1
|
Heger P, Zheng W, Rottmann A, Panfilio KA, Wiehe T. The genetic factors of bilaterian evolution. eLife 2020; 9:e45530. [PMID: 32672535 PMCID: PMC7535936 DOI: 10.7554/elife.45530] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2020] [Indexed: 12/13/2022] Open
Abstract
The Cambrian explosion was a unique animal radiation ~540 million years ago that produced the full range of body plans across bilaterians. The genetic mechanisms underlying these events are unknown, leaving a fundamental question in evolutionary biology unanswered. Using large-scale comparative genomics and advanced orthology evaluation techniques, we identified 157 bilaterian-specific genes. They include the entire Nodal pathway, a key regulator of mesoderm development and left-right axis specification; components for nervous system development, including a suite of G-protein-coupled receptors that control physiology and behaviour, the Robo-Slit midline repulsion system, and the neurotrophin signalling system; a high number of zinc finger transcription factors; and novel factors that previously escaped attention. Contradicting the current view, our study reveals that genes with bilaterian origin are robustly associated with key features in extant bilaterians, suggesting a causal relationship.
Collapse
Affiliation(s)
- Peter Heger
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Wen Zheng
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Anna Rottmann
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| | - Kristen A Panfilio
- Institute for Zoology: Developmental Biology, Cologne Biocenter, University of CologneCologneGermany
- School of Life Sciences, University of Warwick, Gibbet Hill CampusCoventryUnited Kingdom
| | - Thomas Wiehe
- Institute for Genetics, Cologne Biocenter, University of CologneCologneGermany
| |
Collapse
|
2
|
Jackson DJ, Reim L, Randow C, Cerveau N, Degnan BM, Fleck C. Variation in Orthologous Shell-Forming Proteins Contribute to Molluscan Shell Diversity. Mol Biol Evol 2018; 34:2959-2969. [PMID: 28961798 PMCID: PMC5850307 DOI: 10.1093/molbev/msx232] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the evolutionary success and ancient heritage of the molluscan shell, little is known about the molecular details of its formation, evolutionary origins, or the interactions between the material properties of the shell and its organic constituents. In contrast to this dearth of information, a growing collection of molluscan shell-forming proteomes and transcriptomes suggest they are comprised of both deeply conserved, and lineage specific elements. Analyses of these sequence data sets have suggested that mechanisms such as exon shuffling, gene co-option, and gene family expansion facilitated the rapid evolution of shell-forming proteomes and supported the diversification of this phylum specific structure. In order to further investigate and test these ideas we have examined the molecular features and spatial expression patterns of two shell-forming genes (Lustrin and ML1A2) and coupled these observations with materials properties measurements of shells from a group of closely related gastropods (abalone). We find that the prominent “GS” domain of Lustrin, a domain believed to confer elastomeric properties to the shell, varies significantly in length between the species we investigated. Furthermore, the spatial expression patterns of Lustrin and ML1A2 also vary significantly between species, suggesting that both protein architecture, and the regulation of spatial gene expression patterns, are important drivers of molluscan shell evolution. Variation in these molecular features might relate to certain materials properties of the shells of these species. These insights reveal an important and underappreciated source of variation within shell-forming proteomes that must contribute to the diversity of molluscan shell phenotypes.
Collapse
Affiliation(s)
- Daniel J Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany.,School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Laurin Reim
- Department of Earth- and Environmental Sciences, Ludwig-Maximilian University of Munich, München, Germany
| | - Clemens Randow
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| | - Nicolas Cerveau
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Bernard M Degnan
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Claudia Fleck
- Department of Materials Engineering, Institute of Technology Berlin, Berlin, Germany
| |
Collapse
|
3
|
Mass T, Drake JL, Heddleston JM, Falkowski PG. Nanoscale Visualization of Biomineral Formation in Coral Proto-Polyps. Curr Biol 2017; 27:3191-3196.e3. [PMID: 29033329 DOI: 10.1016/j.cub.2017.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 07/11/2017] [Accepted: 09/06/2017] [Indexed: 11/16/2022]
Abstract
Calcium carbonate platforms produced by reef-building stony corals over geologic time are pervasive features around the world [1]; however, the mechanism by which these organisms produce the mineral is poorly understood (see review by [2]). It is generally assumed that stony corals precipitate calcium carbonate extracellularly as aragonite in a calcifying medium between the calicoblastic ectoderm and pre-existing skeleton, separated from the overlying seawater [2]. The calicoblastic ectoderm produces extracellular matrix (ECM) proteins, secreted to the calcifying medium [3-6], which appear to provide the nucleation, alteration, elongation, and inhibition mechanisms of the biomineral [7] and remain occluded and preserved in the skeleton [8-10]. Here we show in cell cultures of the stony coral Stylophora pistillata that calcium is concentrated in intracellular pockets that are subsequently exported from the cell where a nucleation process leads to the formation of extracellular aragonite crystals. Analysis of the growing crystals by lattice light-sheet microscopy suggests that the crystals elongate from the cells' surfaces outward.
Collapse
Affiliation(s)
- Tali Mass
- University of Haifa, Department of Marine Biology, The Leon H. Charney School of Marine Sciences, Multi Purpose Boulevard, Mt. Carmel, Haifa 3498838, Israel.
| | - Jeana L Drake
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA
| | - John M Heddleston
- Howard Hughes Medical Institute Janelia Research Campus, Advanced Imaging Center, Helix Drive, Ashburn, VA 20147, USA
| | - Paul G Falkowski
- Rutgers University, Department of Marine and Coastal Sciences, Dudley Road, New Brunswick, NJ 08901, USA; Rutgers University, Department of Earth and Planetary Sciences, Taylor Road, Piscataway, NJ 08854, USA
| |
Collapse
|
4
|
Sun CY, Marcus MA, Frazier MJ, Giuffre AJ, Mass T, Gilbert PUPA. Spherulitic Growth of Coral Skeletons and Synthetic Aragonite: Nature's Three-Dimensional Printing. ACS NANO 2017; 11:6612-6622. [PMID: 28564539 DOI: 10.1021/acsnano.7b00127] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Coral skeletons were long assumed to have a spherulitic structure, that is, a radial distribution of acicular aragonite (CaCO3) crystals with their c-axes radiating from series of points, termed centers of calcification (CoCs). This assumption was based on morphology alone, not on crystallography. Here we measure the orientation of crystals and nanocrystals and confirm that corals grow their skeletons in bundles of aragonite crystals, with their c-axes and long axes oriented radially and at an angle from the CoCs, thus precisely as expected for feather-like or "plumose" spherulites. Furthermore, we find that in both synthetic and coral aragonite spherulites at the nanoscale adjacent crystals have similar but not identical orientations, thus demonstrating by direct observation that even at nanoscale the mechanism of spherulite formation is non-crystallographic branching (NCB), as predicted by theory. Finally, synthetic aragonite spherulites and coral skeletons have similar angle spreads, and angular distances of adjacent crystals, further confirming that coral skeletons are spherulites. This is important because aragonite grows anisotropically, 10 times faster along the c-axis than along the a-axis direction, and spherulites fill space with crystals growing almost exclusively along the c-axis, thus they can fill space faster than any other aragonite growth geometry, and create isotropic materials from anisotropic crystals. Greater space filling rate and isotropic mechanical behavior are key to the skeleton's supporting function and therefore to its evolutionary success. In this sense, spherulitic growth is Nature's 3D printing.
Collapse
Affiliation(s)
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | | | | | - Tali Mass
- Marine Biology Department, University of Haifa , Mt. Carmel, Haifa 31905, Israel
| | | |
Collapse
|
5
|
Germer J, Mann K, Wörheide G, Jackson DJ. The Skeleton Forming Proteome of an Early Branching Metazoan: A Molecular Survey of the Biomineralization Components Employed by the Coralline Sponge Vaceletia Sp. PLoS One 2015; 10:e0140100. [PMID: 26536128 PMCID: PMC4633127 DOI: 10.1371/journal.pone.0140100] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/22/2015] [Indexed: 01/09/2023] Open
Abstract
The ability to construct a mineralized skeleton was a major innovation for the Metazoa during their evolution in the late Precambrian/early Cambrian. Porifera (sponges) hold an informative position for efforts aimed at unraveling the origins of this ability because they are widely regarded to be the earliest branching metazoans, and are among the first multi-cellular animals to display the ability to biomineralize in the fossil record. Very few biomineralization associated proteins have been identified in sponges so far, with no transcriptome or proteome scale surveys yet available. In order to understand what genetic repertoire may have been present in the last common ancestor of the Metazoa (LCAM), and that may have contributed to the evolution of the ability to biocalcify, we have studied the skeletal proteome of the coralline demosponge Vaceletia sp. and compare this to other metazoan biomineralizing proteomes. We bring some spatial resolution to this analysis by dividing Vaceletia's aragonitic calcium carbonate skeleton into "head" and "stalk" regions. With our approach we were able to identify 40 proteins from both the head and stalk regions, with many of these sharing some similarity to previously identified gene products from other organisms. Among these proteins are known biomineralization compounds, such as carbonic anhydrase, spherulin, extracellular matrix proteins and very acidic proteins. This report provides the first proteome scale analysis of a calcified poriferan skeletal proteome, and its composition clearly demonstrates that the LCAM contributed several key enzymes and matrix proteins to its descendants that supported the metazoan ability to biocalcify. However, lineage specific evolution is also likely to have contributed significantly to the ability of disparate metazoan lineages to biocalcify.
Collapse
Affiliation(s)
- Juliane Germer
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| | - Karlheinz Mann
- Max Planck Institute of Biochemistry, Department of Proteomics and Signal Transduction, Munich, Germany
| | - Gert Wörheide
- Department of Earth- and Environmental Sciences & GeoBio-Center, Ludwig-Maximilians-Universität München, München, Germany
- SNSB—Bavarian State Collections of Palaeontology & Geology, München, Germany
| | - Daniel John Jackson
- Department of Geobiology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Coronado I, Fernández-Martínez E, Rodríguez S, Tourneur F. Reconstructing a Carboniferous inferred coral-alcyonarian association using a biomineralogical approach. GEOBIOLOGY 2015; 13:340-356. [PMID: 25857932 DOI: 10.1111/gbi.12133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 02/20/2015] [Indexed: 06/04/2023]
Abstract
The taxonomic assignation and ecological implications of the genus Syringoalcyon Termier & Termier, 1945 have been a palaeontological problem for a long time. Carboniferous material from Morocco and Spain has been studied using a biomineralogical approach by means of petrographic microscopy, SEM, AFM, EMPA and CIP microscopy analysis. Detailed morphological, structural, chemical composition and crystallographic data enable a deeper understanding of the nature of Syringoalcyon. The coral walls and the so-called epithecal scales exhibit conspicuous differences in microstructure (lamellae and holacanthine fibres in the coral vs. single crystal in scales), nanostructure (pill-shaped vs. granule-shaped nanocrystals), composition (LMC vs. HMC) and crystallographic orientation. The results of these analyses imply that Syringoalcyon is an association between the tabulate coral Syringopora and an epibiont. They also suggest that the epibiont was an alcyonarian (a rare occurrence in the fossil record) that was attached to the syringoporoid. This work highlights the utility of the biomineralizational approaches for solving palaeontological problems, such as systematic affinities, and for advancing knowledge of the evolution of biocrystallization processes.
Collapse
Affiliation(s)
- I Coronado
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
| | - E Fernández-Martínez
- Departamento de Geografía y Geología, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, León, Spain
| | - S Rodríguez
- Departamento de Paleontología, Universidad Complutense de Madrid, Ciudad Universitaria, Madrid, Spain
- Instituto de Geociencias (IGEO. CSIC-UCM), Ciudad Universitaria, Madrid, Spain
| | - F Tourneur
- Pierres et Marbres de Wallonie, Naninne, Belgium
| |
Collapse
|
7
|
Ettensohn CA. Horizontal transfer of themsp130gene supported the evolution of metazoan biomineralization. Evol Dev 2014; 16:139-48. [DOI: 10.1111/ede.12074] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Charles A. Ettensohn
- Department of Biological Sciences; Carnegie Mellon University; 4400 Fifth Avenue Pittsburgh PA 15213 USA
| |
Collapse
|
8
|
Jackson DJ, Wörheide G. Symbiophagy and biomineralization in the "living fossil" Astrosclera willeyana. Autophagy 2013; 10:408-15. [PMID: 24343243 PMCID: PMC4077880 DOI: 10.4161/auto.27319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Representatives of all major metazoan lineages form biominerals. The molecular mechanisms that underlie this widespread and evolutionarily ancient ability are gradually being revealed for some lineages. However, until a wider range of metazoan biomineralization strategies are understood, the true diversity, and therefore the evolutionary origins of this process, will remain unknown. We have previously shown that the coralline demosponge, Astrosclera willeyana, in some way employs its endobiotic bacterial community to form its highly calcified skeleton. Here, using in situ hybridization and immunohistochemistry, we show that an ortholog of ATG8 (most likely a GABARAPL2/GATE-16 ortholog) is expressed in cells that construct the individual skeletal elements of the sponge. In TEM sections sponge cells can be observed to contain extensive populations of bacteria, and frequently possesses double-membrane structures which we interpret to be autophagosomes. In combination with our previous work, these findings support the hypothesis that the host sponge actively degrades a proportion of its bacterial community using an autophagy pathway, and uses the prokaryotic organic remains as a framework upon which calcification of the sponge skeleton is initiated.
Collapse
Affiliation(s)
- Daniel J Jackson
- Courant Research Centre Geobiology; Georg-August-University of Göttingen; Göttingen, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences and GeoBioCenter LMU; Ludwig-Maximilians-Universität München; München, Germany; Bavarian State Collections of Palaeontology and Geology; München, Germany
| |
Collapse
|
9
|
Karlińska-Batres K, Wörheide G. Phylogenetic diversity and community structure of the symbionts associated with the coralline sponge Astrosclera willeyana of the Great Barrier Reef. MICROBIAL ECOLOGY 2013; 65:740-752. [PMID: 23525793 DOI: 10.1007/s00248-013-0212-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/06/2013] [Indexed: 06/02/2023]
Abstract
The coralline sponge Astrosclera willeyana, considered to be a living representative of the reef-building stromatoporoids of the Mesozoic and the Paleozoic periods, occurs widely throughout the Indo-Pacific oceans. We aimed to examine, for the first time, the phylogenetic diversity of the microbial symbionts associated with A. willeyana using molecular methods and to investigate the spatial variability in the sponge-derived microbial communities of A. willeyana from diverse sites along the Great Barrier Reef (GBR). Both denaturing gradient gel electrophoresis (DGGE) analyses of 12 Astrosclera specimens and sequencing of a 16S rRNA gene clone library, constructed using a specimen of A. willeyana from the Yonge Reef (380 clones), revealed the presence of a complex microbial community with high diversity. An assessment of the 16S rRNA gene sequences to the particular phylogenetic groups showed domination of the Chloroflexi (42 %), followed by the Gammaproteobacteria (14 %), Actinobacteria (11 %), Acidobacteria (8 %), and the Deferribacteres (7 %). Of the microbes that were identified, a further 15 % belonged to the Deltaproteobacteria, Alphaproteobacteria, and Nitrospirae genera. The minor phylogenetic groups Gemmatimonadetes, Spirochaetes, Cyanobacteria, Poribacteria, and the Archaea composed 3 % of the community. Over 94 % of the sequences obtained from A. willeyana grouped together with other sponge- or coral-derived sequences, and of these, 72 % formed, with nearest relatives, 46 sponge-specific or sponge-coral clusters, highlighting the uniqueness of the microbial consortia in sponges. The DGGE results showed clear divisions according to the geographical origin of the samples, indicating closer relationships between the microbial communities with respect to their geographic origin (northern vs. southern GBR).
Collapse
Affiliation(s)
- Klementyna Karlińska-Batres
- Department of Earth and Environmental Sciences, Palaeontology and Geobiology & GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | | |
Collapse
|
10
|
Uriz MJ, Agell G, Blanquer A, Turon X, Casamayor EO. Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa? Evolution 2012; 66:2993-9. [PMID: 23025593 PMCID: PMC3485668 DOI: 10.1111/j.1558-5646.2012.01676.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 04/06/2012] [Indexed: 11/29/2022]
Abstract
Sponges show the highest diversity of associated bacteria among marine invertebrates. Immunological evidence traces the origin of the sponge bacterial symbioses to the Precambrian era. Hence, sponges appear to be ideally suited for studying the evolutionary origins of prokaryote-metazoan associations. Sponges produce either calcareous or siliceous skeletons, which only coexist in a relict group of demosponges, the sclerosponges. We report here, for the first time, intensive calcification in nonsclerosponge siliceous demosponges. Calcification is mediated by endosymbiotic bacteria (calcibacteria) located in archeocyte-like sponge cells. These calcibacteria are devoid of bacterial walls and divide within sponge cells until they became surrounded by a calcitic sheet, being subsequently extruded to the sponge subectosomal (subepithelial) zone. Thousands of bacteria-produced calcitic spherules cover the surface of the host sponges, forming a cortex-like structure that mimics a rudimentary peripheral skeleton. Calcibacteria are vertically transferred to the sponge larvae during embryogenesis. Calcium detoxification may have generated this symbiotic association, with some additional benefits for the sponges, such as skeletal formation and deterrence from predation. This unique symbiosis holds implications for sponge biology and may advance discussions on the role of bacteria in early biocalcification processes in metazoans.
Collapse
Affiliation(s)
- Maria J Uriz
- Centre d’Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala St Francesc14#17300 Blanes (Girona), Spain
| | - Gemma Agell
- Centre d’Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala St Francesc14#17300 Blanes (Girona), Spain
| | - Andrea Blanquer
- Centre d’Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala St Francesc14#17300 Blanes (Girona), Spain
- UPMC Univ Paris 06, Observatoire OcéanologiqueF-66650, Banyuls/Mer, France; CNRS, FRE 3350
- Laboratoire d'écogéochimie des environnements benthiques (LECOB), Observatoire OcéanologiqueF-66650, Banyuls/Mer, France
| | - Xavier Turon
- Centre d’Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala St Francesc14#17300 Blanes (Girona), Spain
| | - Emilio O Casamayor
- Centre d’Estudis Avançats de Blanes, CEAB-CSIC. Accés Cala St Francesc14#17300 Blanes (Girona), Spain
| |
Collapse
|
11
|
Gilis M, Grauby O, Willenz P, Dubois P, Legras L, Heresanu V, Baronnet A. Multi-scale mineralogical characterization of the hypercalcified sponge Petrobiona massiliana (Calcarea, Calcaronea). J Struct Biol 2011; 176:315-29. [DOI: 10.1016/j.jsb.2011.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/12/2011] [Accepted: 08/13/2011] [Indexed: 11/28/2022]
|
12
|
Jackson DJ, Macis L, Reitner J, Wörheide G. A horizontal gene transfer supported the evolution of an early metazoan biomineralization strategy. BMC Evol Biol 2011; 11:238. [PMID: 21838889 PMCID: PMC3163562 DOI: 10.1186/1471-2148-11-238] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/12/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The synchronous and widespread adoption of the ability to biomineralize was a defining event for metazoan evolution during the late Precambrian/early Cambrian 545 million years ago. However our understanding on the molecular level of how animals first evolved this capacity is poor. Because sponges are the earliest branching phylum of biomineralizing metazoans, we have been studying how biocalcification occurs in the coralline demosponge Astrosclera willeyana. RESULTS We have isolated and characterized a novel protein directly from the calcified spherulites of A. willeyana. Using three independent lines of evidence (genomic architecture of the gene in A. willeyana, spatial expression of the gene product in A. willeyana and genomic architecture of the gene in the related demosponge Amphimedon queenslandica), we show that the gene that encodes this protein was horizontally acquired from a bacterium, and is now highly and exclusively expressed in spherulite forming cells. CONCLUSIONS Our findings highlight the ancient and close association that exists between sponges and bacteria, and provide support for the notion that horizontal gene transfer may have been an important mechanism that supported the evolution of this early metazoan biomineralisation strategy.
Collapse
Affiliation(s)
- Daniel J Jackson
- Courant Research Centre Geobiology, Georg-August-University of Göttingen, Goldschmidtstrasse 3, Göttingen, Germany.
| | | | | | | |
Collapse
|