1
|
Shao W, Cai W, Qiao F, Lin Z, Wei L. Comparison of microsatellite distribution in the genomes of Pteropus vampyrus and Miniopterus natalensis (Chiroptera). BMC Genom Data 2023; 24:5. [PMID: 36782146 PMCID: PMC9925362 DOI: 10.1186/s12863-023-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Microsatellites are a ubiquitous occurrence in prokaryotic and eukaryotic genomes. Microsatellites have become one of the most popular classes of genetic markers due to their high reproducibility, multi-allelic nature, co-dominant mode of inheritance, abundance and wide genome coverage. We characterised microsatellites in the genomes and genes of two bat species, Pteropus vampyrus and Miniopterus natalensis. This characterisation was used for gene ontology analysis and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment of coding sequences (CDS). RESULTS Compared to M. natalensis, the genome size of P. vampyrus is larger and contains more microsatellites, but the total diversity of both species is similar. Mononucleotide and dinucleotide repeats were the most diverse in the genome of the two species. In each bat species, the microsatellite bias was obvious. The microsatellites with the largest number of repeat motifs in P. vampyrus from mononucleotide to hexanucleotide were (A)n, (AC)n, (CAA)n, (AAAC)n, (AACAA)n and (AAACAA)n, with frequencies of 97.94%, 58.75%, 30.53%, 22.82%, 54.68% and 22.87%, respectively, while in M. natalensis were (A)n, (AC)n, (TAT)n, (TTTA)n, (AACAA)n and (GAGAGG)n, with of 92.00%, 34.08%, 40.36%, 21.83%, 25.42% and 12.79%, respectively. In both species, the diversity of microsatellites was highest in intergenic regions, followed by intronic, untranslated and exonic regions and lowest in coding regions. Location analysis indicated that microsatellites were mainly concentrated at both ends of the genes. Microsatellites in the CDS are thus subject to higher selective pressure. In the GO analysis, two unique GO terms were found only in P. vampyrus and M. natalensis, respectively. In KEGG enriched pathway, the biosynthesis of other secondary metabolites and metabolism of other amino acids in metabolism pathways were present only in M. natalensis. The combined biological process, cellular components and molecular function ontology are reflected in the GO analysis and six functional enrichments in KEGG annotation, suggesting advantageous mutations during species evolution. CONCLUSIONS Our study gives a comparative characterization of the genomes of microsatellites composition in the two bat species. And also allow further study on the effect of microsatellites on gene function as well as provide an insight into the molecular basis for species adaptation to new and changing environments.
Collapse
Affiliation(s)
- Weiwei Shao
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Wei Cai
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Fen Qiao
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Zhihua Lin
- grid.440824.e0000 0004 1757 6428College of Ecology, Lishui University, Lishui, 323000 Zhejiang People’s Republic of China
| | - Li Wei
- College of Ecology, Lishui University, Lishui, 323000, Zhejiang, People's Republic of China.
| |
Collapse
|
2
|
Genome sequence of the cardiopulmonary canid nematode Angiostrongylus vasorum reveals species-specific genes with potential involvement in coagulopathy. Genomics 2021; 113:2695-2701. [PMID: 34118383 DOI: 10.1016/j.ygeno.2021.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Angiostrongylus vasorum is an emerging parasitic nematode of canids and causes respiratory distress, bleeding, and other signs in dogs. Despite its clinical importance, the molecular toolbox allowing the study of the parasite is incomplete. To address this gap, we have sequenced its nuclear genome using Oxford nanopore sequencing, polished with Illumina reads. The size of the final genome is 280 Mb comprising 468 contigs, with an N50 value of 1.68 Mb and a BUSCO score of 93.5%. Ninety-three percent of 13,766 predicted genes were assigned to putative functions. Three folate carriers were found exclusively in A. vasorum, with potential involvement in host coagulopathy. A screen for previously identified vaccine candidates, the aminopeptidase H11 and the somatic protein rHc23, revealed homologs in A. vasorum. The genome sequence will provide a foundation for the development of new tools against canine angiostrongylosis, supporting the identification of potential drug and vaccine targets.
Collapse
|
3
|
Genomewide analysis of microsatellite markers based on sequenced database in two anuran species. J Genet 2020. [DOI: 10.1007/s12041-020-01222-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Daglish GJ, Jagadeesan R, Nayak MK, McCulloch GA, Singarayan VT, Walter GH. The Gene Introgression Approach and the Potential Cost of Genes that Confer Strong Phosphine Resistance in Red Flour Beetle (Coleoptera: Tenebrionidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:1547-1554. [PMID: 32170301 DOI: 10.1093/jee/toaa033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Resistance in pest insects to the grain fumigant phosphine (PH3) poses a threat to trade and food security. The possible pleiotropic effects of PH3 resistance on development and reproduction were investigated in the red flour beetle, Tribolium castaneum (Herbst), by introgressing two genes known to be major contributors to strong resistance (tc_rph1 and tc_rph2) into a susceptible background. The tc_rph2 allele was the G135S variant, whereas the identity of tc_rph1 allele was unknown but could have been one of the three known variants (L119W, V123F, or S349G). The introgressed resistant strain was 288× more resistant than the susceptible strain, based on mortality after a 20 h fumigation with PH3. Molecular screening confirmed that the introgressed strain was homozygous for the resistance genes, but was otherwise indistinguishable from the susceptible strain based on screening with 12 neutral DNA markers. We found no differences of consequence in developmental time between the susceptible and introgressed resistant strains. Similarly, the number of F1 adults produced by these strains was more or less equal, as was the weight of individual F1 adults. The conclusions remained the same regardless of whether the experiments were conducted on a flour-based medium or wheat. Thus, we found no evidence that being fully strongly PH3 resistant (i.e., homozygous for tc_rph1 and tc_rph2) has major consequences in terms of development or reproduction in T. castaneum.
Collapse
Affiliation(s)
- Gregory J Daglish
- Department of Agriculture and Fisheries, Queensland, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Rajeswaran Jagadeesan
- Department of Agriculture and Fisheries, Queensland, Ecosciences Precinct, Brisbane, QLD, Australia
| | - Manoj K Nayak
- Department of Agriculture and Fisheries, Queensland, Ecosciences Precinct, Brisbane, QLD, Australia
| | | | - Virgine T Singarayan
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
5
|
Cash SA, Lorenzen MD, Gould F. The distribution and spread of naturally occurring Medea selfish genetic elements in the United States. Ecol Evol 2019; 9:14407-14416. [PMID: 31938528 PMCID: PMC6953677 DOI: 10.1002/ece3.5876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/01/2023] Open
Abstract
Selfish genetic elements (SGEs) are DNA sequences that are transmitted to viable offspring in greater than Mendelian frequencies. Medea SGEs occur naturally in some populations of red flour beetle (Tribolium castaneum) and are expected to increase in frequency within populations and spread among populations. The large-scale U.S. distributions of Medea-4 (M4) had been mapped based on samples from 1993 to 1995. We sampled beetles in 2011-2014 and show that the distribution of M4 in the United States is dynamic and has shifted southward. By using a genetic marker of Medea-1 (M1), we found five unique geographic clusters with high and low M1 frequencies in a pattern not predicted by microsatellite-based analysis of population structure. Our results indicate the absence of rigid barriers to Medea spread in the United States, so assessment of what factors have limited its current distribution requires further investigation. There is great interest in using synthetic SGEs, including synthetic Medea, to alter or suppress pest populations, but there is concern about unpredicted spread of these SGEs and potential for populations to become resistant to them. The finding of patchy distributions of Medea elements suggests that released synthetic SGEs cannot always be expected to spread uniformly, especially in target species with limited dispersal.
Collapse
Affiliation(s)
- Sarah A. Cash
- Program in GeneticsDepartment of Biological SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Marce D. Lorenzen
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Fred Gould
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
6
|
Wang X, Zhang Y, Qiao L, Chen B. Comparative analyses of simple sequence repeats (SSRs) in 23 mosquito species genomes: Identification, characterization and distribution (Diptera: Culicidae). INSECT SCIENCE 2019; 26:607-619. [PMID: 29484820 PMCID: PMC7379697 DOI: 10.1111/1744-7917.12577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 01/20/2018] [Accepted: 01/24/2018] [Indexed: 05/28/2023]
Abstract
Simple sequence repeats (SSRs) exist in both eukaryotic and prokaryotic genomes and are the most popular genetic markers, but the SSRs of mosquito genomes are still not well understood. In this study, we identified and analyzed the SSRs in 23 mosquito species using Drosophila melanogaster as reference at the whole-genome level. The results show that SSR numbers (33 076-560 175/genome) and genome sizes (574.57-1342.21 Mb) are significantly positively correlated (R2 = 0.8992, P < 0.01), but the correlation in individual species varies in these mosquito species. In six types of SSR, mono- to trinucleotide SSRs are dominant with cumulative percentages of 95.14%-99.00% and densities of 195.65/Mb-787.51/Mb, whereas tetra- to hexanucleotide SSRs are rare with 1.12%-4.22% and 3.76/Mb-40.23/Mb. The (A/T)n, (AC/GT)n and (AGC/GCT)n are the most frequent motifs in mononucleotide, dinucleotide and trinucleotide SSRs, respectively, and the motif frequencies of tetra- to hexanucleotide SSRs appear to be species-specific. The 10-20 bp length of SSRs are dominant with the number of 110 561 ± 93 482 and the frequency of 87.25% ± 5.73% on average, and the number and frequency decline with the increase of length. Most SSRs (83.34% ± 7.72%) are located in intergenic regions, followed by intron regions (11.59% ± 5.59%), exon regions (3.74% ± 1.95%), and untranslated regions (1.32% ± 1.39%). The mono-, di- and trinucleotide SSRs are the main SSRs in both gene regions (98.55% ± 0.85%) and exon regions (99.27% ± 0.52%). An average of 42.52% of total genes contains SSRs, and the preference for SSR occurrence in different gene subcategories are species-specific. The study provides useful insights into the SSR diversity, characteristics and distribution in 23 mosquito species of genomes.
Collapse
Affiliation(s)
- Xiao‐Ting Wang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Yu‐Juan Zhang
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Liang Qiao
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| | - Bin Chen
- Chongqing Key Laboratory of Vector Insects; Chongqing Key Laboratory of Animal Biology; Institute of Entomology and Molecular BiologyChongqing Normal UniversityChongqingChina
| |
Collapse
|
7
|
Isolation by Distance, Source-Sink Population Dynamics and Dispersal Facilitation by Trade Routes: Impact on Population Genetic Structure of a Stored Grain Pest. G3-GENES GENOMES GENETICS 2019; 9:1457-1468. [PMID: 30808690 PMCID: PMC6505152 DOI: 10.1534/g3.118.200892] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Population genetic structure of agricultural pests can be impacted not only by geographic distance and the broader ecological and physical barriers but also by patterns related to where crops are produced and how they are moved after harvest. Stored-product pests, for instance, specialize in exploiting grains such as wheat and rice from on-farm storage through transportation to final processing at often geographically distant locations; therefore human-aided movement may impact their dispersal. Although stored product insects are associated with stored grain, they can also exploit resources in the surrounding environments so different ecological regions where the grain is grown and stored may also influence population structure. Here we used 1,156 SNP markers to investigate how geographic distance, ecological and agricultural variables can impact the genetic structure and gene flow of the stored food pest beetle Rhyzopertha dominica We found a substantial degree of admixture between weakly structured populations in the US. Ecological regions were more important in explaining R. dominica population structure than crop type, suggesting insect movement between wheat and rice grain distribution channels. We have also found a significant correlation between the genetic and geographical distance (i.e., isolation by distance). However, our modeling approach combining the ecological and management variables has highlighted the importance of the volume of grain received by a location in the dispersal dynamics of the pest. The first-generation migrant analysis offered additional supported to movement over great distances that are likely associated with grain movement. Our data suggest that a multitude of factors play small but significant parts in the movement dynamics of the pest. The beetles can take advantage of the source-sink dynamic of grain movement in the US, but also engage in a high rate of movement at the local scale. Understanding population structure for R. dominica will provide insights into the potential for local processes of adaptation and broader patterns of movement that will impact management programs and the potential for spread of resistance genes.
Collapse
|
8
|
Wang H, Zhang J, Zhao S, Zhu KY, Wu Y. Limited variations in susceptibility to an insecticidal double-stranded RNA (dsvATPaseE) among a laboratory strain and seven genetically differentiated field populations of Tribolium castaneum. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 149:143-148. [PMID: 30033010 DOI: 10.1016/j.pestbp.2018.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 06/02/2018] [Accepted: 06/13/2018] [Indexed: 06/08/2023]
Abstract
There has been a considerable growth in interest to use RNA interference (RNAi) as a novel insect pest management strategy in the past 10 years. However, there has been virtually no information on insect population variations in response to double-stranded RNA (dsRNA) molecules. The objective of this study was to generate baseline susceptibilities of the red flour beetle (Tribolium castaneum) to an insecticidal dsRNA targeting vacuolar H+-ATPase subunit E gene (dsvATPaseE), and correlate the susceptibility data with sequence and expression variations of the target gene (vATPaseE), expression variations of the RNAi core genes, and overall genetic differences among a laboratory strain and seven geographical field populations of T. castaneum collected in China. Our results showed limited variations in the LD50 values of dsvATPaseE, which ranged from 0.10 to 0.29 ng/larva among the laboratory strain and the seven field populations. Considering the overlapping of the 95% confidence intervals of their LD50 values, there were no significant differences among the laboratory strain and field populations. We also found limited sequence polymorphisms and low frequencies of the polymorphisms of vATPaseE, and limited variations (<2-fold) of the endogenous expression of vATPaseE among the laboratory strain and field populations. However, we found considerable genetic variations among the individuals within each field population for most of eight loci and moderate to large genetic variations among the field populations. These results demonstrated that although the genetic variabilities were considerable among these field populations, the efficiency of RNAi targeting vATPaseE was highly consistent in T. castaneum. Our study provides work frames of resistance risk assessment for RNAi-based insect pest management programs.
Collapse
Affiliation(s)
- Huidong Wang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jianpeng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shan Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA.
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
9
|
Wang C, Kubiak LJ, Du LM, Li WJ, Jian ZY, Tang C, Fan ZX, Zhang XY, Yue BS. Comparison of microsatellite distribution in genomes of Centruroides exilicauda and Mesobuthus martensii. Gene 2016; 594:41-46. [DOI: 10.1016/j.gene.2016.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/13/2016] [Accepted: 08/28/2016] [Indexed: 10/21/2022]
|
10
|
Laskowski R, Radwan J, Kuduk K, Mendrok M, Kramarz P. Population growth rate and genetic variability of small and large populations of Red flour beetle (Tribolium castaneum) following multigenerational exposure to copper. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1162-1170. [PMID: 25920509 DOI: 10.1007/s10646-015-1463-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/18/2015] [Indexed: 06/04/2023]
Abstract
We reared large (1000 individuals) and small (20 individuals) populations of Tribolium castaneum on diet contaminated with copper in order to determine if the size of a population affects its ability to adapt to adverse environmental conditions. After 10 generations, we used microsatellite markers to estimate and subsequently compare the genetic variability of the copper-treated populations with that of the control populations, which were reared on uncontaminated medium. Additionally, we conducted a full cross-factorial experiment which evaluated the effects of 10 generations of "pre-exposure" to copper on a population's fitness in control and copper-contaminated environments. In order to distinguish results potentially arising from genetic adaptation from those due to non-genetic effects associated to parental exposure to copper, we subjected also F11 generation, originating from parents not exposed to copper, to the same cross-factorial experiment. The effects of long-term exposure to copper depended on population size: the growth rates of small populations that were pre-exposed to copper were inhibited compared to those of small populations reared in uncontaminated environments. Large Cu-exposed populations had a higher growth rate in the F10 generation compared to the control groups, while the growth rate of the F11 generation was unaffected by copper exposure history. The only factor that had a significant effect on genetic variability was population size, but this was to be expected given the large difference in the number of individuals between large and small populations. Neither copper contamination nor its interaction with population size affected the number of microsatellite alleles retained in the F10 generation.
Collapse
Affiliation(s)
- Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | | | | | | | | |
Collapse
|
11
|
Huang J, Zhu D, Song X, Chen B, Zeng C, Moermond T, Zhang X, Yue B. High-throughput microsatellite markers discovery for the Sichuan Hill Partridge (Arborophila rufipectus) and assessment of genetic diversity in the Laojunshan population. BIOCHEM SYST ECOL 2015. [DOI: 10.1016/j.bse.2015.04.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Huang J, Li YZ, Du LM, Yang B, Shen FJ, Zhang HM, Zhang ZH, Zhang XY, Yue BS. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genomics 2015; 16:61. [PMID: 25888121 PMCID: PMC4335702 DOI: 10.1186/s12864-015-1268-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 01/22/2015] [Indexed: 12/02/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a critically endangered species endemic to China. Microsatellites have been preferred as the most popular molecular markers and proven effective in estimating population size, paternity test, genetic diversity for the critically endangered species. The availability of the giant panda complete genome sequences provided the opportunity to carry out genome-wide scans for all types of microsatellites markers, which now opens the way for the analysis and development of microsatellites in giant panda. Results By screening the whole genome sequence of giant panda in silico mining, we identified microsatellites in the genome of giant panda and analyzed their frequency and distribution in different genomic regions. Based on our search criteria, a repertoire of 855,058 SSRs was detected, with mono-nucleotides being the most abundant. SSRs were found in all genomic regions and were more abundant in non-coding regions than coding regions. A total of 160 primer pairs were designed to screen for polymorphic microsatellites using the selected tetranucleotide microsatellite sequences. The 51 novel polymorphic tetranucleotide microsatellite loci were discovered based on genotyping blood DNA from 22 captive giant pandas in this study. Finally, a total of 15 markers, which showed good polymorphism, stability, and repetition in faecal samples, were used to establish the novel microsatellite marker system for giant panda. Meanwhile, a genotyping database for Chengdu captive giant pandas (n = 57) were set up using this standardized system. What’s more, a universal individual identification method was established and the genetic diversity were analysed in this study as the applications of this marker system. Conclusion The microsatellite abundance and diversity were characterized in giant panda genomes. A total of 154,677 tetranucleotide microsatellites were identified and 15 of them were discovered as the polymorphic and stable loci. The individual identification method and the genetic diversity analysis method in this study provided adequate material for the future study of giant panda. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1268-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P R China.
| | - Yu-Zhi Li
- Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, Sichuan, China.
| | - Lian-Ming Du
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P R China.
| | - Bo Yang
- China Research and Conservation Centre for the Giant Panda, Wenchuan, 623006, China.
| | - Fu-Jun Shen
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - He-Min Zhang
- China Research and Conservation Centre for the Giant Panda, Wenchuan, 623006, China.
| | - Zhi-He Zhang
- Chengdu Research Base of Giant Panda Breeding, Chengdu, 610081, China.
| | - Xiu-Yue Zhang
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, P R China.
| | - Bi-Song Yue
- Key Laboratory of Bio-resources and Eco-environment (Ministry of Education), College of Life Sciences, Sichuan University, Chengdu, 610064, P R China.
| |
Collapse
|
13
|
Kerstes NAG, Martin OY. Insect host-parasite coevolution in the light of experimental evolution. INSECT SCIENCE 2014; 21:401-414. [PMID: 24130157 DOI: 10.1111/1744-7917.12064] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/29/2013] [Indexed: 06/02/2023]
Abstract
The many ways parasites can impact their host species have been the focus of intense study using a range of approaches. A particularly promising but under-used method in this context is experimental evolution, because it allows targeted manipulation of known populations exposed to contrasting conditions. The strong potential of applying this method to the study of insect hosts and their associated parasites is demonstrated by the few available long-term experiments where insects have been exposed to parasites. In this review, we summarize these studies, which have delivered valuable insights into the evolution of resistance in response to parasite pressure, the underlying mechanisms, as well as correlated genetic responses. We further assess findings from relevant artificial selection studies in the interrelated contexts of immunity, life history, and reproduction. In addition, we discuss a number of well-studied Tribolium castaneum-Nosema whitei coevolution experiments in more detail and provide suggestions for research. Specifically, we suggest that future experiments should also be performed using nonmodel hosts and should incorporate contrasting experimental conditions, such as population sizes or environments. Finally, we expect that adding a third partner, for example, a second parasite or symbiont, to a host-parasite system could strongly impact (co)evolutionary dynamics.
Collapse
Affiliation(s)
- Niels A G Kerstes
- Experimental Ecology, Institute for Integrative Biology, D-USYS, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
14
|
Simpson MC, Wilken PM, Coetzee MPA, Wingfield MJ, Wingfield BD. Analysis of microsatellite markers in the genome of the plant pathogen Ceratocystis fimbriata. Fungal Biol 2013; 117:545-55. [PMID: 23931120 DOI: 10.1016/j.funbio.2013.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 06/13/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Ceratocystis fimbriata sensu lato represents a complex of cryptic and commonly plant pathogenic species that are morphologically similar. Species in this complex have been described using morphological characteristics, intersterility tests and phylogenetics. Microsatellite markers have been useful to study the population structure and origin of some species in the complex. In this study we sequenced the genome of C. fimbriata. This provided an opportunity to mine the genome for microsatellites, to develop new microsatellite markers, and map previously developed markers onto the genome. Over 6000 microsatellites were identified in the genome and their abundance and distribution was determined. Ceratocystis fimbriata has a medium level of microsatellite density and slightly smaller genome when compared with other fungi for which similar microsatellite analyses have been performed. This is the first report of a microsatellite analysis conducted on a genome sequence of a fungal species in the order Microascales. Forty-seven microsatellite markers have been published for population genetic studies, of which 35 could be mapped onto the C. fimbriata genome sequence. We developed an additional ten microsatellite markers within putative genes to differentiate between species in the C. fimbriata s.l. complex. These markers were used to distinguish between 12 species in the complex.
Collapse
Affiliation(s)
- Melissa C Simpson
- Department of Genetics, Forestry and Agricultural Biotechnology Institute FABI, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa.
| | | | | | | | | |
Collapse
|
15
|
Fine-scale analysis of parasite resistance genes in the red flour beetle, Tribolium castaneum. Genetics 2013; 195:253-61. [PMID: 23770699 DOI: 10.1534/genetics.113.153205] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Parasite infection impacts population dynamics through effects on fitness and fecundity of the individual host. In addition to the known roles of environmental factors, host susceptibility to parasites has a genetic basis that has not been well characterized. We previously mapped quantitative trait loci (QTL) for susceptibility to rat tapeworm (Hymenolepis diminuta) infection in Tribolium castaneum using dominant AFLP markers; however, the resistance genes were not identified. Here, we refined the QTL locations and increased the marker density in the QTL regions using new microsatellite markers, sequence-tagged site markers, and single-strand conformational polymorphism markers. Resistance QTL in three linkage groups (LG3, LG6, and LG8) were each mapped to intervals <1.0 cM between two codominant markers. The effects of 21 genes in the three QTL regions were investigated by using quantitative RT-PCR analysis, and transcription profiles were obtained from the resistant TIW1 and the susceptible cSM strains. Based on transcription data, eight genes were selected for RNA interference analysis to investigate their possible roles in H. diminuta resistance, including cytochrome P450 (LOC657454) and Toll-like receptor 13 (TLR13, LOC662131). The transcription of P450 and TLR13 genes in the resistant TIW1 strains was reduced more than ninefold relative to the control. Moreover, the effects of gene knockdown of P450 and TLR13 caused resistant beetles to become susceptible to tapeworm infection, which strongly suggests an important role for each in T. castaneum resistance to H. diminuta infection.
Collapse
|
16
|
Milutinović B, Stolpe C, Peuβ R, Armitage SAO, Kurtz J. The red flour beetle as a model for bacterial oral infections. PLoS One 2013; 8:e64638. [PMID: 23737991 PMCID: PMC3667772 DOI: 10.1371/journal.pone.0064638] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 04/17/2013] [Indexed: 01/03/2023] Open
Abstract
Experimental infection systems are important for studying antagonistic interactions and coevolution between hosts and their pathogens. The red flour beetle Tribolium castaneum and the spore-forming bacterial insect pathogen Bacillus thuringiensis (Bt) are widely used and tractable model organisms. However, they have not been employed yet as an efficient experimental system to study host-pathogen interactions. We used a high throughput oral infection protocol to infect T. castaneum insects with coleopteran specific B. thuringiensis bv. tenebrionis (Btt) bacteria. We found that larval mortality depends on the dietary spore concentration and on the duration of exposure to the spores. Furthermore, differential susceptibility of larvae from different T. castaneum populations indicates that the host genetic background influences infection success. The recovery of high numbers of infectious spores from the cadavers indicates successful replication of bacteria in the host and suggests that Btt could establish infectious cycles in T. castaneum in nature. We were able to transfer plasmids from Btt to a non-pathogenic but genetically well-characterised Bt strain, which was thereafter able to successfully infect T. castaneum, suggesting that factors residing on the plasmids are important for the virulence of Btt. The availability of a genetically accessible strain will provide an ideal model for more in-depth analyses of pathogenicity factors during oral infections. Combined with the availability of the full genome sequence of T. castaneum, this system will enable analyses of host responses during infection, as well as addressing basic questions concerning host-parasite coevolution.
Collapse
Affiliation(s)
- Barbara Milutinović
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Clemens Stolpe
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Robert Peuβ
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Joachim Kurtz
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| |
Collapse
|
17
|
Kerstes NAG, Bérénos C, Schmid-Hempel P, Wegner KM. Antagonistic experimental coevolution with a parasite increases host recombination frequency. BMC Evol Biol 2012; 12:18. [PMID: 22330615 PMCID: PMC3293731 DOI: 10.1186/1471-2148-12-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 02/13/2012] [Indexed: 11/10/2022] Open
Abstract
Background One of the big remaining challenges in evolutionary biology is to understand the evolution and maintenance of meiotic recombination. As recombination breaks down successful genotypes, it should be selected for only under very limited conditions. Yet, recombination is very common and phylogenetically widespread. The Red Queen Hypothesis is one of the most prominent hypotheses for the adaptive value of recombination and sexual reproduction. The Red Queen Hypothesis predicts an advantage of recombination for hosts that are coevolving with their parasites. We tested predictions of the hypothesis with experimental coevolution using the red flour beetle, Tribolium castaneum, and its microsporidian parasite, Nosema whitei. Results By measuring recombination directly in the individuals under selection, we found that recombination in the host population was increased after 11 generations of coevolution. Detailed insights into genotypic and phenotypic changes occurring during the coevolution experiment furthermore helped us to reconstruct the coevolutionary dynamics that were associated with this increase in recombination frequency. As coevolved lines maintained higher genetic diversity than control lines, and because there was no evidence for heterozygote advantage or for a plastic response of recombination to infection, the observed increase in recombination most likely represented an adaptive host response under Red Queen dynamics. Conclusions This study provides direct, experimental evidence for an increase in recombination frequency under host-parasite coevolution in an obligatory outcrossing species. Combined with earlier results, the Red Queen process is the most likely explanation for this observation.
Collapse
Affiliation(s)
- Niels A G Kerstes
- ETH Zürich, Institute of Integrative Biology, Experimental Ecology, CH-8092 Zürich, Switzerland.
| | | | | | | |
Collapse
|
18
|
Semeao AA, Campbell JF, Beeman RW, Lorenzen MD, Whitworth RJ, Sloderbeck PE. Genetic structure of Tribolium castaneum (Coleoptera: Tenebrionidae) populations in mills. ENVIRONMENTAL ENTOMOLOGY 2012; 41:188-199. [PMID: 22525075 DOI: 10.1603/en11207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The red flour beetle, Tribolium castaneum (Herbst), is primarily found associated with human structures such as wheat and rice mills. Such structures are predicted to be spatially isolated resource patches with frequent population bottlenecks that should influence their genetic structure. Genetic diversity and differentiation among nine populations of T. castaneum collected from wheat and rice mills (ranging from <1-5,700 km apart) were investigated using eight polymorphic loci (microsatellites and other insertion-deletion polymorphisms, each with 3-14 alleles). Seventy-two locus-by-population combinations were evaluated, of which 31 deviated significantly from Hardy-Weinberg equilibrium, all because of a deficiency of heterozygotes. AMOVA analysis indicated significant differences among populations, with 8.3% of the variation in allele frequency resulting from comparisons among populations, and commodity type and geographic region not significant factors. Although there were significant differences in genetic differentiation among populations (F(ST) values = 0.018-0.149), genetic distance was not significantly correlated with geographic distance. Correct assignment to the source population was successful for only 56% of individuals collected. Further analyses confirmed the occurrence of recent genetic bottlenecks in five out of nine populations. These results provide evidence that populations of T. castaneum collected from mills show spatial genetic structure, but the poor ability to assign individuals to source populations and lack of isolation by distance suggest greater levels of gene flow than predicted originally.
Collapse
Affiliation(s)
- Altair A Semeao
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
19
|
Drury DW, Jideonwo VN, Ehmke RC, Wade MJ. An unusual barrier to gene flow: perpetually immature larvae from inter-population crosses in the flour beetle, Tribolium castaneum. J Evol Biol 2011; 24:2678-86. [PMID: 21954914 DOI: 10.1111/j.1420-9101.2011.02394.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We genetically characterize an unusual hybrid incompatibility phenotype manifest in F(1) offspring of crosses between two populations of Tribolium castaneum. Hybrid larvae cease development at the third larval instar, persisting as 'perpetually immature larvae' thereafter. Although unable to produce viable adult hybrid offspring with one another, each population produces abundant, fertile hybrids with other populations, indicating a recent origin of the incompatibility and facilitating genetic studies. We mapped the paternal component of the hybrid phenotype to a single region, which exhibits two characteristics common to hybrid incompatibility: marker transmission ratio distortion within crosses and elevated genetic divergence between populations. The incompatible variation and an elevation in between-population genetic divergence is associated with a region containing the T. castaneum ecdysone receptor homologue, a major regulatory switch, controlling larval moults, pupation and metamorphosis. This contributes to understanding the genetics of speciation in the Coleoptera, one of the most speciose of all arthropod taxa.
Collapse
Affiliation(s)
- D W Drury
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | | | | | | |
Collapse
|
20
|
Ridley AW, Hereward JP, Daglish GJ, Raghu S, Collins PJ, Walter GH. The spatiotemporal dynamics of Tribolium castaneum (Herbst): adult flight and gene flow. Mol Ecol 2011; 20:1635-46. [PMID: 21375637 DOI: 10.1111/j.1365-294x.2011.05049.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tribolium castaneum (Herbst) has been used as a model organism to develop and test important ecological and evolutionary concepts and is also a major pest of grain and grain products globally. This beetle species is assumed to be a good colonizer of grain storages through anthropogenic movement of grain, and active dispersal by flight is considered unlikely. Studies using T. castaneum have therefore used confined or walking insects. We combine an ecological study of dispersal with an analysis of gene flow using microsatellites to investigate the spatiotemporal dynamics and adult flight of T. castaneum in an ecological landscape in eastern Australia. Flying beetles were caught in traps at grain storages and in fields at least 1 km from the nearest stored grain at regular intervals for an entire year. Significantly more beetles were trapped at storages than in fields, and almost no beetles were caught in native vegetation reserves many kilometres from the nearest stored grain. Genetic differentiation between beetles caught at storages and in fields was low, indicating that although T. castaneum is predominantly aggregated around grain storages, active dispersal takes place to the extent that significant gene flow occurs between them, mitigating founder effects and genetic drift. By combining ecological and molecular techniques, we reveal much higher levels of active dispersal through adult flight in T. castaneum than previously thought. We conclude that the implications of adult flight to previous and future studies on this model organism warrant consideration.
Collapse
Affiliation(s)
- A W Ridley
- Agri-Science Queensland, Department of Employment, Economic Development and Innovation, EcoSciences Precinct, GPO Box 46, Brisbane, Qld 4001, Australia.
| | | | | | | | | | | |
Collapse
|
21
|
Castagnone-Sereno P, Danchin EGJ, Deleury E, Guillemaud T, Malausa T, Abad P. Genome-wide survey and analysis of microsatellites in nematodes, with a focus on the plant-parasitic species Meloidogyne incognita. BMC Genomics 2010; 11:598. [PMID: 20973953 PMCID: PMC3091743 DOI: 10.1186/1471-2164-11-598] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 10/25/2010] [Indexed: 11/13/2022] Open
Abstract
Background Microsatellites are the most popular source of molecular markers for studying population genetic variation in eukaryotes. However, few data are currently available about their genomic distribution and abundance across the phylum Nematoda. The recent completion of the genomes of several nematode species, including Meloidogyne incognita, a major agricultural pest worldwide, now opens the way for a comparative survey and analysis of microsatellites in these organisms. Results Using MsatFinder, the total numbers of 1-6 bp perfect microsatellites detected in the complete genomes of five nematode species (Brugia malayi, Caenorhabditis elegans, M. hapla, M. incognita, Pristionchus pacificus) ranged from 2,842 to 61,547, and covered from 0.09 to 1.20% of the nematode genomes. Under our search criteria, the most common repeat motifs for each length class varied according to the different nematode species considered, with no obvious relation to the AT-richness of their genomes. Overall, (AT)n, (AG)n and (CT)n were the three most frequent dinucleotide microsatellite motifs found in the five genomes considered. Except for two motifs in P. pacificus, all the most frequent trinucleotide motifs were AT-rich, with (AAT)n and (ATT)n being the only common to the five nematode species. A particular attention was paid to the microsatellite content of the plant-parasitic species M. incognita. In this species, a repertoire of 4,880 microsatellite loci was identified, from which 2,183 appeared suitable to design markers for population genetic studies. Interestingly, 1,094 microsatellites were identified in 801 predicted protein-coding regions, 99% of them being trinucleotides. When compared against the InterPro domain database, 497 of these CDS were successfully annotated, and further assigned to Gene Ontology terms. Conclusions Contrasted patterns of microsatellite abundance and diversity were characterized in five nematode genomes, even in the case of two closely related Meloidogyne species. 2,245 di- to hexanucleotide loci were identified in the genome of M. incognita, providing adequate material for the future development of a wide range of microsatellite markers in this major plant parasite.
Collapse
|
22
|
Bérénos C, Wegner KM, Schmid-Hempel P. Antagonistic coevolution with parasites maintains host genetic diversity: an experimental test. Proc Biol Sci 2010; 278:218-24. [PMID: 20685701 DOI: 10.1098/rspb.2010.1211] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Genetic variation in natural populations is a prime prerequisite allowing populations to respond to selection, but is under constant threat from forces that tend to reduce it, such as genetic drift and many types of selection. Haldane emphasized the potential importance of parasites as a driving force of genetic diversity. His theory has been taken for granted ever since, but despite numerous studies showing correlations between genetic diversity and parasitism, Haldane's hypothesis has rarely been tested experimentally for unambiguous support. We experimentally staged antagonistic coevolution between the host Tribolium castaneum and its natural microsporidian parasite, Nosema whitei, to test for the relative importance of two separate evolutionary forces (drift and parasite-induced selection) on the maintenance of genetic variation. Our results demonstrate that coevolution with parasites indeed counteracts drift as coevolving populations had significantly higher levels of heterozygosity and allelic diversity. Genetic drift remained a strong force, strongly reducing genetic variation and increasing genetic differentiation in small populations. To our surprise, differentiation between the evolving populations was smaller when they coevolved with parasites, suggesting parallel balancing selection. Hence, our results experimentally vindicate Haldane's original hypothesis 60 years after its conception.
Collapse
Affiliation(s)
- Camillo Bérénos
- Institute of Integrative Biology, Experimental Ecology, , ETH Zürich Universitätstrasse 16, CHN K 12.2, 8092 Zürich, Switzerland.
| | | | | |
Collapse
|
23
|
Drury DW, Siniard AL, Wade MJ. Genetic differentiation among wild populations of Tribolium castaneum estimated using microsatellite markers. J Hered 2009; 100:732-41. [PMID: 19734259 DOI: 10.1093/jhered/esp077] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We report our characterization of the genetic variation within and differentiation among wild-collected populations of the red flour beetle, Tribolium castaneum, using microsatellite loci identified from its genome sequence. We find that global differentiation, estimated as the average F(ST) across all loci and between all population pairs, is 0.180 (95% confidence intervals of 0.142 and 0.218). A majority of our pairwise population comparisons (>70%) were significant even though this species is considered an excellent colonizer by virtue of its pest status. Regional genetic variation between Tribolium populations is 2-3 times that observed in the fruit fly, Drosophila melanogaster. There was a weak positive correlation between genetic distance [F(ST)/(1 - F(ST))] and geographic distance [ln(km)]; pairs of populations with the highest degree of genetic differentiation (F(ST) > 0.29) have been shown to exhibit significant postzygotic reproductive isolation when crossed in previous studies. We discuss the possibility that local extinction and kin-structured colonization have increased the level of genetic differentiation between Tribolium populations.
Collapse
Affiliation(s)
- Douglas W Drury
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
24
|
Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Beeman RW, Brown SJ, Bucher G, Friedrich M, Grimmelikhuijzen CJP, Klingler M, Lorenzen M, Richards S, Roth S, Schröder R, Tautz D, Zdobnov EM, Muzny D, Gibbs RA, Weinstock GM, Attaway T, Bell S, Buhay CJ, Chandrabose MN, Chavez D, Clerk-Blankenburg KP, Cree A, Dao M, Davis C, Chacko J, Dinh H, Dugan-Rocha S, Fowler G, Garner TT, Garnes J, Gnirke A, Hawes A, Hernandez J, Hines S, Holder M, Hume J, Jhangiani SN, Joshi V, Khan ZM, Jackson L, Kovar C, Kowis A, Lee S, Lewis LR, Margolis J, Morgan M, Nazareth LV, Nguyen N, Okwuonu G, Parker D, Richards S, Ruiz SJ, Santibanez J, Savard J, Scherer SE, Schneider B, Sodergren E, Tautz D, Vattahil S, Villasana D, White CS, Wright R, Park Y, Beeman RW, Lord J, Oppert B, Lorenzen M, Brown S, Wang L, Savard J, Tautz D, Richards S, Weinstock G, Gibbs RA, Liu Y, Worley K, Weinstock G, Elsik CG, Reese JT, Elhaik E, Landan G, Graur D, Arensburger P, Atkinson P, Beeman RW, Beidler J, Brown SJ, Demuth JP, Drury DW, Du YZ, Fujiwara H, Lorenzen M, Maselli V, Osanai M, Park Y, Robertson HM, Tu Z, Wang JJ, Wang S, Richards S, Song H, Zhang L, Sodergren E, Werner D, Stanke M, Morgenstern B, Solovyev V, Kosarev P, Brown G, Chen HC, Ermolaeva O, Hlavina W, Kapustin Y, Kiryutin B, Kitts P, Maglott D, Pruitt K, Sapojnikov V, Souvorov A, Mackey AJ, Waterhouse RM, Wyder S, Zdobnov EM, Zdobnov EM, Wyder S, Kriventseva EV, Kadowaki T, Bork P, Aranda M, Bao R, Beermann A, Berns N, Bolognesi R, Bonneton F, Bopp D, Brown SJ, Bucher G, Butts T, Chaumot A, Denell RE, Ferrier DEK, Friedrich M, Gordon CM, Jindra M, Klingler M, Lan Q, Lattorff HMG, Laudet V, von Levetsow C, Liu Z, Lutz R, Lynch JA, da Fonseca RN, Posnien N, Reuter R, Roth S, Savard J, Schinko JB, Schmitt C, Schoppmeier M, Schröder R, Shippy TD, Simonnet F, Marques-Souza H, Tautz D, Tomoyasu Y, Trauner J, Van der Zee M, Vervoort M, Wittkopp N, Wimmer EA, Yang X, Jones AK, Sattelle DB, Ebert PR, Nelson D, Scott JG, Beeman RW, Muthukrishnan S, Kramer KJ, Arakane Y, Beeman RW, Zhu Q, Hogenkamp D, Dixit R, Oppert B, Jiang H, Zou Z, Marshall J, Elpidina E, Vinokurov K, Oppert C, Zou Z, Evans J, Lu Z, Zhao P, Sumathipala N, Altincicek B, Vilcinskas A, Williams M, Hultmark D, Hetru C, Jiang H, Grimmelikhuijzen CJP, Hauser F, Cazzamali G, Williamson M, Park Y, Li B, Tanaka Y, Predel R, Neupert S, Schachtner J, Verleyen P, Raible F, Bork P, Friedrich M, Walden KKO, Robertson HM, Angeli S, Forêt S, Bucher G, Schuetz S, Maleszka R, Wimmer EA, Beeman RW, Lorenzen M, Tomoyasu Y, Miller SC, Grossmann D, Bucher G. The genome of the model beetle and pest Tribolium castaneum. Nature 2008; 452:949-55. [PMID: 18362917 DOI: 10.1038/nature06784] [Citation(s) in RCA: 1000] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Accepted: 02/06/2008] [Indexed: 02/08/2023]
Abstract
Tribolium castaneum is a member of the most species-rich eukaryotic order, a powerful model organism for the study of generalized insect development, and an important pest of stored agricultural products. We describe its genome sequence here. This omnivorous beetle has evolved the ability to interact with a diverse chemical environment, as shown by large expansions in odorant and gustatory receptors, as well as P450 and other detoxification enzymes. Development in Tribolium is more representative of other insects than is Drosophila, a fact reflected in gene content and function. For example, Tribolium has retained more ancestral genes involved in cell-cell communication than Drosophila, some being expressed in the growth zone crucial for axial elongation in short-germ development. Systemic RNA interference in T. castaneum functions differently from that in Caenorhabditis elegans, but nevertheless offers similar power for the elucidation of gene function and identification of targets for selective insect control.
Collapse
Affiliation(s)
-
- Human Genome Sequencing Center, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|