1
|
Meng H, Wu H, Wei X, Jiang M. Adaptive strategies and driving factors of a montane riparian tree: Trait-specific mechanisms across latitude. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141578. [PMID: 33370904 DOI: 10.1016/j.scitotenv.2020.141578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/06/2020] [Accepted: 08/07/2020] [Indexed: 06/12/2023]
Abstract
Investigating the drivers of phenotypic and genetic divergence can reveal the underlying processes and strategies that species adopt in rapidly changing environments. However, knowledge of adaptive strategies and the underlying mechanisms is lacking for the majority of taxa, especially those living in habitats sensitive to climate change. Here, we investigated 20 populations of a Tertiary-relict tree species, Euptelea pleiospermum (Eupteleaceae), scattered in a mountain riparian habitat in China. We integrated genetic, growth, and reproductive traits, and evaluated the relative contributions of climatic and soil factors on genetic and functional trait divergence. The E. pleiospermum populations were divided into south and north genetic clusters, and there were significant differences in leaf density and seed mass of adult trees between the two. The spatial pattern of genetic divergence resulted from effects of both isolation by distance (IBD) and isolation by environment (IBE), whereas the divergence of growth and reproductive traits resulted solely from IBE effects. Spatial distance and selection by temperature and soils played dominant roles in genetic divergence. Precipitation drove the spatial divergence of sprouting. Both divergence of leaf density and seed mass were prominently induced by genetic divergence, and the influences might be enhanced by temperature and soil nutrients. We infer that E. pleiospermum populations adopt a resource-conservative strategy with low growth rates and higher sprouting under flooding disturbance, with larger seeds for improved seedling recruitment at lower latitudes. In contrast, high growth rate and sexual reproduction with small seeds are strategies adopted by populations at higher latitudes. We conclude that sprouting reflects a plastic response to precipitation, and leaf density and seed mass reflect local adaption under selection by temperature and soil factors. The underlying mechanisms of species adaptation strategies were trait-specific. Temperature and soil conditions are likely the main ecological factors shaping plant divergence in montane riparian regions.
Collapse
Affiliation(s)
- Hongjie Meng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Wu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xinzeng Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
2
|
Cao YN, Comes HP, Sakaguchi S, Chen LY, Qiu YX. Evolution of East Asia's Arcto-Tertiary relict Euptelea (Eupteleaceae) shaped by Late Neogene vicariance and Quaternary climate change. BMC Evol Biol 2016; 16:66. [PMID: 27001058 PMCID: PMC4802896 DOI: 10.1186/s12862-016-0636-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 03/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The evolutionary origin and historical demography of extant Arcto-Tertiary forest species in East Asia is still poorly understood. Here, we reconstructed the evolutionary and population demographic history of the two extant Euptelea species in China (E. pleiosperma) and Japan (E. polyandra). Chloroplast/nuclear DNA sequences and microsatellite loci were obtained from 36 Euptelea populations to explore molecular structure and diversity in relation to past and present distributions based on ecological niche modelling (ENM). Time-calibrated phylogenetic/phylogeographic inferences and niche-identity tests were used to infer the historical process of lineage formation. RESULTS Euptelea pleiosperma diverged from E. polyandra around the Late Miocene and experienced significant ecological differentiation. A near-simultaneous diversification of six phylogroups occurred during the mid-to-late Pliocene, in response to the abrupt uplift of the eastern Tibetan Plateau and an increasingly cooler and drier climate. Populations of E. pleiosperma seem to have been mostly stationary through the last glacial cycles, while those of E. polyandra reflect more recent climate-induced cycles of range contraction and expansion. CONCLUSIONS Our results illustrate how Late Neogene climatic/tectonic changes promoted speciation and lineage diversification in East Asia's Tertiary relict flora. They also demonstrate for the first time a greater variation in such species' responses to glacial cycles in Japan when compared to congeners in China.
Collapse
Affiliation(s)
- Ya-Nan Cao
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hans Peter Comes
- Department of Ecology & Evolution, Salzburg University, A-5020, Salzburg, Austria
| | - Shota Sakaguchi
- Laboratory of Plant Evolution and Biodiversity, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, 153-0041, Japan
| | - Lu-Yao Chen
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
3
|
Wei X, Meng H, Jiang M. Landscape genetic structure of a Streamside tree species Euptelea pleiospermum (Eupteleaceae): contrasting roles of river valley and mountain ridge. PLoS One 2013; 8:e66928. [PMID: 23825588 PMCID: PMC3692547 DOI: 10.1371/journal.pone.0066928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/13/2013] [Indexed: 11/25/2022] Open
Abstract
We used landscape genetics and statistical models to test how landscape features influence connectivity or create barriers to dispersal for a mountain riparian tree species, Euptelea pleiospermum. Young leaves from 1078 individuals belonging to 36 populations at elevations of 900-2000 m along upper reaches of four rivers were genotyped using eight nuclear microsatellite markers. We found no evidence for the unidirectional dispersal hypothesis in E. pleiospermum within each river. The linear dispersal pattern along each river valley is mostly consistent with the "classical metapopulaton" model. Mountain ridges separating rivers were genetic barriers for this wind-pollinated tree species with anemochorous seeds, whereas river valleys provided important corridors for dispersal. Gene flow among populations along elevational gradients within each river prevails over gene flow among populations at similar elevations but from different rivers. This pattern of gene flow is likely to promote elevational range shifts of plant populations and to hinder local adaptation along elevational gradients. This study provides a paradigm to determine which of the two strategies (migration or adaptation) will be adopted by mountain riparian plants under climate warming.
Collapse
Affiliation(s)
- Xinzeng Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| | - Hongjie Meng
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
4
|
Wei X, Jiang M. Contrasting relationships between species diversity and genetic diversity in natural and disturbed forest tree communities. THE NEW PHYTOLOGIST 2012; 193:779-786. [PMID: 22106986 DOI: 10.1111/j.1469-8137.2011.03957.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
• This study aimed to reveal species-genetic diversity correlations (SGDCs) and their underlying mechanisms in natural and disturbed forests. • A community survey and molecular analyses were carried out to compare species diversity (SD), the genetic diversity of the dominant tree species Euptelea pleiospermum (GD), the altitudinal patterns of SD and GD, SGDC, genetic differentiation (F(ST) ), community divergence (F(ST) -C), effective population size (N(e) ), and recent migration rate between mountain riparian forests along the Yandu (natural) and Nan (disturbed) rivers. • In natural forests, both SD and GD showed a unimodal altitudinal pattern and GD was positively correlated with SD, whereas a unimodal pattern and positive SGDC were not found in the disturbed forests. SD and F(ST) at the natural sites were higher than those at the disturbed sites. However, there were no significant differences in GD, F(ST) -C, N(e) or recent migration rate between the natural and disturbed sites. • A correlation between the patterns of SD and GD along a geographical gradient (e.g. altitude) is an important driver of positive SGDC. The absence of positive SGDC in the disturbed forests may result from reduced SD but unaffected GD, indicating nonparallel changes in SD and GD. This study furthermore cautions against generalizations about changes in SD and GD following disturbance.
Collapse
Affiliation(s)
- Xinzeng Wei
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
5
|
Croxford AE, Rogers T, Caligari PDS, Wilkinson MJ. High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar. THE NEW PHYTOLOGIST 2008; 180:594-607. [PMID: 18684160 DOI: 10.1111/j.1469-8137.2008.02588.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
* The provision of sequence-tagged site (STS) anchor points allows meaningful comparisons between mapping studies but can be a time-consuming process for nonmodel species or orphan crops. * Here, the first use of high-resolution melt analysis (HRM) to generate STS markers for use in linkage mapping is described. This strategy is rapid and low-cost, and circumvents the need for labelled primers or amplicon fractionation. * Using white lupin (Lupinus albus, x = 25) as a case study, HRM analysis was applied to identify 91 polymorphic markers from expressed sequence tag (EST)-derived and genomic libraries. Of these, 77 generated STS anchor points in the first fully resolved linkage map of the species. The map also included 230 amplified fragment length polymorphisms (AFLP) loci, spanned 1916 cM (84.2% coverage) and divided into the expected 25 linkage groups. * Quantitative trait loci (QTL) analyses performed on the population revealed genomic regions associated with several traits, including the agronomically important time to flowering (tf), alkaloid synthesis and stem height (Ph). Use of HRM-STS markers also allowed us to make direct comparisons between our map and that of the related crop, Lupinus angustifolius, based on the conversion of RFLP, microsatellite and single nucleotide polymorphism (SNP) markers into HRM markers.
Collapse
Affiliation(s)
- Adam E Croxford
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, SY23 3DA, UK
| | - Tom Rogers
- KG Fruits Ltd, Tatlingbury Oast, Five Oak Green, Tonbridge, Kent TN12 6RG, UK
| | - Peter D S Caligari
- Instituto de Biología Vegetal y Biotecnología, Universidad de Talca, 2 Norte 685 Talca, Chile
| | - Michael J Wilkinson
- Institute of Biological, Environmental and Rural Sciences, Edward Llwyd Building, Aberystwyth University, SY23 3DA, UK
| |
Collapse
|