1
|
Zhang S, Lin M, Liu J, Chen J, Liu D, Zhao J, Yao M. A centenary tale: population genetic insights into the introduction history of the oriental fire-bellied toad (Bombina orientalis) in Beijing. BMC Ecol Evol 2022; 22:117. [PMID: 36241967 PMCID: PMC9569074 DOI: 10.1186/s12862-022-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/02/2022] [Indexed: 11/06/2022] Open
Abstract
Background The successful establishment of a species population following a single introduction of a few individuals to a non-native area has been limited. Nevertheless, the oriental fire-bellied toad (Bombina orientalis) population in Beijing is purportedly descended from a single introduction of about 200 individuals translocated from Yantai, Shandong Province, China, in 1927. Results To resolve the introduction process and to understand the genetic consequences since that introduction approximately 90 years ago, we investigated the population’s genetic diversity and structure using 261 toads from Beijing and two native Shandong populations and inferred the species’ introduction history using simulation-based approaches. Analysis of mitochondrial DNA (mtDNA) sequences showed the two haplotypes found in Beijing nested within Yantai haplotypes, thus corroborating the historical record of the translocation source. The mtDNA and 11 nuclear microsatellite markers revealed both considerably lower genetic diversity in Beijing than in the source population and strong genetic differentiation between them. Although the current census population in Beijing may be in the range of a few thousand, the effective population size was estimated at only 20–57. Simulations also suggest that this population may have descended from 40–60 founders. Conclusions The Beijing population’s genetic patterns were consistent with the consequences of a severe bottleneck during introduction followed by genetic drift. The introduction trajectory constructed for this B. orientalis population reveals the genetic footprints of a small population sustained in isolation for nearly a century. Our results provide an intriguing example of establishment success from limited founders and may inform ex situ conservation efforts as well as the management of biological invasions. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02072-z.
Collapse
Affiliation(s)
- Shan Zhang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| | - Meixi Lin
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.19006.3e0000 0000 9632 6718Department of Ecology and Evolutionary Biology, University of California-Los Angeles, Los Angeles, CA 90095 USA
| | - Jiawei Liu
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.170205.10000 0004 1936 7822Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637 USA
| | - Jiangce Chen
- grid.63054.340000 0001 0860 4915Mechanical Engineering Department, University of Connecticut, Storrs, CT 06269 USA
| | - Dong Liu
- grid.263817.90000 0004 1773 1790Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Jindong Zhao
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| | - Meng Yao
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, R312, School of Life Sciences Bldg., 100871 Beijing, China ,grid.11135.370000 0001 2256 9319Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871 China
| |
Collapse
|
2
|
Population Genetic Structure Analysis Reveals Decreased but Moderate Diversity for the Oriental Fire-Bellied Toad Introduced to Beijing after 90 Years of Independent Evolution. Animals (Basel) 2021; 11:ani11051429. [PMID: 34067517 PMCID: PMC8156418 DOI: 10.3390/ani11051429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Habitat isolation and loss are significant factors that lead to the decline of wildlife populations worldwide, and habitat loss further leads to the shrinkage of populations, which increases the risk of inbreeding and the genetic decline of the populations. To explore the independent evolutionary characteristics of different populations, this study analyzed the genetic disparity of the introduced oriental fire-bellied toad in Beijing from a source population in Shandong Province. The results show that, despite originating from a small artificially introduced population, the toads in the Beijing region have maintained a moderate genetic diversity after 90 years of independent evolution, indicating that this species has a high capacity for survival and adaptation. Abstract Detailed molecular genetic research on amphibian populations has a significant role in understanding the genetic adaptability to local environments. The oriental fire-bellied toads (Bombina orientalis) were artificially introduced to Beijing from Shandong Province in 1927, and since then, this separated population went through an independent evolution. To explore the differentiation of the introduced population with its original population, this study analyzed the genetic structure of the oriental fire-bellied toad, based on the mitochondrial genome control region and six microsatellite sites. The results showed that the haplotype diversity and nucleotide diversity of the mitochondrial D-loop region partial sequences of the Beijing Botanical Garden population and the Baiwangshan population were lower than those of the Shangdong Kunyushan population. Microsatellite marker analysis also showed that the observed heterozygosity and expected heterozygosity of the Beijing populations were lower than those of the Kunyushan population. The phylogenetic trees and network diagrams of haplotypes indicated that the three populations were not genetically separated. However, the structure analysis showed a genetic differentiation and categorized the sampling individuals into Beijing and Shandong genetic clusters, which indicated a tendency for isolated evolution in the Beijing population. Although the Beijing populations showed a decline in genetic diversity, it was still at a moderate level, which could maintain the survival of the population. Thus, there is no need to reintroduce new individuals from the Kunyushan source population.
Collapse
|
3
|
Pröhl H, Auffarth J, Bergmann T, Buschmann H, Balkenhol N. Conservation genetics of the yellow-bellied toad (Bombina variegata): population structure, genetic diversity and landscape effects in an endangered amphibian. CONSERV GENET 2021. [DOI: 10.1007/s10592-021-01350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractRevealing patterns of genetic diversity and barriers for gene flow are key points for successful conservation in endangered species. Methods based on molecular markers are also often used to delineate conservation units such as evolutionary significant units and management units. Here we combine phylo-geographic analyses (based on mtDNA) with population and landscape genetic analyses (based on microsatellites) for the endangered yellow-bellied toad Bombina variegata over a wide distribution range in Germany. Our analyses show that two genetic clusters are present in the study area, a northern and a southern/central one, but that these clusters are not deeply divergent. The genetic data suggest high fragmentation among toad occurrences and consequently low genetic diversity. Genetic diversity and genetic connectivity showed a negative relationship with road densities and urban areas surrounding toad occurrences, indicating that these landscape features act as barriers to gene flow. To preserve a maximum of genetic diversity, we recommend considering both genetic clusters as management units, and to increase gene flow among toad occurrences with the aim of restoring and protecting functional meta-populations within each of the clusters. Several isolated populations with especially low genetic diversity and signs of inbreeding need particular short-term conservation attention to avoid extinction. We also recommend to allow natural gene flow between both clusters but not to use individuals from one cluster for translocation or reintroduction into the other. Our results underscore the utility of molecular tools for species conservation, highlight outcomes of habitat fragmentation onto the genetic structure of an endangered amphibian and reveal particularly threatened populations in need for urgent conservation efforts.
Collapse
|
4
|
Oswald P, Rodríguez A, Bourke J, Wagner N, de Buhr N, Buschmann H, Köckritz-Blickwede MV, Pröhl H. Locality, time and heterozygosity affect chytrid infection in yellow-bellied toads. DISEASES OF AQUATIC ORGANISMS 2020; 142:225-237. [PMID: 33331290 DOI: 10.3354/dao03543] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The chytrid fungus Batrachochytrium dendrobatidis (Bd) infects numerous amphibian species worldwide and is suggested to drive population declines and extinction events. We report a study of Bd infection at the northernmost distribution of the European yellow-bellied toad Bombina variegata. A total of 577 individuals from ponds in 16 study sites were sampled for DNA and Bd throughout the breeding season. Microsatellite genotyping revealed 3 genetic clusters for the host B. variegata with an overall low genetic diversity. One of the clusters displayed a low microsatellite heterozygosity, a high inbreeding coefficient as well as high Bd infection prevalence and intensities. Multi-model estimates identified site, time of sampling, and heterozygosity to be important predictors of an individual's Bd infection status, and identified a strong effect of site on individual Bd infection intensity. The study site effects are suggestive of localized infection peaks, and the increase of individual Bd infection probabilities towards the end of the sampling period suggests cumulative infection during the breeding season. This study highlights the need for regular monitoring of Bd infection variables at multiple localities and times to gain insights into Bd dynamics. Due to the detected relationship between individual Bd infection status and heterozygosity, conservation measures should focus on the maintenance of high genetic diversity and connectivity within and among amphibian populations.
Collapse
Affiliation(s)
- Pia Oswald
- Institute of Zoology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Conservation genetics of yellow-bellied toads (Bombina variegata): a matter of geographical scale and isolation. CONSERV GENET 2020. [DOI: 10.1007/s10592-020-01320-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractAmphibian populations world-wide are threatened by declines and extinctions mainly due to habitat loss and fragmentation. Habitat fragmentation threatens the yellow-bellied toad Bombina variegata in the northern and western regions of its distribution where it is strictly protected. We studied the genetic structure and diversity of populations at three geographical scales using microsatellite loci to detect potential threats for population persistence. At the local scale, we sampled four neighbouring localities at 1–2.6 km distance to detect effects of short-term (decades) fragmentation on connectivity. At the regional scale, five additional localities in the mountains of the Westerwald (Rhineland-Palatinate, Germany) were studied at up to 50.1 km distance to analyse genetic diversity and population structure. At the continental scale, we included data from regions in the northern distribution with fragmented populations (Hesse and Lower Saxony, Germany) and more continuous populations in the South (Alsace, France; Geneva, Switzerland; Trentino, Italy) to evaluate variation of genetic diversity. At the local scale, short-term fragmentation caused significant genetic differentiation between breeding assemblages only 1.4 km apart from each other. At the regional scale, we found notable genetic distance among localities. At the continental scale, we identified Alsace, Trentino and Geneva in the South as regions with low genetic structuring and high allelic richness, and the northern remaining regions in Germany as deeply structured with reduced allelic richness. We suggest that reduced genetic diversity and habitat fragmentation in northern regions makes these populations particularly vulnerable to decline. In conclusion, informed conservation management of B. variegata should focus on measures maintaining or improving connectivity among neighbouring populations.
Collapse
|
6
|
Zampiglia M, Bisconti R, Maiorano L, Aloise G, Siclari A, Pellegrino F, Martino G, Pezzarossa A, Chiocchio A, Martino C, Nascetti G, Canestrelli D. Drilling Down Hotspots of Intraspecific Diversity to Bring Them Into On-Ground Conservation of Threatened Species. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00205] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Conservation genetic analysis of a Central-European range-margin population of the yellow-bellied toad (Bombina v. variegata). CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01156-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
8
|
Ancient, but not recent, population declines have had a genetic impact on alpine yellow-bellied toad populations, suggesting potential for complete recovery. CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0818-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Dolgener N, Freudenberger L, Schluck M, Schneeweiss N, Ibisch PL, Tiedemann R. Environmental niche factor analysis (ENFA) relates environmental parameters to abundance and genetic diversity in an endangered amphibian, the fire-bellied-toad (Bombina bombina). CONSERV GENET 2013. [DOI: 10.1007/s10592-013-0517-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Hauswaldt JS, Stuckas H, Pfautsch S, Tiedemann R. Molecular characterization of MHC class II in a nonmodel anuran species, the fire-bellied toad Bombina bombina. Immunogenetics 2007; 59:479-91. [PMID: 17406862 DOI: 10.1007/s00251-007-0210-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 03/01/2007] [Indexed: 10/23/2022]
Abstract
While the anuran Xenopus comprises one of the best characterized nonmammalian taxa regarding the major histocompatibility complex (MHC), the organization of this gene complex has never been studied in other anurans, and information on amphibian MHC (other than Xenopus) is generally very scarce. Here, we describe the characterization of the first MHC class II B cDNA sequences from a nonmodel anuran species, the European fire-bellied toad (Bombina bombina). We isolated two transcript sequences differing substantially in amino acid composition and length within the beta2 domain. To investigate the variability of the peptide binding region in this species, we sequenced a 158-bp large fragment from wild B. bombina (n = 20) and identified eight distinct alleles. All substitutions but one were nonsynonymous, and many of the highly polymorphic sites corresponded with amino acid positions known to be involved in antigen binding. The level of variation we found in B. bombina was similar compared to that previously found in a comparable sample of a wild urodelan species, Ambystoma tigrinum, and to that found in Xenopus laevis. Based on the cDNA data and the individual's allelic diversity, we conclude that Bombina possesses at least two class II B loci. With our new beta1 primers, we were able to generate sequences in other species of anurans. We provide here a first phylogenetic analysis of this gene in amphibians.
Collapse
Affiliation(s)
- J Susanne Hauswaldt
- Unit of Evolutionary Biology/Systematic Zoology, University of Potsdam, Potsdam, Germany
| | | | | | | |
Collapse
|
11
|
HAUSWALDT JS, SCHRÖDER C, TIEDEMANN R. Nine new tetranucleotide microsatellite markers for the fire-bellied toad (Bombina bombina). ACTA ACUST UNITED AC 2006. [DOI: 10.1111/j.1471-8286.2006.01516.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|