [Indexed: 12/20/2022]
Abstract
Pathological fear and anxiety are highly debilitating and, despite considerable advances in psychotherapy and pharmacotherapy they remain insufficiently treated in many patients with PTSD, phobias, panic and other anxiety disorders. Increasing preclinical and clinical evidence indicates that pharmacological treatments including cognitive enhancers, when given as adjuncts to psychotherapeutic approaches [cognitive behavioral therapy including extinction-based exposure therapy] enhance treatment efficacy, while using anxiolytics such as benzodiazepines as adjuncts can undermine long-term treatment success. The purpose of this review is to outline the literature showing how pharmacological interventions targeting neurotransmitter systems including serotonin, dopamine, noradrenaline, histamine, glutamate, GABA, cannabinoids, neuropeptides (oxytocin, neuropeptides Y and S, opioids) and other targets (neurotrophins BDNF and FGF2, glucocorticoids, L-type-calcium channels, epigenetic modifications) as well as their downstream signaling pathways, can augment fear extinction and strengthen extinction memory persistently in preclinical models. Particularly promising approaches are discussed in regard to their effects on specific aspects of fear extinction namely, acquisition, consolidation and retrieval, including long-term protection from return of fear (relapse) phenomena like spontaneous recovery, reinstatement and renewal of fear. We also highlight the promising translational value of the preclinial research and the clinical potential of targeting certain neurochemical systems with, for example d-cycloserine, yohimbine, cortisol, and L-DOPA. The current body of research reveals important new insights into the neurobiology and neurochemistry of fear extinction and holds significant promise for pharmacologically-augmented psychotherapy as an improved approach to treat trauma and anxiety-related disorders in a more efficient and persistent way promoting enhanced symptom remission and recovery.
Collapse
Affiliation(s)
- N Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
| | - C Schmuckermair
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - N Whittle
- Department of Pharmacology and Toxicology, Institute of Pharmacy and CMBI, Leopold-Franzens University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - K J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
28
|
Lei BH, Chen JH, Yin HS. Repeated amphetamine treatment alters spinal magnetic resonance signals and pain sensitivity in mice. Neurosci Lett 2014; 583:70-5. [PMID: 25246351 DOI: 10.1016/j.neulet.2014.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/12/2014] [Indexed: 10/24/2022]
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) has been extensively used in studying the structural and functional features of the central nervous system (CNS). Divalent manganese ion (Mn(2+)) not only enhances MRI contrast, but also enters cells via voltage-gated calcium channels or ionotropic glutamate receptors, which represents an index of neural activities. In the current mouse model, following the repeated amphetamine (Amph) treatment, a reduction of reactivity to thermal pain stimulus was noticed. Since the spinal dorsal horn is the first relay station for pain transmission in CNS, we examined the changes of neural activity in the dorsal spinal cord, particularly the superficial dorsal horn, by analyzing manganese-enhanced T1-weighted MR images (T1WIs). Our data revealed a temporal correlation between reduced pain sensitivity and increased MEMR signals in the spinal dorsal horn subsequent to repeated Amph treatments.
Collapse
Affiliation(s)
- Bing-Hsuan Lei
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC
| | - Jyh-Horng Chen
- Interdisciplinary MRI/MRS Lab, Graduate Institute of Electrical Engineering, National Taiwan University, Taiwan, ROC; National Taiwan University Molecular Imaging Center, Taiwan, ROC; Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC.
| | - Hsiang-Shu Yin
- Neurobiology and Cognitive Science Center, National Taiwan University, Taiwan, ROC; Graduate Institute of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taiwan, ROC.
| |
Collapse
|
29
|
Leone L, Fusco S, Mastrodonato A, Piacentini R, Barbati SA, Zaffina S, Pani G, Podda MV, Grassi C. Epigenetic Modulation of Adult Hippocampal Neurogenesis by Extremely Low-Frequency Electromagnetic Fields. Mol Neurobiol 2014; 49:1472-86. [DOI: 10.1007/s12035-014-8650-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 01/22/2014] [Indexed: 12/22/2022]
|
30
|
Schmidt HD, McGinty JF, West AE, Sadri-Vakili G. Epigenetics and psychostimulant addiction. Cold Spring Harb Perspect Med 2013; 3:a012047. [PMID: 23359110 DOI: 10.1101/cshperspect.a012047] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chronic drug exposure alters gene expression in the brain and produces long-term changes in neural networks that underlie compulsive drug taking and seeking. Exactly how drug-induced changes in synaptic plasticity and subsequent gene expression are translated into persistent neuroadaptations remains unclear. Emerging evidence suggests that complex drug-induced neuroadaptations in the brain are mediated by highly synchronized and dynamic patterns of gene regulation. Recently, it has become clear that epigenetic mechanisms contribute to drug-induced structural, synaptic, and behavioral plasticity by regulating expression of gene networks. Here we review how alterations in histone modifications, DNA methylation, and microRNAs regulate gene expression and contribute to psychostimulant addiction with a focus on the epigenetic mechanisms that regulate brain-derived neurotrophic factor (BDNF) expression following chronic cocaine exposure. Identifying epigenetic signatures that define psychostimulant addiction may lead to novel, efficacious treatments for drug craving and relapse.
Collapse
Affiliation(s)
- Heath D Schmidt
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA.
| | | | | | | |
Collapse
|