1
|
Zhang J, Jiang Y, Dong X, Meng Z, Ji L, Kang Y, Liu M, Zhou W, Song W. Alpha-lipoic acid alleviates cognitive deficits in transgenic APP23/PS45 mice through a mitophagy-mediated increase in ADAM10 α-secretase cleavage of APP. Alzheimers Res Ther 2024; 16:160. [PMID: 39030577 PMCID: PMC11264788 DOI: 10.1186/s13195-024-01527-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Alpha-lipoic acid (ALA) has a neuroprotective effect on neurodegenerative diseases. In the clinic, ALA can improve cognitive impairments in patients with Alzheimer's disease (AD) and other dementias. Animal studies have confirmed the anti-amyloidosis effect of ALA, but its underlying mechanism remains unclear. In particular, the role of ALA in amyloid-β precursor protein (APP) metabolism has not been fully elucidated. OBJECTIVE To investigate whether ALA can reduce the amyloidogenic effect of APP in a transgenic mouse model of AD, and to study the mechanism underlying this effect. METHODS ALA was infused into 2-month-old APP23/PS45 transgenic mice for 4 consecutive months and their cognitive function and AD-like pathology were then evaluated. An ALA drug concentration gradient was applied to 20E2 cells in vitro to evaluate its effect on the expression of APP proteolytic enzymes and metabolites. The mechanism by which ALA affects APP processing was studied using GI254023X, an inhibitor of A Disintegrin and Metalloproteinase 10 (ADAM10), as well as the mitochondrial toxic drug carbonyl cyanide m-chlorophenylhydrazone (CCCP). RESULTS Administration of ALA ameliorated amyloid plaque neuropathology in the brain tissue of APP23/PS45 mice and reduced learning and memory impairment. ALA also increased the expression of ADAM10 in 20E2 cells and the non-amyloidogenic processing of APP to produce the 83 amino acid C-terminal fragment (C83). In addition to activating autophagy, ALA also significantly promoted mitophagy. BNIP3L-knockdown reduced the mat/pro ratio of ADAM10. By using CCCP, ALA was found to regulate BNIP3L-mediated mitophagy, thereby promoting the α-cleavage of APP. CONCLUSIONS The enhanced α-secretase cleavage of APP by ADAM10 is the primary mechanism through which ALA ameliorates the cognitive deficits in APP23/PS45 transgenic mice. BNIP3L-mediated mitophagy contributes to the anti-amyloid properties of ALA by facilitating the maturation of ADAM10. This study provides novel experimental evidence for the treatment of AD with ALA.
Collapse
Affiliation(s)
- Jie Zhang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yanshuang Jiang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangjun Dong
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zijun Meng
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Liangye Ji
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Kang
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Mingjing Liu
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Weihui Zhou
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Weihong Song
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, School of Mental Health and the Affiliated Wenzhou Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, 325001, China.
| |
Collapse
|
2
|
Mitroshina EV, Vedunova MV. The Role of Oxygen Homeostasis and the HIF-1 Factor in the Development of Neurodegeneration. Int J Mol Sci 2024; 25:4581. [PMID: 38731800 PMCID: PMC11083463 DOI: 10.3390/ijms25094581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/13/2024] Open
Abstract
Understanding the molecular underpinnings of neurodegeneration processes is a pressing challenge for medicine and neurobiology. Alzheimer's disease (AD) and Parkinson's disease (PD) represent the most prevalent forms of neurodegeneration. To date, a substantial body of experimental evidence has strongly implicated hypoxia in the pathogenesis of numerous neurological disorders, including AD, PD, and other age-related neurodegenerative conditions. Hypoxia-inducible factor (HIF) is a transcription factor that triggers a cell survival program in conditions of oxygen deprivation. The involvement of HIF-1α in neurodegenerative processes presents a complex and sometimes contradictory picture. This review aims to elucidate the current understanding of the interplay between hypoxia and the development of AD and PD, assess the involvement of HIF-1 in their pathogenesis, and summarize promising therapeutic approaches centered on modulating the activity of the HIF-1 complex.
Collapse
Affiliation(s)
- Elena V. Mitroshina
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603022 Nizhny Novgorod, Russia;
| | | |
Collapse
|
3
|
Davra V, Benzeroual KE. Flavonoids and fibrate modulate apoE4-induced processing of amyloid precursor protein in neuroblastoma cells. Front Neurosci 2023; 17:1245895. [PMID: 38204816 PMCID: PMC10777729 DOI: 10.3389/fnins.2023.1245895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
Introduction Apolipoprotein (apo) E4, being a major genetic risk factor for Alzheimer's disease (AD), is actively involved in the proteolytic processing of amyloid precursor protein (APP) to amyloid β (Aβ) peptide, the principle constituent of amyloid plaques in Alzheimer Disease (AD) patients. ApoE4 is believed to affect APP processing through intracellular cholesterol homeostasis, whereas lowering the cholesterol level by pharmacological agents has been suggested to reduce Aβ production. This study has investigated the effects of hypolipidemic agents fenofibrate, and the flavonoids-naringenin and diosmetin-on apoE4-induced APP processing in rat neuroblastoma cells stably transfected with human wild-type APP 695 (B103-hAPP695wt). Results B103-hAPP695wt cells were pretreated with different doses of flavonoids and fenofibrate for 1 h prior to apoE4 exposure for 24 h. ApoE4-induced production of intra- and extracellular Aβ peptides has been reduced with fenofibrate, naringenin, and diosmetin treatments. Pretreatment with diosmetin has significantly reduced apoE4-induced full-length APP (fl- APP) expression, whereas naringenin and fenofibrate had no effect on it. In addition, the increase in the apoE4-induced secretion of sAPPtotal and sAPPα has been dose-dependently reduced with drug pretreatment. On the other hand, the decrease in the expression of both APP-carboxy terminal fragments (CTF)-α and -β (generated by the α- or β-secretase cleavage of APP) by apoE4 was dose-dependently increased in cells pretreated with fenofibrate and naringenin but not diosmetin. Conclusion Thus, we suggest that fenofibrate, naringenin, and diosmetin treatments can reduce apoE4- induced Aβ production by distinct mechanisms that may prove useful in developing drugs for AD patients.
Collapse
Affiliation(s)
| | - Kenza E. Benzeroual
- Department of Pharmaceutical Sciences, Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, NY, United States
| |
Collapse
|
4
|
Chen H, Xu J, Xu H, Luo T, Li Y, Jiang K, Shentu Y, Tong Z. New Insights into Alzheimer’s Disease: Novel Pathogenesis, Drug Target and Delivery. Pharmaceutics 2023; 15:pharmaceutics15041133. [PMID: 37111618 PMCID: PMC10143738 DOI: 10.3390/pharmaceutics15041133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Alzheimer’s disease (AD), the most common type of dementia, is characterized by senile plaques composed of amyloid β protein (Aβ) and neurofilament tangles derived from the hyperphosphorylation of tau protein. However, the developed medicines targeting Aβ and tau have not obtained ideal clinical efficacy, which raises a challenge to the hypothesis that AD is Aβ cascade-induced. A critical problem of AD pathogenesis is which endogenous factor induces Aβ aggregation and tau phosphorylation. Recently, age-associated endogenous formaldehyde has been suggested to be a direct trigger for Aβ- and tau-related pathology. Another key issue is whether or not AD drugs are successfully delivered to the damaged neurons. Both the blood–brain barrier (BBB) and extracellular space (ECS) are the barriers for drug delivery. Unexpectedly, Aβ-related SP deposition in ECS slows down or stops interstitial fluid drainage in AD, which is the direct reason for drug delivery failure. Here, we propose a new pathogenesis and perspectives on the direction of AD drug development and drug delivery: (1) aging-related formaldehyde is a direct trigger for Aβ assembly and tau hyperphosphorylation, and the new target for AD therapy is formaldehyde; (2) nano-packaging and physical therapy may be the promising strategy for increasing BBB permeability and accelerating interstitial fluid drainage.
Collapse
Affiliation(s)
- Haishu Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinan Xu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Hanyuan Xu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Tiancheng Luo
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Yihao Li
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| | - Ke Jiang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, China
| | - Yangping Shentu
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiqian Tong
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Key Laboratory of Alzheimer’s Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, The Affiliated Wenzhou Kangning Hospital, School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Albert, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Ivaldo C, Passalacqua M, Furfaro AL, d’Abramo C, Ruiz S, Chatterjee PK, Metz CN, Nitti M, Marambaud P. Oxidative stress-induced MMP- and γ-secretase-dependent VE-cadherin processing is modulated by the proteasome and BMP9/10. Sci Rep 2023; 13:597. [PMID: 36631513 PMCID: PMC9834263 DOI: 10.1038/s41598-022-27308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 12/29/2022] [Indexed: 01/12/2023] Open
Abstract
Classical cadherins, including vascular endothelial (VE)-cadherin, are targeted by matrix metalloproteinases (MMPs) and γ-secretase during adherens junction (AJ) disassembly, a mechanism that might have relevance for endothelial cell (EC) integrity and vascular homeostasis. Here, we show that oxidative stress triggered by H2O2 exposure induced efficient VE-cadherin proteolysis by MMPs and γ-secretase in human umbilical endothelial cells (HUVECs). The cytoplasmic domain of VE-cadherin produced by γ-secretase, VE-Cad/CTF2-a fragment that has eluded identification so far-could readily be detected after H2O2 treatment. VE-Cad/CTF2, released into the cytosol, was tightly regulated by proteasomal degradation and was sequentially produced from an ADAM10/17-generated C-terminal fragment, VE-Cad/CTF1. Interestingly, BMP9 and BMP10, two circulating ligands critically involved in vascular maintenance, significantly reduced VE-Cad/CTF2 levels during H2O2 challenge, as well as mitigated H2O2-mediated actin cytoskeleton disassembly during VE-cadherin processing. Notably, BMP9/10 pretreatments efficiently reduced apoptosis induced by H2O2, favoring endothelial cell recovery. Thus, oxidative stress is a trigger of MMP- and γ-secretase-mediated endoproteolysis of VE-cadherin and AJ disassembly from the cytoskeleton in ECs, a mechanism that is negatively controlled by the EC quiescence factors, BMP9 and BMP10.
Collapse
Affiliation(s)
- Caterina Ivaldo
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy ,grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Mario Passalacqua
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Anna Lisa Furfaro
- grid.5606.50000 0001 2151 3065Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132 Genova, Italy
| | - Cristina d’Abramo
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Santiago Ruiz
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Prodyot K. Chatterjee
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA
| | - Christine N. Metz
- grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| | - Mariapaola Nitti
- Department of Experimental Medicine, University of Genoa, Via L.B.Alberti 2, I-16132, Genova, Italy.
| | - Philippe Marambaud
- grid.250903.d0000 0000 9566 0634Litwin-Zucker Alzheimer’s Research Center, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.250903.d0000 0000 9566 0634Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, New York USA ,grid.512756.20000 0004 0370 4759Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York USA
| |
Collapse
|
6
|
Downey J, Lam JC, Li VO, Gozes I. Somatic Mutations and Alzheimer’s Disease. J Alzheimers Dis 2022; 90:475-493. [DOI: 10.3233/jad-220643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) represents a global health challenge, with an estimated 55 million people suffering from the non-curable disease across the world. While amyloid-β plaques and tau neurofibrillary tangles in the brain define AD proteinopathy, it has become evident that diverse coding and non-coding regions of the genome may significantly contribute to AD neurodegeneration. The diversity of factors associated with AD pathogenesis, coupled with age-associated damage, suggests that a series of triggering events may be required to initiate AD. Since somatic mutations accumulate with aging, and aging is a major risk factor for AD, there is a great potential for somatic mutational events to drive disease. Indeed, recent data from the Gozes team/laboratories as well as other leading laboratories correlated the accumulation of somatic brain mutations with the progression of tauopathy. In this review, we lay the current perspectives on the principal genetic factors associated with AD and the potential causes, highlighting the contribution of somatic mutations to the pathogenesis of late onset Alzheimer’s disease. The roles that artificial intelligence and big data can play in accelerating the progress of causal somatic mutation markers/biomarkers identification, and the associated drug discovery/repurposing, have been highlighted for future AD and other neurodegenerative studies, with the aim to bring hope for the vulnerable aging population.
Collapse
Affiliation(s)
- Jocelyn Downey
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Jacqueline C.K. Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
- Department of Computer Science and Technology, University of Cambridge, UK
| | - Victor O.K. Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Lansdell TA, Chambers LC, Dorrance AM. Endothelial Cells and the Cerebral Circulation. Compr Physiol 2022; 12:3449-3508. [PMID: 35766836 DOI: 10.1002/cphy.c210015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Endothelial cells form the innermost layer of all blood vessels and are the only vascular component that remains throughout all vascular segments. The cerebral vasculature has several unique properties not found in the peripheral circulation; this requires that the cerebral endothelium be considered as a unique entity. Cerebral endothelial cells perform several functions vital for brain health. The cerebral vasculature is responsible for protecting the brain from external threats carried in the blood. The endothelial cells are central to this requirement as they form the basis of the blood-brain barrier. The endothelium also regulates fibrinolysis, thrombosis, platelet activation, vascular permeability, metabolism, catabolism, inflammation, and white cell trafficking. Endothelial cells regulate the changes in vascular structure caused by angiogenesis and artery remodeling. Further, the endothelium contributes to vascular tone, allowing proper perfusion of the brain which has high energy demands and no energy stores. In this article, we discuss the basic anatomy and physiology of the cerebral endothelium. Where appropriate, we discuss the detrimental effects of high blood pressure on the cerebral endothelium and the contribution of cerebrovascular disease endothelial dysfunction and dementia. © 2022 American Physiological Society. Compr Physiol 12:3449-3508, 2022.
Collapse
Affiliation(s)
- Theresa A Lansdell
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Laura C Chambers
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Anne M Dorrance
- Department of Pharmacology and Toxicology, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
8
|
Vitória JJM, Trigo D, da Cruz E Silva OAB. Revisiting APP secretases: an overview on the holistic effects of retinoic acid receptor stimulation in APP processing. Cell Mol Life Sci 2022; 79:101. [PMID: 35089425 PMCID: PMC11073327 DOI: 10.1007/s00018-021-04090-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/18/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is the leading cause of dementia worldwide and is characterized by the accumulation of the β-amyloid peptide (Aβ) in the brain, along with profound alterations in phosphorylation-related events and regulatory pathways. The production of the neurotoxic Aβ peptide via amyloid precursor protein (APP) proteolysis is a crucial step in AD development. APP is highly expressed in the brain and is complexly metabolized by a series of sequential secretases, commonly denoted the α-, β-, and γ-cleavages. The toxicity of resulting fragments is a direct consequence of the first cleaving event. β-secretase (BACE1) induces amyloidogenic cleavages, while α-secretases (ADAM10 and ADAM17) result in less pathological peptides. Hence this first cleavage event is a prime therapeutic target for preventing or reverting initial biochemical events involved in AD. The subsequent cleavage by γ-secretase has a reduced impact on Aβ formation but affects the peptides' aggregating capacity. An array of therapeutic strategies are being explored, among them targeting Retinoic Acid (RA) signalling, which has long been associated with neuronal health. Additionally, several studies have described altered RA levels in AD patients, reinforcing RA Receptor (RAR) signalling as a promising therapeutic strategy. In this review we provide a holistic approach focussing on the effects of isoform-specific RAR modulation with respect to APP secretases and discuss its advantages and drawbacks in subcellular AD related events.
Collapse
Affiliation(s)
- José J M Vitória
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Diogo Trigo
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Odete A B da Cruz E Silva
- Department of Medical Sciences, Neurosciences and Signalling Group, Institute of Biomedicine, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Abdel-Bakky MS, Alqasoumi A, Altowayan WM, Amin E, Darwish MA. Simvastatin mitigates streptozotocin-induced type 1 diabetes in mice through downregulation of ADAM10 and ADAM17. Life Sci 2022; 289:120224. [PMID: 34896343 DOI: 10.1016/j.lfs.2021.120224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/02/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND T cell mediates immune response in type 1 diabetes mellitus (T1DM) through its trafficking into pancreatic islets. The role of A Disintigrin And Metalloproteinase 10 (ADAM10) and 17 (ADAM17) in pancreatic T-cells recruitment into the pancreatic islets during T1DM is not known. AIM Explore the role of ADAM10 and ADAM17 in the processing of CXCL16 in T1DM and possible protective effect of simvastatin (SIM) in streptozotocin (STZ)-induced T1DM. MAIN METHODS Balb/c mice were classified into 4 groups, 10 each. Control group received buffer while SIM group received 50 mg/kg, i.p daily for 12 days starting from day 4 of the experiment. Diabetic group; received STZ (55 mg/kg, i.p.) for 5 consecutive days starting from day 1 of the experiment. SIM + STZ group; received SIM (50 mg/kg, i.p.) daily for 12 days and STZ (55 mg/kg, i.p.) for 5 consecutive days. Biochemical, inflammatory and apoptotic markers as well as expression of CXCL16, ADAM10, NF-κB and pancreatic T-cells expression were analyzed. KEY FINDINGS Significant increase in biochemical, inflammatory, apoptotic parameters, expression of ADAM10, ADAM17, CXCL16, NF-κB, and infiltrated T-cells to the pancreatic islets were found in STZ group. SIM treatment in the presence of STZ improved biochemical and inflammatory parameters as well as it reduced the expression of CXCL16, ADAM10, ADAM17, NF-κΒ, T-cells migration and apoptosis in the pancreatic islets. SIGNIFICANCE SIM mitigated pancreatic β-cell death induced by STZ through down regulation of ADAM10, ADAM17and CXCL16. Therefore, ADAM10/ADAM17 and CXCL16 may serve as novel therapeutic targets for T1DM.
Collapse
Affiliation(s)
- Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.
| | - Abdulmajeed Alqasoumi
- Department of Pharmacy Practice, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia
| | | | - Elham Amin
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Mostafa Assem Darwish
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt
| |
Collapse
|
10
|
Chen J, Luo B, Zhong BR, Li KY, Wen QX, Song L, Xiang XJ, Zhou GF, Hu LT, Deng XJ, Ma YL, Chen GJ. Sulfuretin exerts diversified functions in the processing of amyloid precursor protein. Genes Dis 2021; 8:867-881. [PMID: 34522714 PMCID: PMC8427253 DOI: 10.1016/j.gendis.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the α-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of β amyloid protein (Aβ) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides −444 to −300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPβ and β-CTF, whereas Aβ1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Aβ protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level of im-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aβ generation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Bi-Rou Zhong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Xiao-Jiao Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, PR China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| |
Collapse
|
11
|
Miranda A, Montiel E, Ulrich H, Paz C. Selective Secretase Targeting for Alzheimer's Disease Therapy. J Alzheimers Dis 2021; 81:1-17. [PMID: 33749645 DOI: 10.3233/jad-201027] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Alzheimer's disease (AD) is associated with marked atrophy of the cerebral cortex and accumulation of amyloid plaques and neurofibrillary tangles. Amyloid plaques are formed by oligomers of amyloid-β (Aβ) in the brain, with a length of 42 and 40 amino acids. α-secretase cleaves amyloid-β protein precursor (AβPP) producing the membrane-bound fragment CTFα and the soluble fragment sAβPPα with neuroprotective activity; β-secretase produces membrane-bound fragment CTFβ and a soluble fragment sAβPPβ. After α-secretase cleavage of AβPP, γ-secretase cleaves CTFα to produce the cytoplasmic fragment AICD and P3 in the non-amyloidogenic pathway. CTFβ is cleaved by γ-secretase producing AICD as well as Aβ in amyloidogenic pathways. In the last years, the study of natural products and synthetic compounds, such as α-secretase activity enhancers, β-secretase inhibitors (BACE-1), and γ-secretase activity modulators, have been the focus of pharmaceuticals and researchers. Drugs were improved regarding solubility, blood-brain barrier penetration, selectivity, and potency decreasing Aβ42. In this regard, BACE-1 inhibitors, such as Atabecestat, NB-360, Umibecestat, PF-06751979 Verubecestat, LY2886721, Lanabecestat, LY2811376 and Elenbecestat, were submitted to phase I-III clinical trials. However, inhibition of Aβ production did not recover cognitive functions or reverse disease progress. Novel strategies are being developed, aiming at a partial reduction of Aβ production, such as the development of γ-secretase modulators or α-secretase activity enhancers. Such therapeutic tools shall focus on slowing down or minimizing the progression of neuronal damage. Here, we summarize structures and activities of the latest compounds designed for AD treatment, with remarkable in vitro, in vivo, and clinical phase activities.
Collapse
Affiliation(s)
- Alvaro Miranda
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Enrique Montiel
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Cristian Paz
- Departamento de Ciencias Básicas, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
12
|
Platelet APP Processing: Is It a Tool to Explore the Pathophysiology of Alzheimer's Disease? A Systematic Review. Life (Basel) 2021; 11:life11080750. [PMID: 34440494 PMCID: PMC8401829 DOI: 10.3390/life11080750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
The processing of the amyloid precursor protein (APP) is a critical event in the formation of amyloid plaques. Platelets contain most of the enzymatic machinery required for APP processing and correlates of intracerebral abnormalities have been demonstrated in platelets of patients with AD. The goal of the present paper was to analyze studies exploring platelet APP metabolism in Alzheimer's disease patients trying to assess potential reliable peripheral biomarkers, to offer new therapeutic solutions and to understand the pathophysiology of the AD. According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to June 2020 with the search terms: "((((((APP) OR Amyloid Precursor Protein) OR AbetaPP) OR Beta Amyloid) OR Amyloid Beta) OR APP-processing) AND platelet". Thirty-two studies were included in this systematic review. The papers included are analytic observational studies, namely twenty-nine cross sectional studies and three longitudinal studies, specifically prospective cohort study. The studies converge in an almost unitary way in affirming that subjects with AD show changes in APP processing compared to healthy age-matched controls. However, the problem of the specificity and sensitivity of these biomarkers is still at issue and would deserve to be deepened in future studies.
Collapse
|
13
|
Turkez H, Cacciatore I, Marinelli L, Fornasari E, Aslan ME, Cadirci K, Kahraman CY, Caglar O, Tatar A, Di Biase G, Hacimuftuoglu A, Di Stefano A, Mardinoglu A. Glycyl-L-Prolyl-L-Glutamate Pseudotripeptides for Treatment of Alzheimer's Disease. Biomolecules 2021; 11:biom11010126. [PMID: 33478054 PMCID: PMC7835747 DOI: 10.3390/biom11010126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
So far, there is no effective disease-modifying therapies for Alzheimer’s Disease (AD) in clinical practice. In this context, glycine-L-proline-L-glutamate (GPE) and its analogs may open the way for developing a novel molecule for treating neurodegenerative disorders, including AD. In turn, this study was aimed to investigate the neuroprotective potentials exerted by three novel GPE peptidomimetics (GPE1, GPE2, and GPE3) using an in vitro AD model. Anti-Alzheimer potentials were determined using a wide array of techniques, such as measurements of mitochondrial viability (MTT) and lactate dehydrogenase (LDH) release assays, determination of acetylcholinesterase (AChE), α-secretase and β-secretase activities, comparisons of total antioxidant capacity (TAC) and total oxidative status (TOS) levels, flow cytometric and microscopic detection of apoptotic and necrotic neuronal death, and investigating gene expression responses via PCR arrays involving 64 critical genes related to 10 different pathways. Our analysis showed that GPE peptidomimetics modulate oxidative stress, ACh depletion, α-secretase inactivation, apoptotic, and necrotic cell death. In vitro results suggested that treatments with novel GPE analogs might be promising therapeutic agents for treatment and/or or prevention of AD.
Collapse
Affiliation(s)
- Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey
- Correspondence: (H.T.); (A.M.)
| | - Ivana Cacciatore
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Lisa Marinelli
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Erika Fornasari
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Mehmet Enes Aslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Kenan Cadirci
- Department of Internal Medicine, Erzurum Regional Training and Research Hospital, Health Sciences University, 25200 Erzurum, Turkey;
| | - Cigdem Yuce Kahraman
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Ozge Caglar
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, 25200 Erzurum, Turkey; (M.E.A.); (O.C.)
| | - Abdulgani Tatar
- Department of Medical Genetics, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey; (C.Y.K.); (A.T.)
| | - Giuseppe Di Biase
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, 25240 Erzurum, Turkey;
| | - Antonio Di Stefano
- Department of Pharmacy, Univerisity “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini 31, 66100 Chieti Scalo, Chieti, Italy; (I.C.); (L.M.); (E.F.); (G.D.B.); (A.D.S.)
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 24075 Stockholm, Sweden
- Centre for Host-Microbiome Interactions, Dental Institute, King’s College London, London SE1 9RT, UK
- Correspondence: (H.T.); (A.M.)
| |
Collapse
|
14
|
Cognitive enhancing effect of diapocynin in D-galactose-ovariectomy-induced Alzheimer's-like disease in rats: Role of ERK, GSK-3β, and JNK signaling. Toxicol Appl Pharmacol 2020; 398:115028. [DOI: 10.1016/j.taap.2020.115028] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/20/2022]
|
15
|
Iraji A, Khoshneviszadeh M, Firuzi O, Khoshneviszadeh M, Edraki N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg Chem 2020; 97:103649. [PMID: 32101780 DOI: 10.1016/j.bioorg.2020.103649] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/05/2020] [Accepted: 02/03/2020] [Indexed: 12/17/2022]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder that effects 50 million people worldwide. In this review, AD pathology and the development of novel therapeutic agents targeting AD were fully discussed. In particular, common approaches to prevent Aβ production and/or accumulation in the brain including α-secretase activators, specific γ-secretase modulators and small molecules BACE1 inhibitors were reviewed. Additionally, natural-origin bioactive compounds that provide AD therapeutic advances have been introduced. Considering AD is a multifactorial disease, the therapeutic potential of diverse multi target-directed ligands (MTDLs) that combine the efficacy of cholinesterase (ChE) inhibitors, MAO (monoamine oxidase) inhibitors, BACE1 inhibitors, phosphodiesterase 4D (PDE4D) inhibitors, for the treatment of AD are also reviewed. This article also highlights descriptions on the regulator of serotonin receptor (5-HT), metal chelators, anti-aggregants, antioxidants and neuroprotective agents targeting AD. Finally, current computational methods for evaluating the structure-activity relationships (SAR) and virtual screening (VS) of AD drugs are discussed and evaluated.
Collapse
Affiliation(s)
- Aida Iraji
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahsima Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Khoshneviszadeh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medicinal Chemistry, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Najmeh Edraki
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
16
|
Austin SA, Katusic ZS. Partial loss of endothelial nitric oxide leads to increased cerebrovascular beta amyloid. J Cereb Blood Flow Metab 2020; 40:392-403. [PMID: 30614363 PMCID: PMC7370614 DOI: 10.1177/0271678x18822474] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cerebral amyloid angiopathy (CAA) is present in over half of the elderly population and in 80-90% of Alzheimer's disease (AD) patients. CAA is defined by the deposition of beta amyloid (Aβ) in small cerebral arteries and capillaries. Cardiovascular risk factors are associated with an increased incidence of CAA. We utilized 18-month-old endothelial nitric oxide synthase (eNOS) heterozygous knockout (+/-) mice, a clinically relevant model of endothelial dysfunction, to examine the role of endothelial nitric oxide (NO) in vascular Aβ accumulation. eNOS+/- mice had significantly higher vascular levels of Aβ40 (P < 0.05). Aβ42 was not detected. There was no difference in Aβ in brain tissue. Amyloid precursor protein and β-site APP cleavage enzyme 1 protein levels were unaltered, while levels of the α-secretase enzyme, a disintegrin and metalloproteinase 10, were significantly lower in eNOS + /- microvascular tissue (P < 0.05). Insulin degrading enzyme and low-density lipoprotein receptor-related protein 1 were significantly increased in eNOS+/- microvascular tissue, most likely an adaptive response to locally higher Aβ concentrations. Lastly, catalase and CuZn superoxide dismutase were significantly elevated in eNOS+/- microvascular tissue (P < 0.05). These data demonstrate decreased availability of endothelial NO leads to increased cerebrovascular concentration of Aβ along with compensatory mechanisms to protect the vasculature.
Collapse
Affiliation(s)
- Susan A Austin
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Departments of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
17
|
Bram JMDF, Talib LL, Joaquim HPG, Sarno TA, Gattaz WF, Forlenza OV. Protein levels of ADAM10, BACE1, and PSEN1 in platelets and leukocytes of Alzheimer's disease patients. Eur Arch Psychiatry Clin Neurosci 2019; 269:963-972. [PMID: 29845446 DOI: 10.1007/s00406-018-0905-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/22/2018] [Indexed: 12/31/2022]
Abstract
The clinical diagnosis of Alzheimer's disease (AD) is a probabilistic formulation that may lack accuracy particularly at early stages of the dementing process. Abnormalities in amyloid-beta precursor protein (APP) metabolism and in the level of APP secretases have been demonstrated in platelets, and to a lesser extent in leukocytes, of AD patients, with conflicting results. The aim of the present study was to compare the protein level of the APP secretases A-disintegrin and metalloprotease 10 (ADAM10), Beta-site APP-cleaving enzyme 1 (BACE1), and presenilin-1 (PSEN1) in platelets and leukocytes from 20 non-medicated older adults with AD and 20 healthy elders, and to determine the potential use of these biomarkers to discriminate cases of AD from controls. The protein levels of all APP secretases were significantly higher in platelets compared to leukocytes. We found statistically a significant decrease in ADAM10 (52.5%, p < 0.0001) and PSEN1 (32%, p = 0.02) in platelets from AD patients compared to controls, but not in leukocytes. Combining all three secretases to generate receiver-operating characteristic (ROC) curves, we found a good discriminatory effect (AD vs. controls) when using platelets (the area under the curve-AUC-0.90, sensitivity 88.9%, specificity 66.7%, p = 0.003), but not in leukocytes (AUC 0.65, sensitivity 77.8%, specificity 50.0%, p = 0.2). Our findings indicate that platelets represent a better biological matrix than leukocytes to address the peripheral level of APP secretases. In addition, combining the protein level of ADAM10, BACE1, and PSEN1 in platelets, yielded a good accuracy to discriminate AD from controls.
Collapse
Affiliation(s)
- Jessyka Maria de França Bram
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Leda Leme Talib
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Helena Passarelli Giroud Joaquim
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Tamires Alves Sarno
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Wagner Farid Gattaz
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil
| | - Orestes Vicente Forlenza
- Laboratorio de Neurociencias (LIM-27), Departamento e Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da USP (HCFMUSP), Faculdade de Medicina, Universidade de Sao Paulo, Rua Doutor Ovídio Pires de Campos 785, São Paulo, SP, 05403-010, Brazil.
| |
Collapse
|
18
|
Sun R, He T, Pan Y, Katusic ZS. Effects of senescence and angiotensin II on expression and processing of amyloid precursor protein in human cerebral microvascular endothelial cells. Aging (Albany NY) 2019; 10:100-114. [PMID: 29348391 PMCID: PMC5811245 DOI: 10.18632/aging.101362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
Abstract
The present study was designed to determine the effects of senescence and angiotensin II (Ang II) on expression and processing of amyloid precursor protein (APP) in human brain microvascular endothelial cells (BMECs). Senescence caused a decrease in APP expression thereby resulting in reduced secretion of soluble APPα (sAPPα). In contrast, β-site APP cleaving enzyme (BACE1) expression and production of amyloid β (Aβ)40 were increased in senescent endothelium. Importantly, in senescent human BMECs, treatment with BACE1 inhibitor IV inhibited Aβ generation and increased sAPPα production by enhancing a disintegrin and metalloprotease (ADAM)10 expression. Furthermore, Ang II impaired expression of ADAM10 and significantly reduced generation of sAPPα in senescent human BMECs. This inhibitory effect of Ang II was prevented by treatment with BACE1 inhibitor IV. Our results suggest that impairment of α-processing and shift to amyloidogenic pathway of APP contribute to endothelial dysfunction induced by senescence. Loss of sAPPα in senescent cells treated with Ang II exacerbates detrimental effects of senescence on APP processing. Notably, inhibition of BACE1 has beneficial effects on senescence induced endothelial dysfunction. Reported findings may help to explain contributions of senescent cerebral microvascular endothelium to development of cerebral amyloid angiopathy and Alzheimer’s disease (AD) pathology.
Collapse
Affiliation(s)
- Ruohan Sun
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China.,Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Tongrong He
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Yujun Pan
- Department of Neurology, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, 150001, China
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Nam Y, Joo B, Lee JY, Han KM, Ryu KY, Koh YH, Kim J, Koo JW, We YM, Hoe HS. ALWPs Improve Cognitive Function and Regulate Aβ Plaque and Tau Hyperphosphorylation in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2019; 12:192. [PMID: 31474828 PMCID: PMC6707392 DOI: 10.3389/fnmol.2019.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/24/2019] [Indexed: 01/21/2023] Open
Abstract
Recently, we reported that ALWPs, which we developed by combining Liuwei Dihuang pills (LWPs) with antler, regulate the LPS-induced neuroinflammatory response and rescue LPS-induced short- and long-term memory impairment in wild-type (WT) mice. In the present study, we examined the effects of ALWPs on Alzheimer’s disease (AD) pathology and cognitive function in WT mice as well as 5x FAD mice (a mouse model of AD). We found that administration of ALWPs significantly reduced amyloid plaque levels in 5x FAD mice and significantly decreased amyloid β (Aβ) levels in amyloid precursor protein (APP)-overexpressing H4 cells. In addition, ALWPs administration significantly suppressed tau hyperphosphorylation in 5x FAD mice. Oral administration of ALWPs significantly improved long-term memory in scopolamine (SCO)-injected WT mice and 5x FAD mice by altering dendritic spine density. Importantly, ALWPs promoted spinogenesis in primary hippocampal neurons and WT mice and modulated the dendritic spine number in an extracellular signal-regulated kinase (ERK)-dependent manner. Taken together, our results suggest that ALWPs are a candidate therapeutic drug for AD that can modulate amyloid plaque load, tau phosphorylation, and synaptic/cognitive function.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Young Ho Koh
- Center for Biomedical Sciences, Center for Infectious Diseases, Division of Brain Disease, Korea National Institute of Health, Heungdeok-gu, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
20
|
Escitalopram Ameliorates Cognitive Impairment in D-Galactose-Injected Ovariectomized Rats: Modulation of JNK, GSK-3β, and ERK Signalling Pathways. Sci Rep 2019; 9:10056. [PMID: 31296935 PMCID: PMC6624366 DOI: 10.1038/s41598-019-46558-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 06/27/2019] [Indexed: 12/29/2022] Open
Abstract
Though selective serotonin reuptake inhibitors (SSRIs) have been found to increase cognitive performance in some studies on patients and animal models of Alzheimer's disease (AD), other studies have reported contradictory results, and the mechanism of action has not been fully described. This study aimed to examine the effect of escitalopram, an SSRI, in an experimental model of AD and to determine the involved intracellular signalling pathways. Ovariectomized rats were administered D-galactose (150 mg/kg/day, i.p) over ten weeks to induce AD. Treatment with escitalopram (10 mg/kg/day, p.o) for four weeks, starting from the 7th week of D-galactose injection, enhanced memory performance and attenuated associated histopathological changes. Escitalopram reduced hippocampal amyloid β 42, β-secretase, and p-tau, while increasing α-secretase levels. Furthermore, it decreased tumor necrosis factor-α, nuclear factor-kappa B p65, and NADPH oxidase, while enhancing brain-derived neurotrophic factor, phospho-cAMP response element binding protein, and synaptophysin levels. Moreover, escitalopram diminished the protein expression of the phosphorylated forms of c-Jun N-terminal kinase (JNK)/c-Jun, while increasing those of phosphoinositide 3-kinase (PI3K), protein kinase B (Akt), glycogen synthase kinase-3β (GSK-3β), extracellular signal-regulated kinase (ERK) and its upstream kinases MEK and Raf-1. In conclusion, escitalopram ameliorated D-galactose/ovariectomy-induced AD-like features through modulation of PI3K/Akt/GSK-3β, Raf-1/MEK/ERK, and JNK/c-Jun pathways.
Collapse
|
21
|
Sergeant N, Vingtdeux V, Eddarkaoui S, Gay M, Evrard C, Le Fur N, Laurent C, Caillierez R, Obriot H, Larchanché PE, Farce A, Coevoet M, Carato P, Kouach M, Descat A, Dallemagne P, Buée-Scherrer V, Blum D, Hamdane M, Buée L, Melnyk P. New piperazine multi-effect drugs prevent neurofibrillary degeneration and amyloid deposition, and preserve memory in animal models of Alzheimer's disease. Neurobiol Dis 2019; 129:217-233. [PMID: 30928644 DOI: 10.1016/j.nbd.2019.03.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 03/01/2019] [Accepted: 03/26/2019] [Indexed: 12/01/2022] Open
Abstract
Alzheimer's Disease is a devastating dementing disease involving amyloid deposits, neurofibrillary tangles, progressive and irreversible cognitive impairment. Today, only symptomatic drugs are available and therapeutic treatments, possibly acting at a multiscale level, are thus urgently needed. To that purpose, we designed multi-effects compounds by synthesizing drug candidates derived by substituting a novel N,N'-disubstituted piperazine anti-amyloid scaffold and adding acetylcholinesterase inhibition property. Two compounds were synthesized and evaluated. The most promising hybrid molecule reduces both the amyloid pathology and the Tau pathology as well as the memory impairments in a preclinical model of Alzheimer's disease. In vitro also, the compound reduces the phosphorylation of Tau and inhibits the release of Aβ peptides while preserving the processing of other metabolites of the amyloid precursor protein. We synthetized and tested the first drug capable of ameliorating both the amyloid and Tau pathology in animal models of AD as well as preventing the major brain lesions and associated memory impairments. This work paves the way for future compound medicines against both Alzheimer's-related brain lesions development and the associated cognitive impairments.
Collapse
Affiliation(s)
- Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.
| | - Valérie Vingtdeux
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Marion Gay
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Caroline Evrard
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Nicolas Le Fur
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Cyril Laurent
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Raphaelle Caillierez
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Hélène Obriot
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Amaury Farce
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Mathilde Coevoet
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Pascal Carato
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Mostafa Kouach
- Univ. Lille, CUMA - Centre Universitaire de Mesures et d'Analyses, F-59000 Lille, France
| | - Amandine Descat
- Univ. Lille, CUMA - Centre Universitaire de Mesures et d'Analyses, F-59000 Lille, France
| | - Patrick Dallemagne
- UNICAEN, UFR des Sciences Pharmaceutiques, EA 4258 CERMN, F-14032 Caen, France
| | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Malika Hamdane
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S1172 - JPArc - Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, F-59000 Lille, France.
| |
Collapse
|
22
|
Al-Atrache Z, Lopez DB, Hingley ST, Appelt DM. Astrocytes infected with Chlamydia pneumoniae demonstrate altered expression and activity of secretases involved in the generation of β-amyloid found in Alzheimer disease. BMC Neurosci 2019; 20:6. [PMID: 30786875 PMCID: PMC6383264 DOI: 10.1186/s12868-019-0489-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
Background Epidemiologic studies strongly suggest that the pathophysiology of late-onset Alzheimer disease (AD) versus early-onset AD has environmental rather than genetic causes, thus revealing potentially novel therapeutic targets to limit disease progression. Several studies supporting the “pathogen hypothesis” of AD demonstrate a strong association between pathogens and the production of β-amyloid, the pathologic hallmark of AD. Although the mechanism of pathogen-induced neurodegeneration of AD remains unclear, astrocytes, a key player of the CNS innate immune response and producer/metabolizer of β-amyloid, have been implicated. We hypothesized that Chlamydia pneumoniae infection of human astrocytes alters the expression of the amyloid precursor protein (APP)-processing secretases, ADAM10, BACE1, and PSEN1, to promote β-amyloid formation. Utilizing immunofluorescent microscopy, molecular, and biochemical approaches, these studies explore the role of an intracellular respiratory pathogen, Chlamydia pneumoniae, as an environmental trigger for AD pathology. Human astrocytoma cells in vitro were infected with Chlamydia pneumoniae over the course of 6–72 h. The gene and protein expression, as well as the enzymatic activity of non-amyloidogenic (ADAM10), and pro-amyloidogenic (BACE1 and PSEN1) secretases were qualitatively and quantitatively assessed. In addition, the formation of toxic amyloid products as an outcome of pro-amyloidogenic APP processing was evaluated through various modalities. Results Chlamydia pneumoniae infection of human astrocytoma cells promoted the transcriptional upregulation of numerous genes implicated in host neuroinflammation, lipid homeostasis, microtubule function, and APP processing. Relative to that of uninfected astrocytes, BACE1 and PSEN1 protein levels were enhanced by nearly twofold at 48–72 h post-Chlamydia pneumoniae infection. The processing of APP in Chlamydia pneumoniae-infected astrocytes favors the pro-amyloidogenic pathway, as demonstrated by an increase in enzymatic activity of BACE1, while that of ADAM10 was decreased. Fluorescence intensity of β-amyloid and ELISA-quantified levels of soluble-APP by products revealed temporally similar increases, confirming a BACE1/PSEN1-mediated processing of APP. Conclusions Our findings suggest that Chlamydia pneumoniae infection of human astrocytes promotes the pro-amyloidogenic pathway of APP processing through the upregulation of expression and activity of β-secretase, upregulated expression of γ-secretase, and decreased activity of α-secretase. These effects of astrocyte infection provide evidence for a direct link between Chlamydia pneumoniae and AD pathology. Electronic supplementary material The online version of this article (10.1186/s12868-019-0489-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zein Al-Atrache
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Danielle B Lopez
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Susan T Hingley
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA
| | - Denah M Appelt
- Department of Bio-Medical Sciences, Center for Chronic Disorders of Aging, Philadelphia College of Osteopathic Medicine, 4170 City Avenue, Philadelphia, PA, 19131, USA.
| |
Collapse
|
23
|
Truong PH, Ciccotosto GD, Merson TD, Spoerri L, Chuei MJ, Ayers M, Xing YL, Emery B, Cappai R. Amyloid precursor protein and amyloid precursor-like protein 2 have distinct roles in modulating myelination, demyelination, and remyelination of axons. Glia 2018; 67:525-538. [DOI: 10.1002/glia.23561] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Phan H. Truong
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
- The Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Victoria Australia
- Department of Pharmacology and Therapeutics; The University of Melbourne; Melbourne Victoria Australia
| | - Giuseppe D. Ciccotosto
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
- The Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Victoria Australia
- Department of Pharmacology and Therapeutics; The University of Melbourne; Melbourne Victoria Australia
| | - Tobias D. Merson
- The Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Melbourne Victoria Australia
| | - Loredana Spoerri
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
- The Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Victoria Australia
| | - Mun Joo Chuei
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
- The Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Victoria Australia
| | - Margaret Ayers
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
| | - Yao Lulu Xing
- The Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Melbourne Victoria Australia
| | - Ben Emery
- The Florey Institute of Neuroscience and Mental Health; The University of Melbourne; Melbourne Victoria Australia
- Department of Anatomy and Neuroscience; The University of Melbourne; Melbourne Victoria Australia
| | - Roberto Cappai
- Department of Pathology; The University of Melbourne; Melbourne Victoria Australia
- The Bio21 Molecular Science and Biotechnology Institute; The University of Melbourne; Melbourne Victoria Australia
- Department of Pharmacology and Therapeutics; The University of Melbourne; Melbourne Victoria Australia
| |
Collapse
|
24
|
Evrard C, Kienlen-Campard P, Coevoet M, Opsomer R, Tasiaux B, Melnyk P, Octave JN, Buée L, Sergeant N, Vingtdeux V. Contribution of the Endosomal-Lysosomal and Proteasomal Systems in Amyloid-β Precursor Protein Derived Fragments Processing. Front Cell Neurosci 2018; 12:435. [PMID: 30524243 PMCID: PMC6263093 DOI: 10.3389/fncel.2018.00435] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 11/02/2018] [Indexed: 12/31/2022] Open
Abstract
Aβ peptides, the major components of Alzheimer's disease (AD) amyloid deposits, are released following sequential cleavages by secretases of its precursor named the amyloid precursor protein (APP). In addition to secretases, degradation pathways, in particular the endosomal/lysosomal and proteasomal systems have been reported to contribute to APP processing. However, the respective role of each of these pathways toward APP metabolism remains to be established. To address this, we used HEK 293 cells and primary neurons expressing full-length wild type APP or the β-secretase-derived C99 fragment (β-CTF) in which degradation pathways were selectively blocked using pharmacological drugs. APP metabolites, including carboxy-terminal fragments (CTFs), soluble APP (sAPP) and Aβ peptides were studied. In this report, we show that APP-CTFs produced from endogenous or overexpressed full-length APP are mainly processed by γ-secretase and the endosomal/lysosomal pathway, while in sharp contrast, overexpressed C99 is mainly degraded by the proteasome and to a lesser extent by γ-secretase.
Collapse
Affiliation(s)
- Caroline Evrard
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Pascal Kienlen-Campard
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Mathilde Coevoet
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Rémi Opsomer
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Bernadette Tasiaux
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Patricia Melnyk
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Jean-Noël Octave
- Alzheimer Research Group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Luc Buée
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Nicolas Sergeant
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| | - Valérie Vingtdeux
- Université de Lille, Inserm, Centre Hospitalier-Universitaire de Lille, UMR-S 1172 – Centre de Recherche Jean-Pierre Aubert, Lille, France
| |
Collapse
|
25
|
Zhang BJ, Yuan CX. Effects of ADAM2 silencing on isoflurane-induced cognitive dysfunction via the P13K/Akt signaling pathway in immature rats. Biomed Pharmacother 2018; 109:217-225. [PMID: 30396079 DOI: 10.1016/j.biopha.2018.10.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 09/22/2018] [Accepted: 10/03/2018] [Indexed: 11/17/2022] Open
Abstract
Volatile anesthetics, including isoflurane, have been reported to have negative effects on cognitive dysfunction characterized by cognitive deficits following anesthesia. The aim of the current study was to investigate the effects involved with disintegrin and metallopeptidase domain 2 (ADAM2) silencing on isoflurane-induced cognitive dysfunction via the P13 K/Akt signaling pathway in immature rats. One week old healthy Sprague-Dawley (SD) rats were recruited and administered isoflurane anesthesia. The rats were then subjected to shADAM2 or wortmannin (PI3K/Akt signaling pathway inhibitor) to identify the effects of ADAM2 and the PI3K/Akt signaling pathway on the cognitive function of rats. Morris water maze and passive-avoidance tests were performed to examine the cognitive function of the rats. TUNEL staining was conducted to detect neuronal apoptosis in the hippocampal CA1 region. The obtained experimental results demonstrated that isoflurane anesthesia led to increased escape latency, reaction time, number of errors and TUNEL-positive neurons, along with a decreased latency time. In response to treatment with shADAM2, escape latency, reaction time, number of errors and TUNEL-positive cells were all noted to have decreased, in addition to elevated latency time, while contrasting trends were observed in regard to treatment with wortmannin. Taken together, the key findings of the present study revealed that shADAM2 activated the PI3K/Akt signaling pathway, resulting in elevated expressions of PI3K and Akt. Our study ultimately identified that ADAM2 silencing alleviates isoflurane-induced cognitive dysfunction by activating the P13 K/Akt signaling pathway in immature rats.
Collapse
Affiliation(s)
- Bao-Juan Zhang
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China
| | - Chang-Xiu Yuan
- Department of Anesthesiology, Jining No.1 People's Hospital, Jining, 272011, PR China.
| |
Collapse
|
26
|
Sogorb-Esteve A, García-Ayllón MS, Gobom J, Alom J, Zetterberg H, Blennow K, Sáez-Valero J. Levels of ADAM10 are reduced in Alzheimer's disease CSF. J Neuroinflammation 2018; 15:213. [PMID: 30045733 PMCID: PMC6060469 DOI: 10.1186/s12974-018-1255-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022] Open
Abstract
Background The disintegrin metalloproteinase 10 (ADAM10) is the main α-secretase acting in the non-amyloidogenic processing of the amyloid precursor protein. This study assesses whether ADAM10 is present in cerebrospinal fluid (CSF), and whether it has potential as a biomarker for Alzheimer’s disease (AD). Methods ADAM10 was characterized in human CSF samples by immunoprecipitation and western blotting using antibodies specific for different domains of the protein and by ultracentrifugation in sucrose density gradients. Samples from AD patients (n = 20) and age-matched non-AD controls (n = 20) were characterized for classical CSF biomarkers, Aβ42, T-tau, or P-tau by ELISA, and assayed for soluble ADAM10 levels by western blotting. Results We found that ADAM10 is present in human CSF as several distinct species: an immature form retaining the prodomain (proADAM10; ~ 80 kDa), a mature unprocessed full-length form (ADAM10f; ~ 55 kDa), and a truncated large soluble form released from the membrane (sADAM10; ~ 50 kDa). Fractionation by ultracentrifugation on sucrose density gradients showed that the ADAM10f and sADAM10 species form large complexes. Immunoblotting revealed a significant decrease in ADAM10f and sADAM10 in AD CSF compared to control CSF, while proADAM10 levels remained unaltered. Conclusions Several forms of ADAM10 are present in CSF, mainly assembled as high-molecular weight complexes. The determination of the levels of mature forms of CSF-ADAM10 may be useful as a biomarker for AD. Electronic supplementary material The online version of this article (10.1186/s12974-018-1255-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, Sant Joan d'Alacant, E-03550, Alicante, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, Sant Joan d'Alacant, E-03550, Alicante, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Unidad de Investigación, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Elche, Spain
| | - Johan Gobom
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jordi Alom
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.,Servicio de Neurología, Hospital General Universitario de Elche, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Elche, Spain
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Av. Ramón y Cajal s/n, Sant Joan d'Alacant, E-03550, Alicante, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Sant Joan d'Alacant, Spain.
| |
Collapse
|
27
|
Abstract
As a member of the A Disintegrin And Metalloproteinase (ADAM) family, ADAM10 has been identified as the constitutive α-secretase in the process of amyloid-β protein precursor (AβPP) cleavage and plays a critical role in reducing the generation of the amyloid-β (Aβ) peptides. Recent studies have demonstrated its beneficial role in alleviating the pathologic impairment in Alzheimer's disease (AD) both in vitro and in vivo. However, the role of ADAM10 in AD and the underlying molecular mechanisms are still not well established. Increasing evidence indicates that ADAM10 not only reduces the generation of Aβ but may also affect the pathology of AD through potential mechanisms including reducing tau pathology, maintaining normal synaptic functions, and promoting hippocampal neurogenesis and the homeostasis of neuronal networks. Mechanistically, ADAM10 regulates these functions by interacting with postsynaptic substrates in brain, especially synaptic cell receptors and adhesion molecules. Furthermore, ADAM10 protein in platelets seems to be a promising biomarker for AD diagnosis. This review will summarize the role of ADAM10 in AD and highlight its functions besides its role as the α-secretase in AβPP cleavage. Meanwhile, we will discuss the therapeutic potential of ADAM10 in treating AD.
Collapse
Affiliation(s)
- Xiang-Zhen Yuan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Sen Sun
- Qingdao Blood Center, Qingdao, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Gay M, Carato P, Coevoet M, Renault N, Larchanché PE, Barczyk A, Yous S, Buée L, Sergeant N, Melnyk P. New phenylaniline derivatives as modulators of amyloid protein precursor metabolism. Bioorg Med Chem 2018; 26:2151-2164. [PMID: 29559198 DOI: 10.1016/j.bmc.2018.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 11/25/2022]
Abstract
The chloroquinoline scaffold is characteristic of anti-malarial drugs such as chloroquine (CQ) or amodiaquine (AQ). These drugs are also described for their potential effectiveness against prion disease, HCV, EBV, Ebola virus, cancer, Parkinson or Alzheimer diseases. Amyloid precursor protein (APP) metabolism is deregulated in Alzheimer's disease. Indeed, CQ modifies amyloid precursor protein (APP) metabolism by precluding the release of amyloid-beta peptides (Aβ), which accumulate in the brain of Alzheimer patients to form the so-called amyloid plaques. We showed that AQ and analogs have similar effects although having a higher cytotoxicity. Herein, two new series of compounds were synthesized by replacing 7-chloroquinolin-4-amine moiety of AQ by 2-aminomethylaniline and 2-aminomethylphenyle moieties. Their structure activity relationship was based on their ability to modulate APP metabolism, Aβ release, and their cytotoxicity similarly to CQ. Two compounds 15a, 16a showed interesting and potent effect on the redirection of APP metabolism toward a decrease of Aβ peptide release (in the same range compared to AQ), and a 3-10-fold increased stability of APP carboxy terminal fragments (CTFα and AICD) without obvious cellular toxicity at 100 µM.
Collapse
Affiliation(s)
- Marion Gay
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Pascal Carato
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Mathilde Coevoet
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Nicolas Renault
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Amélie Barczyk
- Univ. Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, F-59000 Lille, France
| | - Saïd Yous
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer, F-59000 Lille, France.
| |
Collapse
|
29
|
Wong SY, Tang BL. SIRT1 as a therapeutic target for Alzheimer's disease. Rev Neurosci 2018; 27:813-825. [PMID: 27497424 DOI: 10.1515/revneuro-2016-0023] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/12/2016] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is the most prevalent cause of dementia in the aging population worldwide. SIRT1 deacetylation of histones and transcription factors impinge on multiple neuronal and non-neuronal targets, and modulates stress response, energy metabolism and cellular senescence/death pathways. Collectively, SIRT1 activity could potentially affect multiple aspects of hippocampal and cortical neuron function and survival, thus modifying disease onset and progression. In this review, the known and potential mechanisms of action of SIRT1 with regard to AD, and its potential as a therapeutic target, are discussed.
Collapse
|
30
|
Rose C, Dorard E, Audrain M, Gorisse-Hussonnois L, Cartier N, Braudeau J, Allinquant B. Transient increase in sAPPα secretion in response to Aβ1–42 oligomers: an attempt of neuronal self-defense? Neurobiol Aging 2018; 61:23-35. [DOI: 10.1016/j.neurobiolaging.2017.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 09/08/2017] [Accepted: 09/09/2017] [Indexed: 12/19/2022]
|
31
|
Grimm MOW, Michaelson DM, Hartmann T. Omega-3 fatty acids, lipids, and apoE lipidation in Alzheimer's disease: a rationale for multi-nutrient dementia prevention. J Lipid Res 2017; 58:2083-2101. [PMID: 28528321 PMCID: PMC5665674 DOI: 10.1194/jlr.r076331] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 05/09/2017] [Indexed: 12/14/2022] Open
Abstract
In the last decade, it has become obvious that Alzheimer's disease (AD) is closely linked to changes in lipids or lipid metabolism. One of the main pathological hallmarks of AD is amyloid-β (Aβ) deposition. Aβ is derived from sequential proteolytic processing of the amyloid precursor protein (APP). Interestingly, both, the APP and all APP secretases are transmembrane proteins that cleave APP close to and in the lipid bilayer. Moreover, apoE4 has been identified as the most prevalent genetic risk factor for AD. ApoE is the main lipoprotein in the brain, which has an abundant role in the transport of lipids and brain lipid metabolism. Several lipidomic approaches revealed changes in the lipid levels of cerebrospinal fluid or in post mortem AD brains. Here, we review the impact of apoE and lipids in AD, focusing on the major brain lipid classes, sphingomyelin, plasmalogens, gangliosides, sulfatides, DHA, and EPA, as well as on lipid signaling molecules, like ceramide and sphingosine-1-phosphate. As nutritional approaches showed limited beneficial effects in clinical studies, the opportunities of combining different supplements in multi-nutritional approaches are discussed and summarized.
Collapse
Affiliation(s)
- Marcus O W Grimm
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| | - Daniel M Michaelson
- Department of Neurobiology, George S. Wise Faculty of Life Sciences, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Tobias Hartmann
- Department of Experimental Neurology and Department of Neurodegeneration and Neurobiology, and Deutsches Institut für DemenzPrävention (DIDP), Saarland University, Homburg/Saar, Germany
| |
Collapse
|
32
|
Parsons CG, Rammes G. Preclinical to phase II amyloid beta (Aβ) peptide modulators under investigation for Alzheimer’s disease. Expert Opin Investig Drugs 2017; 26:579-592. [DOI: 10.1080/13543784.2017.1313832] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Chris G. Parsons
- Non-Clinical Science, Merz Pharmaceuticals GmbH, Frankfurt am Main, Germany
| | - Gerhard Rammes
- Klinikum rechts der Isar der Technischen Universitat Munchen – Department of Anesthesiology, Munchen, Germany
| |
Collapse
|
33
|
The Polyherbal Wattana Formula Displays Anti-Amyloidogenic Properties by Increasing α-Secretase Activities. PLoS One 2017; 12:e0170360. [PMID: 28107420 PMCID: PMC5249131 DOI: 10.1371/journal.pone.0170360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/03/2017] [Indexed: 11/19/2022] Open
Abstract
Alzheimer's disease is characterized by the deposition of insoluble amyloid-β peptides produced from the β-amyloid precursor protein (βAPP). Because α-secretase cleavage by ADAM10 and ADAM17 takes place in the middle of Aβ, its activation is considered as a promising anti-AD therapeutic track. Here we establish that the polyherbal Wattana formula (WNF) stimulates sAPPα production in cells of neuronal and non-neuronal origins through an increase of both ADAM10 and ADAM17 catalytic activities with no modification of BACE1 activity and expression. This effect is blocked by specific inhibition or genetic depletion of these disintegrins and we show that WNF up-regulates ADAM10 transcription and ADAM17 maturation. In addition, WNF reduces Aβ40 and Aβ42 generation in human cell lines. Altogether, WNF presents all the characteristics of a potent preventive anti-Alzheimer formula. Importantly, this natural recipe, currently prescribed to patients for the treatment of other symptoms without any secondary effect, can be tested immediately for further clinical studies.
Collapse
|
34
|
Kuang X, Zhou HJ, Thorne AH, Chen XN, Li LJ, Du JR. Neuroprotective Effect of Ligustilide through Induction of α-Secretase Processing of Both APP and Klotho in a Mouse Model of Alzheimer's Disease. Front Aging Neurosci 2017; 9:353. [PMID: 29163135 PMCID: PMC5673635 DOI: 10.3389/fnagi.2017.00353] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 10/17/2017] [Indexed: 12/21/2022] Open
Abstract
Emerging evidence suggests that alpha-processing single transmembrane proteins, amyloid precursor protein (APP) and anti-aging protein Klotho, are likely to be involved in the progression of Alzheimer's disease (AD). The natural phthalide Ligustilide (LIG) has been demonstrated to protect against aging- and amyloid-β (Aβ)-induced brain dysfunction in animal models. The present study is to investigate the effects of LIG on cognitive deficits and metabolism of both APP and Klotho and its underlying mechanism in AD double-transgenic (APP/PS1) mice and cultured human cells. Our results show that treatment with LIG significantly ameliorated memory impairment and Aβ levels and plaques burden. Specifically, LIG might act as a potent enhancer of α-secretase, disintegrin, and metalloprotease 10 (ADAM10), leading to upregulation of alpha-processing of both APP and Klotho and subsequent increases in the levels of both soluble APP fragment (sAPPα) and soluble Klotho (sKL) with inhibition of IGF-1/Akt/mTOR signaling in AD mice and cultured cells. Moreover, the specific ADAM10 inhibitor (G1254023X) effectively reversed LIG-induced alpha-processing of both APP and Klotho in vitro, while Klotho gene knockdown by small interfering RNA significantly blunted LIG-mediated inhibition of IGF-1/Akt/mTOR signaling in vitro. Taken together with the reported neuroprotective effects of both sAPPα and sKL as well as autophagy induction by Akt/mTOR pathway inhibition, our findings suggest that neuroprotection of LIG against AD is associated with induction alpha-processing of APP and Klotho and potential Aβ clearance. Whether LIG might induce Aβ autophagic clearance and the underlying mechanisms need to be further studied.
Collapse
Affiliation(s)
- Xi Kuang
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hong-Jing Zhou
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Amy H. Thorne
- Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, United States
| | - Xi-Nan Chen
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Lin-Jiao Li
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Jun-Rong Du
- Key Laboratory of Drug Targeting and Drug Delivery System, Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, China
- *Correspondence: Jun-Rong Du,
| |
Collapse
|
35
|
He T, Santhanam AVR, Lu T, d'Uscio LV, Katusic ZS. Role of prostacyclin signaling in endothelial production of soluble amyloid precursor protein-α in cerebral microvessels. J Cereb Blood Flow Metab 2017; 37:106-122. [PMID: 26661245 PMCID: PMC5363732 DOI: 10.1177/0271678x15618977] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/20/2015] [Accepted: 10/30/2015] [Indexed: 12/20/2022]
Abstract
We tested hypothesis that activation of the prostacyclin (PGI2) receptor (IP receptor) signaling pathway in cerebral microvessels plays an important role in the metabolism of amyloid precursor protein (APP). In human brain microvascular endothelial cells activation of IP receptor with the stable analogue of PGI2, iloprost, stimulated expression of amyloid precursor protein and a disintegrin and metalloprotease 10 (ADAM10), resulting in an increased production of the neuroprotective and anticoagulant molecule, soluble APPα (sAPPα). Selective agonist of IP receptor, cicaprost, and adenylyl cyclase activator, forskolin, also enhanced expression of amyloid precursor protein and ADAM10. Notably, in cerebral microvessels of IP receptor knockout mice, protein levels of APP and ADAM10 were reduced. In addition, iloprost increased protein levels of peroxisome proliferator-activated receptor δ (PPARδ) in human brain microvascular endothelial cells. PPARδ-siRNA abolished iloprost-augmented protein expression of ADAM10. In contrast, GW501516 (a selective agonist of PPARδ) upregulated ADAM10 and increased production of sAPPα. Genetic deletion of endothelial PPARδ (ePPARδ-/-) in mice significantly reduced cerebral microvascular expression of ADAM10 and production of sAPPα. In vivo treatment with GW501516 increased sAPPα content in hippocampus of wild type mice but not in hippocampus of ePPARδ-/- mice. Our findings identified previously unrecognized role of IP-PPARδ signal transduction pathway in the production of sAPPα in cerebral microvasculature.
Collapse
Affiliation(s)
- Tongrong He
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Anantha Vijay R Santhanam
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Tong Lu
- Department of Internal Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Livius V d'Uscio
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Zvonimir S Katusic
- Department of Anesthesiology and Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
36
|
Mendiola-Precoma J, Berumen LC, Padilla K, Garcia-Alcocer G. Therapies for Prevention and Treatment of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2589276. [PMID: 27547756 PMCID: PMC4980501 DOI: 10.1155/2016/2589276] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/31/2016] [Accepted: 06/05/2016] [Indexed: 01/11/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia associated with a progressive neurodegenerative disorder, with a prevalence of 44 million people throughout the world in 2015, and this figure is estimated to double by 2050. This disease is characterized by blood-brain barrier disruption, oxidative stress, mitochondrial impairment, neuroinflammation, and hypometabolism; it is related to amyloid-β peptide accumulation and tau hyperphosphorylation as well as a decrease in acetylcholine levels and a reduction of cerebral blood flow. Obesity is a major risk factor for AD, because it induces adipokine dysregulation, which consists of the release of the proinflammatory adipokines and decreased anti-inflammatory adipokines, among other processes. The pharmacological treatments for AD can be divided into two categories: symptomatic treatments such as acetylcholinesterase inhibitors and N-methyl-D-aspartate (NMDA) receptor antagonists and etiology-based treatments such as secretase inhibitors, amyloid binders, and tau therapies. Strategies for prevention of AD through nonpharmacological treatments are associated with lifestyle interventions such as exercise, mental challenges, and socialization as well as caloric restriction and a healthy diet. AD is an important health issue on which all people should be informed so that prevention strategies that minimize the risk of its development may be implemented.
Collapse
Affiliation(s)
- J. Mendiola-Precoma
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - L. C. Berumen
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - K. Padilla
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| | - G. Garcia-Alcocer
- Laboratorio de Investigación Genética, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Centro Universitario, 76010 Santiago de Querétaro, QRO, Mexico
| |
Collapse
|
37
|
Alzheimer disease: modeling an Aβ-centered biological network. Mol Psychiatry 2016; 21:861-71. [PMID: 27021818 DOI: 10.1038/mp.2016.38] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 02/16/2016] [Accepted: 02/18/2016] [Indexed: 01/15/2023]
Abstract
In genetically complex diseases, the search for missing heritability is focusing on rare variants with large effect. Thanks to next generation sequencing technologies, genome-wide characterization of these variants is now feasible in every individual. However, a lesson from current studies is that collapsing rare variants at the gene level is often insufficient to obtain a statistically significant signal in case-control studies, and that network-based analyses are an attractive complement to classical approaches. In Alzheimer disease (AD), according to the prevalent amyloid cascade hypothesis, the pathology is driven by the amyloid beta (Aβ) peptide. In past years, based on experimental studies, several hundreds of proteins have been shown to interfere with Aβ production, clearance, aggregation or toxicity. Thanks to a manual curation of the literature, we identified 335 genes/proteins involved in this biological network and classified them according to their cellular function. The complete list of genes, or its subcomponents, will be of interest in ongoing AD genetic studies.
Collapse
|
38
|
Qian M, Shen X, Wang H. The Distinct Role of ADAM17 in APP Proteolysis and Microglial Activation Related to Alzheimer's Disease. Cell Mol Neurobiol 2016; 36:471-82. [PMID: 26119306 DOI: 10.1007/s10571-015-0232-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 06/23/2015] [Indexed: 01/03/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with the symptom of cognitive impairment. The deposition of amyloid β (Aβ) peptide is believed to be the primary cause to neuronal dystrophy and eventually dementia. Aβ is the proteolytic product from its precursor amyloid precursor protein (APP) by β- and γ- secretase. An optional cleavage by α-secretase happens inside the Aβ domain. ADAM17 is supposed to be the regulated α-secretase of APP. Enhanced activity of ADAM17 leads to the increasing secretion of neuroprotective soluble APP α fragment and reduction of Aβ generation, which may be benefit to the disease. ADAM17 is then considered the potential therapeutic target for AD. Microglia activation and neuroinflammation is another important event in AD pathogenesis. Interestingly, ADAM17 also participates in the cleavage of many other membrane-bound proteins, especially some inflammatory factors related to microglia activation. The facilitating role of ADAM17 in inflammation and further neuronal damage has also been illustrated. In results, the activation of ADAM17 as the solution to AD may be a tricky task. The comprehensive consideration and evaluation has to be carried out carefully before the final treatment. In the present review, the distinct role of ADAM17 in AD-related APP shedding and neuroinflammatory microglial activation will be carefully discussed.
Collapse
Affiliation(s)
- Meng Qian
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Xiaoqiang Shen
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China
| | - Huanhuan Wang
- Key Lab of Inflammation and Immunoregulation, School of Medicine, Hangzhou Normal University, Xuelin Street 16, Hangzhou, 310036, China.
| |
Collapse
|
39
|
Mullooly M, McGowan PM, Crown J, Duffy MJ. The ADAMs family of proteases as targets for the treatment of cancer. Cancer Biol Ther 2016; 17:870-80. [PMID: 27115328 DOI: 10.1080/15384047.2016.1177684] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The ADAMs (a disintegrin and metalloproteases) are transmembrane multidomain proteins implicated in multiple biological processes including proteolysis, cell adhesion, cell fusion, cell proliferation and cell migration. Of these varied activities, the best studied is their role in proteolysis. However, of the 22 ADAMs believed to be functional in humans, only approximately a half possess matrix metalloproteinase (MMP)-like protease activity. In contrast to MMPs which are mostly implicated in the degradation of extracellular matrix proteins, the main ADAM substrates are the ectodomains of type I and type II transmembrane proteins. These include growth factor/cytokine precursors, growth factor/cytokine receptors and adhesion proteins. Recently, several different ADAMs, especially ADAM17, have been shown to play a role in the development and progression of multiple cancer types. Consistent with this role in cancer, targeting ADAM17 with either low molecular weight inhibitors or monoclonal antibodies was shown to have anti-cancer activity in multiple preclinical systems. Although early phase clinical trials have shown no serious side effects with a dual ADAM10/17 low molecular weight inhibitor, the consequences of long-term treatment with these agents is unknown. Furthermore, efficacy in clinical trials remains to be shown.
Collapse
Affiliation(s)
- Maeve Mullooly
- a National Institutes of Health , Bethesda , MD , USA.,b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland
| | - Patricia M McGowan
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,c Education and Research Center , St. Vincent's University Hospital , Dublin , Ireland
| | - John Crown
- d Department of Medical Oncology , St. Vincent's University Hospital , Dublin , Ireland
| | - Michael J Duffy
- b UCD School of Medicine and Medical Science , Conway Institute of Biomolecular and Biomedical Research, University College Dublin , Ireland.,e UCD Clinical Research Center , St. Vincent's University Hospital , Dublin , Ireland
| |
Collapse
|
40
|
Leriche G, Chen AC, Kim S, Selkoe DJ, Yang J. Fluorescent Analogue of Batimastat Enables Imaging of α-Secretase in Living Cells. ACS Chem Neurosci 2016; 7:40-5. [PMID: 26559179 DOI: 10.1021/acschemneuro.5b00283] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The ADAM family of metalloproteases cleave a diverse range of transmembrane substrates, resulting in the release of their soluble ectodomains. This process of protein shedding, termed α-secretase processing, is involved in many facets of both normal and disease related cellular function. While the processing of substrates has been well documented, the regulation and trafficking of the ADAMs are less well understood. Tools that allow for the study of ADAMs under their native environment will allow for a better understanding of their regulation and activity. Here we describe the design and evaluation of a novel fluorescent analogue of a well-characterized ADAM inhibitor, Batimastat. This probe exhibited similar activity for inhibiting α-secretase processing in cells as did Batimastat. Importantly, this probe specifically labeled ADAMs fluorescently in both fixed and living cells, enabling the possibility to study the trafficking of α-secretase proteins in a dynamic environment.
Collapse
Affiliation(s)
- Geoffray Leriche
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| | - Allen C. Chen
- Ann
Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Sumin Kim
- Ann
Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Dennis J. Selkoe
- Ann
Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Jerry Yang
- Department
of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, United States
| |
Collapse
|
41
|
Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer's disease. Nat Commun 2015; 6:8762. [PMID: 26549211 PMCID: PMC4659940 DOI: 10.1038/ncomms9762] [Citation(s) in RCA: 204] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/25/2015] [Indexed: 01/15/2023] Open
Abstract
The age-dependent deposition of amyloid-β peptides, derived from amyloid precursor protein (APP), is a neuropathological hallmark of Alzheimer's disease (AD). Despite age being the greatest risk factor for AD, the molecular mechanisms linking ageing to APP processing are unknown. Here we show that asparagine endopeptidase (AEP), a pH-controlled cysteine proteinase, is activated during ageing and mediates APP proteolytic processing. AEP cleaves APP at N373 and N585 residues, selectively influencing the amyloidogenic fragmentation of APP. AEP is activated in normal mice in an age-dependent manner, and is strongly activated in 5XFAD transgenic mouse model and human AD brains. Deletion of AEP from 5XFAD or APP/PS1 mice decreases senile plaque formation, ameliorates synapse loss, elevates long-term potentiation and protects memory. Blockade of APP cleavage by AEP in mice alleviates pathological and behavioural deficits. Thus, AEP acts as a δ-secretase, contributing to the age-dependent pathogenic mechanisms in AD.
Collapse
|
42
|
Rogeberg M, Almdahl IS, Wettergreen M, Nilsson LN, Fladby T. Isobaric Quantification of Cerebrospinal Fluid Amyloid-β Peptides in Alzheimer’s Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration. J Proteome Res 2015; 14:4834-43. [DOI: 10.1021/acs.jproteome.5b00668] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Magnus Rogeberg
- Department
of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Department
of Clinical Molecular Biology (EpiGen), Division of Medicine, and ∥Department of
Neurology, Faculty Division, Akershus University Hospital
and University of Oslo, 1478 Lørenskog, Norway
| | - Ina Selseth Almdahl
- Department
of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| | - Marianne Wettergreen
- Department
of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
- Department
of Clinical Molecular Biology (EpiGen), Division of Medicine, and ∥Department of
Neurology, Faculty Division, Akershus University Hospital
and University of Oslo, 1478 Lørenskog, Norway
| | - Lars N.G. Nilsson
- Department
of Pharmacology, University of Oslo and Oslo University Hospital, 0372 Oslo, Norway
| | - Tormod Fladby
- Department
of Neurology, Akershus University Hospital, 1478 Lørenskog, Norway
| |
Collapse
|
43
|
Lee ACH, Lam JKY, Shiu SWM, Wong Y, Betteridge DJ, Tan KCB. Serum Level of Soluble Receptor for Advanced Glycation End Products Is Associated with A Disintegrin And Metalloproteinase 10 in Type 1 Diabetes. PLoS One 2015; 10:e0137330. [PMID: 26325204 PMCID: PMC4556489 DOI: 10.1371/journal.pone.0137330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/15/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The receptor for advanced glycation end products (RAGE) is involved in the pathogenesis of diabetic complications, and soluble forms of the receptor (sRAGE) can counteract the detrimental action of the full-length receptor by acting as decoy. Soluble RAGE is produced by alternative splicing [endogenous secretory RAGE (esRAGE)] and/or by proteolytic cleavage of the membrane-bound receptor. We have investigated the role of A Disintegrin And Metalloproteinase 10 (ADAM10) in the ectodomain shedding of RAGE. METHODS Constitutive and insulin-induced shedding of RAGE in THP-1 macrophages by ADAM10 was evaluated using an ADAM10-specific metalloproteinase inhibitor. Serum ADAM10 level was measured in type 1 diabetes and control subjects, and the association with serum soluble RAGE was determined. Serum total sRAGE and esRAGE were assayed by ELISA and the difference between total sRAGE and esRAGE gave an estimated measure of soluble RAGE formed by cleavage (cRAGE). RESULTS RAGE shedding (constitutive and insulin-induced) was significantly reduced after inhibition of ADAM10 in macrophages, and insulin stimulated ADAM10 expression and activity. Diabetic subjects have higher serum total sRAGE and esRAGE (p<0.01) than controls, and serum ADAM10 was also increased (p<0.01). Serum ADAM10 correlated with serum cRAGE in type 1 diabetes (r = 0.40, p<0.01) and in controls (r = 0.31. p<0.01) but no correlations were seen with esRAGE. The association remained significant after adjusting for age, gender, BMI, smoking status and HbA1c. CONCLUSION Our data suggested that ADAM10 contributed to the shedding of RAGE. Serum ADAM10 level was increased in type 1 diabetes and was a significant determinant of circulating cRAGE.
Collapse
Affiliation(s)
- Alan C. H. Lee
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Joanne K. Y. Lam
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Sammy W. M. Shiu
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - Ying Wong
- Department of Medicine, University of Hong Kong, Hong Kong, China
| | - D. John Betteridge
- Department of Medicine, Royal Free & University College London Medical School, London, United Kingdom
| | - Kathryn C. B. Tan
- Department of Medicine, University of Hong Kong, Hong Kong, China
- * E-mail:
| |
Collapse
|
44
|
Lopez-Font I, Cuchillo-Ibañez I, Sogorb-Esteve A, García-Ayllón MS, Sáez-Valero J. Transmembrane Amyloid-Related Proteins in CSF as Potential Biomarkers for Alzheimer's Disease. Front Neurol 2015; 6:125. [PMID: 26082753 PMCID: PMC4451586 DOI: 10.3389/fneur.2015.00125] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/17/2015] [Indexed: 02/04/2023] Open
Abstract
In the continuing search for new cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease (AD), reasonable candidates are the secretase enzymes involved in the processing of the amyloid precursor protein (APP), as well as the large proteolytic cleavage fragments sAPPα and sAPPβ. The enzymatic activities of some of these secretases, such as BACE1 and TACE, have been investigated as potential AD biomarkers, and it has been assumed that these activities present in human CSF result from the soluble truncated forms of the membrane-bound enzymes. However, we and others recently identified soluble forms of BACE1 and APP in CSF containing the intracellular domains, as well as the multi-pass transmembrane presenilin-1 (PS1) and other subunits of γ-secretase. We also review recent findings that suggest that most of these soluble transmembrane proteins could display self-association properties based on hydrophobic and/or ionic interactions leading to the formation of heteromeric complexes. The oligomerization state of these potential new biomarkers needs to be taken into consideration for assessing their real potential as CSF biomarkers for AD by adequate molecular tools.
Collapse
Affiliation(s)
- Inmaculada Lopez-Font
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Inmaculada Cuchillo-Ibañez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - Aitana Sogorb-Esteve
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| | - María-Salud García-Ayllón
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain ; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche , Elche , Spain
| | - Javier Sáez-Valero
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC , Sant Joan d'Alacant , Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED) , Sant Joan d'Alacant , Spain
| |
Collapse
|
45
|
Melnyk P, Vingtdeux V, Burlet S, Eddarkaoui S, Grosjean ME, Larchanché PE, Hochart G, Sergheraert C, Estrella C, Barrier M, Poix V, Plancq P, Lannoo C, Hamdane M, Delacourte A, Verwaerde P, Buée L, Sergeant N. Chloroquine and chloroquinoline derivatives as models for the design of modulators of amyloid Peptide precursor metabolism. ACS Chem Neurosci 2015; 6:559-69. [PMID: 25611616 DOI: 10.1021/cn5003013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease (AD). Preventing deregulated APP processing by inhibiting amyloidogenic processing of carboxy-terminal fragments (APP-CTFs), and reducing the toxic effect of amyloid beta (Aβ) peptides remain an effective therapeutic strategy. We report the design of piperazine-containing compounds derived from chloroquine structure and evaluation of their effects on APP metabolism and ability to modulate the processing of APP-CTF and the production of Aβ peptide. Compounds which retained alkaline properties and high affinity for acidic cell compartments were the most effective. The present study demonstrates that (1) the amino side chain of chloroquine can be efficiently substituted by a bis(alkylamino)piperazine chain, (2) the quinoline nucleus can be replaced by a benzyl or a benzimidazole moiety, and (3) pharmacomodulation of the chemical structure allows the redirection of APP metabolism toward a decrease of Aβ peptide release, and increased stability of APP-CTFs and amyloid intracellular fragment. Moreover, the benzimidazole compound 29 increases APP-CTFs in vivo and shows promising activity by the oral route. Together, this family of compounds retains a lysosomotropic activity which inhibits lysosome-related Aβ production, and is likely to be beneficial for therapeutic applications in AD.
Collapse
Affiliation(s)
- Patricia Melnyk
- Université de Lille, F-59000 Lille, France
- UDSL, EA 4481,
UFR Pharmacie, F-59000 Lille, France
- CNRS UMR8161, F-59000 Lille, France
| | - Valérie Vingtdeux
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Sabiha Eddarkaoui
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Marie-Eve Grosjean
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Guillaume Hochart
- Université de Lille, F-59000 Lille, France
- UDSL, EA 4481,
UFR Pharmacie, F-59000 Lille, France
- CNRS UMR8161, F-59000 Lille, France
| | | | | | | | | | | | | | - Malika Hamdane
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - André Delacourte
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | | | - Luc Buée
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| | - Nicolas Sergeant
- Université de Lille, F-59000 Lille, France
- Inserm UMR-S1172, Alzheimer & Tauopathies, Jean-Pierre Aubert Research Center, F-59000 Lille, France
| |
Collapse
|
46
|
Identification of amyloid beta mid-domain fragments in human cerebrospinal fluid. Biochimie 2015; 113:86-92. [PMID: 25866191 DOI: 10.1016/j.biochi.2015.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/26/2015] [Indexed: 01/06/2023]
Abstract
Amyloid beta (Aβ) is a peptide derived from processing of the membrane bound amyloid precursor protein and is a main constituent in amyloid plaques in Alzheimer's disease (AD). The excess Aβ in AD brain may be caused by altered Aβ metabolism, including reduced enzymatic degradation. Our previous enzymatic study of Aβ degradation revealed that intracellular enzymes produced several truncated Aβ mid-domain fragments. We therefore generated an antibody to enable identification of these anticipated Aβ species in cerebrospinal fluid (CSF). The produced antibody displayed affinity for the Aβ mid-domain region and 36 N-terminally truncated Aβ fragments were precipitated from human CSF and identified by liquid chromatography - mass spectrometry. 31 peptides were truncated from residue 18 up to 23, N-terminal truncation that have not previously been identified in CSF. The results show that the complexity of amyloid beta peptides circulating in the CSF is greater than previously suggested and we also demonstrate that the mid-domain antibody used can serve as an additional tool for mapping a more complete Aβ degradation profile.
Collapse
|
47
|
Zeng Y, Zhang J, Zhu Y, Zhang J, Shen H, Lu J, Pan X, Lin N, Dai X, Zhou M, Chen X. Tripchlorolide improves cognitive deficits by reducing amyloid β and upregulating synapse-related proteins in a transgenic model of Alzheimer's Disease. J Neurochem 2015; 133:38-52. [DOI: 10.1111/jnc.13056] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 01/21/2015] [Accepted: 01/22/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Yuqi Zeng
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jian Zhang
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Yuangui Zhu
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jing Zhang
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Hui Shen
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Jianping Lu
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaodong Pan
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Nan Lin
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaoman Dai
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Meng Zhou
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| | - Xiaochun Chen
- Department of Neurology and Geriatrics; Fujian Institute of Geriatrics; Fujian Medical University Union Hospital; Fuzhou China
- Key Laboratory of Brain Aging and Neurodegenerative Disease; Fujian Key Laboratory of Molecular Neurology; Fujian Medical University; Fuzhou China
| |
Collapse
|
48
|
Canobbio I, Abubaker AA, Visconte C, Torti M, Pula G. Role of amyloid peptides in vascular dysfunction and platelet dysregulation in Alzheimer's disease. Front Cell Neurosci 2015; 9:65. [PMID: 25784858 PMCID: PMC4347625 DOI: 10.3389/fncel.2015.00065] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 02/11/2015] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative cause of dementia in the elderly. AD is accompanied by the accumulation of amyloid peptides in the brain parenchyma and in the cerebral vessels. The sporadic form of AD accounts for about 95% of all cases. It is characterized by a late onset, typically after the age of 65, with a complex and still poorly understood aetiology. Several observations point towards a central role of cerebrovascular dysfunction in the onset of sporadic AD (SAD). According to the "vascular hypothesis", AD may be initiated by vascular dysfunctions that precede and promote the neurodegenerative process. In accordance to this, AD patients show increased hemorrhagic or ischemic stroke risks. It is now clear that multiple bidirectional connections exist between AD and cerebrovascular disease, and in this new scenario, the effect of amyloid peptides on vascular cells and blood platelets appear to be central to AD. In this review, we analyze the effect of amyloid peptides on vascular function and platelet activation and its contribution to the cerebrovascular pathology associated with AD and the progression of this disease.
Collapse
Affiliation(s)
- Ilaria Canobbio
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Aisha Alsheikh Abubaker
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Caterina Visconte
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Mauro Torti
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| | - Giordano Pula
- Department of Biology and Biotechnology, Unit of Biochemistry, University of Pavia Pavia, Italy
| |
Collapse
|
49
|
Abstract
Members of the low-density lipoprotein (LDL) receptor gene family have a diverse set of biological functions that transcend lipid metabolism. Lipoprotein receptors have broad effects in both the developing and adult brain and participate in synapse development, cargo trafficking, and signal transduction. In addition, several family members play key roles in Alzheimer's disease (AD) pathogenesis and neurodegeneration. This Review summarizes our current understanding of the role lipoprotein receptors play in CNS function and AD pathology, with a special emphasis on amyloid-independent roles in endocytosis and synaptic dysfunction.
Collapse
|
50
|
Chen M, Nguyen HT. Our "energy-Ca(2+) signaling deficits" hypothesis and its explanatory potential for key features of Alzheimer's disease. Front Aging Neurosci 2014; 6:329. [PMID: 25489296 PMCID: PMC4253736 DOI: 10.3389/fnagi.2014.00329] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 11/10/2014] [Indexed: 12/15/2022] Open
Abstract
Sporadic Alzheimer's disease (sAD) has not been explained by any current theories, so new hypotheses are urgently needed. We proposed that "energy and Ca(2+) signaling deficits" are perhaps the earliest modifiable defects in brain aging underlying memory decline and tau deposits (by means of inactivating Ca(2+)-dependent protease calpain). Consistent with this hypothesis, we now notice that at least eight other known calpain substrates have also been reported to accumulate in aging and AD. Thus, protein accumulation or aggregation is not a "pathogenic" event, but occurs naturally and selectively to a peculiar family of proteins, and is best explained by calpain inactivation. Why are only calpain substrates accumulated and how can they stay for decades in the brain without being attacked by many other non-specific proteases there? We believe that these long-lasting puzzles can be explained by calpain's unique properties, especially its unusual specificity and exclusivity in substrate recognition, which can protect the substrates from other proteases' attacks after calpain inactivation. Interestingly, our model, in essence, may also explain tau phosphorylation and the formation of amyloid plaques. Our studies suggest that α-secretase is an energy-/Ca(2+)-dual dependent protease and is also the primary determinant for Aβ levels. Therefore, β- and γ-secretases can only play secondary roles and, by biological laws, they are unlikely to be "positively identified". This study thus raises serious questions for policymakers and researchers and these questions may help explain why sAD can remain an enigma today.
Collapse
Affiliation(s)
- Ming Chen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA ; Department of Molecular Pharmacology and Physiology, University of South Florida Tampa, FL, USA
| | - Huey T Nguyen
- Aging Research Laboratory, Research and Development Service, Bay Pines Veterans Affairs Healthcare System Bay Pines, FL, USA
| |
Collapse
|