1
|
Ghatani K, Prasad Sha S, Thapa S, Chakraborty P, Sarkar S. Bifidobacterial Genome Editing for Potential Probiotic Development. GENOME EDITING IN BACTERIA (PART 1) 2024:62-87. [DOI: 10.2174/9789815165678124010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Genome editing is a promising tool in the era of modern biotechnology that
can alter the DNA of many organisms. It is now extensively used in various industries
to obtain the well-desired and enhanced characteristics to improve the yield and
nutritional quality of products. The positive health attributes of Bifidobacteria, such as
prevention of diarrhoea, reduction of ulcerative colitis, prevention of necrotizing
enterocolitis, etc., have shown promising reports in many clinical trials. The potential
use of Bifidobacteria as starter or adjunct cultures has become popular. Currently,
Bifidobacterium bifidum, B. adolescentis, B. breve, B. infantis, B. longum, and B. lactis
find a significant role in the development of probiotic fermented dairy products.
However, Bifidobacteria, one of the first colonizers of the human GI tract and an
indicator of the health status of an individual, has opened new avenues for research
and, thereby, its application. Besides this, the GRAS/QPS (Generally Regarded as
Safe/Qualified Presumption of Safety) status of Bifidobacteria makes it safe for use.
They belong to the subgroup (which are the fermentative types that are primarily found
in the natural cavities of humans and animals) of Actinomycetes. B. lactis has been used
industrially in fermented foods, such as yogurt, cheese, beverages, sausages, infant
formulas, and cereals. In the present book chapter, the authors tried to explore the
origin, health attributes, and various genetic engineering tools for genome editing of
Bifidobacteria for the development of starter culture for dairy and non-dairy industrial
applications as well as probiotics.
Collapse
Affiliation(s)
- Kriti Ghatani
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Shankar Prasad Sha
- Department of Botany, Food Microbiology Lab, Kurseong College, University of North Bengal,
Dow Hill Road, Kurseong, Darjeeling 7342003, West Bengal, India
| | - Subarna Thapa
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Priya Chakraborty
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| | - Sagnik Sarkar
- Department of Food Technology, University of North Bengal, Raja Rammohunpur, Darjeeling,
West Bengal, 734013, India
| |
Collapse
|
2
|
A Resource for Cloning and Expression Vectors Designed for Bifidobacteria: Overview of Available Tools and Biotechnological Applications. Methods Mol Biol 2021. [PMID: 33649956 DOI: 10.1007/978-1-0716-1274-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2023]
Abstract
Bifidobacteria represent an important group of (mostly) commensal microorganisms, which have enjoyed increasing scientific and industrial attention due to their purported health-promoting attributes. For the latter reason, several species have been granted "generally recognized as safe" (GRAS) and "qualified presumption of safety" (QPS) status by the Food and Drugs Administration (FDA) and European Food Safety Authority (EFSA) organizations. Increasing scientific evidence supports their potential as oral delivery vectors to produce bioactive and therapeutic molecules at intestinal level. In order to achieve an efficient utilization of bifidobacterial strains as health-promoting (food) ingredients, it is necessary to provide evidence on the molecular mechanisms behind their purported beneficial and probiotic traits, and precise mechanisms of interaction with their human (or other mammalian) host. In this context, developing appropriate molecular tools to generate and investigate recombinant strains is necessary. While bifidobacteria have long remained recalcitrant to genetic manipulation, a wide array of Bifidobacterium-specific replicating vectors and genetic modification procedures have been described in literature. The current chapter intends to provide an updated overview on the vectors used to genetically modify and manipulate bifidobacteria, including their general characteristics, reviewing examples of their use to successfully generate recombinant bifidobacterial strains for specific purposes, and providing a general workflow and cautions to design and conduct heterologous expression in bifidobacteria. Knowledge gaps and fields of research that may help to widen the molecular toolbox to improve the functional and technological potential of bifidobacteria are also discussed.
Collapse
|
3
|
Liu M, Li S, Zhang Q, Xu Z, Wang J, Sun H. Oral engineered Bifidobacterium longum expressing rhMnSOD to suppress experimental colitis. Int Immunopharmacol 2018; 57:25-32. [PMID: 29455070 DOI: 10.1016/j.intimp.2018.02.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/22/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
In recent years, using genetic engineering and bioengineering techniques, Bifidobacterium as a carrier to express specific functions of the protein or polypeptide, has become a new treatment for disease. Ulcerative colitis (UC) is a type of inflammatory bowel diseases (IBD). Although the cause of this inflammatory disorder is still unknown, a large amount of evidence suggests that ulcerative colitis is associated with increased activity of reactive oxygen species (ROS), manganese superoxide dismutase (MnSOD) is a kind of superoxide dismutase (SOD) has been demonstrated to play a key role in the pathophysiology of colitis. Here, we explored the Bifidobacterium as a drug delivery system to orally deliver a potent anti-inflammatory but poor penetration and stability antioxidant enzymes human MnSOD, transported into cells by a penetratin PEP-1. We constructed an expression vector expressing PEP-1-hMnSOD fusion protein, and successfully expressed hMnSOD fusion protein in engineered Bifidobacterium. Then we identified the bioactivity of engineered Bifidobacterium in LPS-induced inflammatory cell model. Finally, we used Bifidobacterium expressing PEP-1-hMnSOD fusion protein against DSS-induced ulcerative colitis mice. B. longum-PEP-1-rhMnSOD can successfully express rhMnSOD in the colon. We found that levels of inflammatory cytokines TNF-α, IL-1β, IL-6 and IL-8 as well as histological damage in colonic tissues showed that engineered Bifidobacterium effectively reduced dextran sulfate sodium(DSS)-induced ulcerative colitis, we also tested the MPO, verified the above conclusions. These results suggest that oral Bifidobacterium expressing PEP-1-hMnSOD fusion protein can be treated as a new method of UC treatment.
Collapse
Affiliation(s)
- Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Shiyu Li
- Genetic Engineering Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Zhang Q, Liu M, Li S, Xu Z, Wang J, Wang Y, Fei Z, Huang W, Sun H. Oral Bifidobacterium longum expressing GLP-2 improves nutrient assimilation and nutritional homeostasis in mice. J Microbiol Methods 2018; 145:87-92. [PMID: 29329748 DOI: 10.1016/j.mimet.2018.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/24/2023]
Abstract
Bifidobacterium has been developed for the oral delivery of peptides and has the added beneficial effect on our bodies through its probiotic properties. Here, we utilize Bifidobacterium as a delivery system to orally deliver Glucagon like peptide-2 (GLP-2). We constructed vector derived from pET-31b(+) to construct a Bifidobacterium longum expressing GLP-2. We then determined the bioactivity of recombinant Bifidobacterium in Caco-2 cells. Finally, we quantified newly synthesized ApoB48 and chylomicron production in mice infused with exogenous GLP-2 or Bifidobacterium expressing GLP-2. Results based on secretion of the triglyceride (TG)-rich lipoprotein (TRL)-ApoB48 and secretion of chylomicron revealed that recombinant Bifidobacterium was efficient in treating intestinal dysfunction,suggesting an alternative way to use Bifidobacterium as a delivery system to deliver GLP-2 for gastrointestinal nutrition coordination.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Mengge Liu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Shiyu Li
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenrui Xu
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiajia Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Yuzhe Wang
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhengbin Fei
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Wenhua Huang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanxiao Sun
- Institute of Genomic Medicine, College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
5
|
Wei P, Yang Y, Liu Z, Huang J, Gong Y, Sun H. Oral Bifidobacterium longum expressing alpha-melanocyte-stimulating hormone to fight experimental colitis. Drug Deliv 2015; 23:2058-64. [PMID: 26673899 DOI: 10.3109/10717544.2015.1122672] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The oral delivery of peptides is a highly attractive treatment approach. However, the harsh environment of the gastrointestinal tract limits its application. Here, we utilize Bifidobacterium as a delivery system to orally deliver a potent anti-inflammatory but short duration peptide alpha-melanocyte-stimulating hormone (α-MSH) against experimental colitis. The aim of our study was to facilitate the efficient oral delivery of α-MSH. We designed a vector of pBDMSH and used it to construct a Bifidobacterium longum expressing α-MSH. We then determined the bioactivity of recombinant Bifidobacterium in lipopolysaccharide-induced inflammatory models of HT-29 cells. Finally, we used Bifidobacterium expressing α-MSH against dextran sulfate sodium (DSS)-induced ulcerative colitis mice. Results based on the myeloperoxidase activity, the levels of inflammatory cytokines TNF-α, IL-1β, IL-6, and IL-10 and the histological injury of colon tissue reveal recombinant Bifidobacterium was efficient in attenuating DSS-induced ulcerative colitis, suggesting an alternative way to use Bifidobacterium as a delivery system to deliver α-MSH for DSS-induced ulcerative colitis therapy.
Collapse
Affiliation(s)
- Pijin Wei
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yan Yang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Zhaobing Liu
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Junli Huang
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Yahui Gong
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| | - Hanxiao Sun
- a Institute of Genomic Medicine Research, College of Pharmacy, Jinan University , Guangzhou , People's Republic of China
| |
Collapse
|
6
|
Ma Y, Xie TT, Hu Q, Qiu Z, Song F. Sequencing analysis and characterization of the plasmid pBIF10 isolated from Bifidobacterium longum. Can J Microbiol 2015; 61:124-30. [DOI: 10.1139/cjm-2014-0581] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A resident plasmid, pBIF10, was isolated from Bifidobacterium longum B200304, and the full-length sequence of pBIF10 was analyzed. In this sequence, we identified at least 17 major open reading frames longer than 200 bp. A tetracycline resistance gene, tetQ, was identified and verified to confer antibiotic resistance to tetracycline. The plasmid replicon with replication protein B gene (repB) and a typical iteron was identified in pBIF10. An artificial clone vector was constructed with the replicon of pBIF10; the results showed that repB controlled plasmid replication in other bifidobacteria host cells at low transformation frequency. Taken together, the analysis and characterization of pBIF10 provided necessary information for the understanding of antibiotic resistance mediated by a plasmid in a Bifidobacterium strain. GC% and repB sequence analyses indicated that pBIF10 was a molecular hybrid of at least 2 other bacterial genera plasmids.
Collapse
Affiliation(s)
- Yongping Ma
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Ting-ting Xie
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Qiongwen Hu
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Zongyin Qiu
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| | - Fangzhou Song
- Key Laboratory of Biochemistry and Molecular Biology, Molecular Medical and Cancer Research Center, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, No. 1, Chongqing 400016, People’s Republic of China
| |
Collapse
|
7
|
Takahata M, Toh H, Nakano A, Takagi M, Murakami M, Ishii Y, Takizawa T, Tanabe S, Morita H. Complete sequence analysis of two cryptic plasmids from Bifidobacterium kashiwanohense JCM 15439 (type strain) isolated from healthy infant feces. Anim Sci J 2013; 85:158-63. [PMID: 23865717 DOI: 10.1111/asj.12095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 04/18/2013] [Indexed: 11/26/2022]
Abstract
Bifidobacterial plasmids reported so far are derived from a limited number of strains and plasmids of bifidobacterial type strains isolated from humans are unknown. We found that Bifidobacterium kashiwanohense JCM 15439 (type strain) isolated from a healthy infant contained two cryptic plasmids, designated pBBKW-1 and pBBKW-2. We determined and analyzed the complete sequences of both plasmids. pBBKW-1 (7716 bp) was predicted to replicate by a rolling-circle mechanism and encode six protein-coding genes, two of which are putative replication proteins. pBBKW-1 seems to be a cointegrate plasmid containing two copies of the plasmid pMG1 from Bifidobacterium longum. pBBKW-2 (2920 bp) was predicted to encode six protein-coding genes and be a theta-type replicating plasmid, which has been reported to be more stable than a rolling circle-type replicating plasmid frequently found in bifidobacteria. Our finding will provide new insights into safe recombinant plasmid constructions for humans.
Collapse
Affiliation(s)
- Muneaki Takahata
- School of Veterinary Medicine, Azabu University, Sagamihara; BioBank Co., Ltd, Okayama
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Since the discovery in 1899 of bifidobacteria as numerically dominant microbes in the feces of breast-fed infants, there have been numerous studies addressing their role in modulating gut microflora as well as their other potential health benefits. Because of this, they are frequently incorporated into foods as probiotic cultures. An understanding of their full interactions with intestinal microbes and the host is needed to scientifically validate any health benefits they may afford. Recently, the genome sequences of nine strains representing four species of Bifidobacterium became available. A comparative genome analysis of these genomes reveals a likely efficient capacity to adapt to their habitats, with B. longum subsp. infantis exhibiting more genomic potential to utilize human milk oligosaccharides, consistent with its habitat in the infant gut. Conversely, B. longum subsp. longum exhibits a higher genomic potential for utilization of plant-derived complex carbohydrates and polyols, consistent with its habitat in an adult gut. An intriguing observation is the loss of much of this genome potential when strains are adapted to pure culture environments, as highlighted by the genomes of B. animalis subsp. lactis strains, which exhibit the least potential for a gut habitat and are believed to have evolved from the B. animalis species during adaptation to dairy fermentation environments.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| | - Daniel J. O'Sullivan
- Department of Food Science and Nutrition, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Ave., St. Paul, Minnesota 55108
| |
Collapse
|
9
|
Shareck J, Choi Y, Lee B, Miguez CB. Cloning Vectors Based on Cryptic Plasmids Isolated from Lactic Acid Bacteria:Their Characteristics and Potential Applications in Biotechnology. Crit Rev Biotechnol 2010; 24:155-208. [PMID: 15707158 DOI: 10.1080/07388550490904288] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) are Gram positive bacteria, widely distributed in nature, and industrially important as they are used in a variety of industrial food fermentations. The use of genetic engineering techniques is an effective means of enhancing the industrial applicability of LAB. However, when using genetic engineering technology, safety becomes an essential factor for the application of improved LAB to the food industry. Cloning and expression systems should be derived preferably from LAB cryptic plasmids that generally encode genes for which functions can be proposed, but no phenotypes can be observed. However, some plasmid-encoded functions have been discovered in cryptic plasmids originating from Lactobacillus, Streptococcus thermophilus, and Pediococcus spp. and can be used as selective marker systems in vector construction. This article presents information concerning LAB cryptic plasmids, and their structures, functions, and applications. A total of 134 cryptic plasmids collated are discussed.
Collapse
Affiliation(s)
- Julie Shareck
- Department of Food Science and Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Quebec, Canada
| | | | | | | |
Collapse
|
10
|
Guglielmetti S, Karp M, Mora D, Tamagnini I, Parini C. Molecular characterization of Bifidobacterium longum biovar longum NAL8 plasmids and construction of a novel replicon screening system. Appl Microbiol Biotechnol 2007; 74:1053-61. [PMID: 17151871 DOI: 10.1007/s00253-006-0755-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 11/08/2006] [Accepted: 11/09/2006] [Indexed: 10/23/2022]
Abstract
In this study, we performed molecular characterization and sequence analysis of three plasmids from the human intestinal isolate Bifidobacterium longum biovar longum NAL8 and developed a novel vector screening system. Plasmids pNAL8H (10 kb) and pNAL8M (4.9 kb) show close sequence similarity to and the same gene organization as the already characterized B. longum plasmids. The B. longum plasmid pNAC1 was identified as being most closely related to pNAL8L (3.5 kb). However, DNA sequence analysis suggested that direct repeat-rich sites could have promoted several recombination events to diversify the two plasmid molecules. We verified the likely rolling circle replication of plasmid pNAL8L and studied the phylogenetic relationship in all the Bifidobacterium plasmids fully sequenced to date based on in silico comparative sequence analysis of their replication proteins and iteron regions. Our transformation experiments confirmed that the ColE1 replication origin from high-copy-number pUC vectors could interfere with the replication apparatus of Bifidobacterium plasmids and give rise to false positive clones. As a result, we developed a system suitable for avoiding possible interference by other functional replication modules on the vector and for screening functional replicons from wild-type plasmids.
Collapse
Affiliation(s)
- Simone Guglielmetti
- Department of Food Science and Microbiology, Industrial Microbiology Section, University of Milan, Via Celoria 2, 20133 Milan, Italy.
| | | | | | | | | |
Collapse
|
11
|
Klijn A, Moine D, Delley M, Mercenier A, Arigoni F, Pridmore RD. Construction of a reporter vector for the analysis of Bifidobacterium longum promoters. Appl Environ Microbiol 2006; 72:7401-5. [PMID: 16997985 PMCID: PMC1636199 DOI: 10.1128/aem.01611-06] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to initiate studies on promoter activities in Bifidobacterium longum and to independently confirm transcriptional data generated by microarray experiments, we have constructed a versatile reporter plasmid based on a B. longum cryptic plasmid and the Escherichia coli gusA gene. The resulting plasmid, pMDY23, has been tested using three B. longum promoters.
Collapse
Affiliation(s)
- A Klijn
- Department of Nutrition and Health, Nestlé Research Center, P.O. Box 44, Vers-chez-les-Blanc, 1000 Lausanne 26, Switzerland
| | | | | | | | | | | |
Collapse
|
12
|
Lee JH, O'Sullivan DJ. Sequence analysis of two cryptic plasmids from Bifidobacterium longum DJO10A and construction of a shuttle cloning vector. Appl Environ Microbiol 2006; 72:527-35. [PMID: 16391088 PMCID: PMC1352255 DOI: 10.1128/aem.72.1.527-535.2006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bifidobacterium longum DJO10A is a recent human isolate with probiotic characteristics and contains two plasmids, designated pDOJH10L and pDOJH10S. The complete sequences of both these plasmids have now been determined and consist of two circular DNA molecules of 10,073 and 3,661 bp, with G+C contents of 62.2% and 66.2%, respectively. Plasmid pDOJH10L is a cointegrate plasmid consisting of DNA regions exhibiting very high sequence identity to two other B. longum plasmids, pNAC2 (98%) and pKJ50 (96%), together with another region. Interestingly, the rolling circular replication (RCR) regions of both the pNAC2- and pKJ50-like plasmids were disrupted during the recombination event leading to a further recombination event to acquire a functional replicon. This consists of a new fused rep gene and an RCR-type ori consisting of a conserved DnaA box in an AT-rich region followed by four contiguous repeated sequences consistent with an iteron structure and an inverted repeat. The smaller pDOJH10S had no sequence similarity to any other characterized plasmid from bifidobacteria. In addition, it did not contain any features consistent with RCR, which is the replication mechanism proposed for all the bifidobacteria plasmids characterized to date. It did exhibit sequence similarity with several theta replication-related replication proteins from other gram-positive, high-G+C bacteria, with the closest match from a Rhodococcus rhodochrous plasmid, suggesting a theta mechanism of replication. S1 nuclease analysis of both plasmids in B. longum DJO10A revealed single-strand DNA intermediates for pDOJH10L, which is consistent for RCR, but none were detected for pDOJH10S. As the G+C content of pDOJH10S is similar to that of Rhodococcus rhodochrous (67%) and significantly higher than that of B. longum (60.1%), it may have been acquired through horizontal gene transfer from a Rhodococcus species, as both genera are members of the Actinomycetes and are intestinal inhabitants. An Escherichia coli-B. longum shuttle cloning vector was constructed from pDOJH10S and the E. coli ori region of p15A, a lacZ gene with a multiple cloning site of pUC18, and a chloramphenicol resistance gene (CAT) of pCI372 and was transformed successfully into E. coli and B. longum. It could not be introduced into lactic acid bacteria (Lactococcus and Lactobacillus), showing it was not very promiscuous. It was stably maintained in B. longum in the absence of antibiotic pressure for 92 generations, which is consistent with the segregational stability of theta-replicating plasmids in gram-positive bacteria. This is the first cloning vector for bifidobacteria that does not utilize RCR and should be useful for the stable introduction of heterologous genes into these dominant inhabitants of the large intestine.
Collapse
Affiliation(s)
- Ju-Hoon Lee
- Cargill Building for Microbial and Plant Genomics, 1500 Gortner Ave., St. Paul, MN 55108.
| | | |
Collapse
|
13
|
Federici F, Vitali B, Gotti R, Pasca MR, Gobbi S, Peck AB, Brigidi P. Characterization and heterologous expression of the oxalyl coenzyme A decarboxylase gene from Bifidobacterium lactis. Appl Environ Microbiol 2004; 70:5066-73. [PMID: 15345383 PMCID: PMC520889 DOI: 10.1128/aem.70.9.5066-5073.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Oxalyl coenzyme A (CoA) decarboxylase (Oxc) is a key enzyme in the catabolism of the highly toxic compound oxalate, catalyzing the decarboxylation of oxalyl-CoA to formyl-CoA. The gene encoding a novel oxalyl-CoA decarboxylase from Bifidobacterium lactis DSM 10140 (oxc) was identified and characterized. This strain, isolated from yogurt, showed the highest oxalate-degrading activity in a preliminary screening with 12 strains belonging to Bifidobacterium, an anaerobic intestinal bacterial group largely used in probiotic products. The oxc gene was isolated by probing a B. lactis genomic library with a probe obtained by amplification of the oxalyl-CoA decarboxylase gene from Oxalobacter formigenes, an anaerobic bacterium of the human intestinal microflora. The oxc DNA sequence analysis revealed an open reading frame of 1,773 bp encoding a deduced 590-amino-acid protein with a molecular mass of about 63 kDa. Analysis of amino acid sequence showed a significant homology (47%) with oxalyl-CoA decarboxylase of O. formigenes and a typical thiamine pyrophosphate-binding site that has been reported for several decarboxylase enzymes. Primer extension experiments with oxc performed by using RNA isolated from B. lactis identified the transcriptional start site 28 bp upstream of the ATG start codon, immediately adjacent to a presumed promoter region. The protein overexpressed in Escherichia coli cross-reacted with an anti-O. formigenes oxalyl-CoA decarboxylase antibody. Enzymatic activity, when evaluated by capillary electrophoresis analysis, demonstrated that the consumption substrate oxalyl-CoA was regulated by a product inhibition of the enzyme. These findings suggest a potential role for Bifidobacterium in the intestinal degradation of oxalate.
Collapse
Affiliation(s)
- Federica Federici
- Department of Pharmaceutical Sciences, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Corneau N, Emond E, LaPointe G. Molecular characterization of three plasmids from Bifidobacterium longum. Plasmid 2004; 51:87-100. [PMID: 15003705 DOI: 10.1016/j.plasmid.2003.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2003] [Revised: 12/18/2003] [Indexed: 11/18/2022]
Abstract
The complete nucleotide sequences for pNAC1 (3538bp) from strain RW048 as well as for pNAC2 (3684bp) and pNAC3 (10,224bp) from strain RW041 of Bifidobacterium longum were determined. The largest ORF (repB) of pNAC1 encodes a putative protein similar to those involved in a rolling-circle (RC) replication mechanism, which was confirmed by demonstration of single-strand intermediates in the host cell. The putative RepB gene product of pNAC2 is most similar to the replication protein of pDOJH10L and pKJ36. A second gene (mob) is similar to mobilization proteins involved in conjugation. Plasmid pNAC3 is the largest bifidobacterial plasmid to be sequenced to date. Of the eight putative gene products coded by pNAC3, one is similar to replication proteins (RepB), and another (Orf2) to putative transfer proteins (Tra). Bifidobacterial plasmids were divided into five groups based on Rep amino acid sequence homology and the results suggest a new plasmid family for B. longum.
Collapse
Affiliation(s)
- Nathalie Corneau
- Department of Biochemistry and Microbiology, Université Laval, Canada
| | | | | |
Collapse
|
15
|
González Vara A, Rossi M, Altomare L, Eikmanns B, Matteuzzi D. Stability of recombinant plasmids on the continuous culture of Bifidobacterium animalis ATCC 27536. Biotechnol Bioeng 2003; 84:145-50. [PMID: 12966570 DOI: 10.1002/bit.10737] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bifidobacterium animalis ATCC 27536 represents among bifidobacteria a host-model for cloning experiments. The segregational and structural stabilities of a family of cloning vectors with different molecular weights but sharing a common core were studied in continuous fermentation of the hosting B. animalis without selective pressure. The rate of plasmid loss (R) and the specific growth rate difference (delta mu) between plasmid-free and plasmid-carrying cells were calculated for each plasmid and their relationship with plasmid size was studied. It was observed that both R and the numerical value of delta mu increased exponentially with plasmid size. The exponential functions correlating the specific growth rate difference and the rate of plasmid loss with the plasmid molecular weight were determined. Furthermore, the smallest of the plasmids studied, pLAV (4.3-kb) was thoroughly characterized by means of its complete nucleotide sequence. It was found that it contained an extra DNA fragment, the first bifidobacterial insertion sequence characterised, named IS 1999.
Collapse
Affiliation(s)
- Antonio González Vara
- Department of Industrial Materials Chemistry, Faculty of Industrial Chemistry, University of Bologna, Bologna, Italy
| | | | | | | | | |
Collapse
|
16
|
Jore JP, van Luijk N, Luiten RG, van der Werf MJ, Pouwels PH. Efficient transformation system for Propionibacterium freudenreichii based on a novel vector. Appl Environ Microbiol 2001; 67:499-503. [PMID: 11157209 PMCID: PMC92613 DOI: 10.1128/aem.67.2.499-503.2001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A 3.6-kb endogenous plasmid was isolated from a Propionibacterium freudenreichii strain and sequenced completely. Based on homologies with plasmids from other bacteria, notably a plasmid from Mycobacterium, a region harboring putative replicative functions was defined. Outside this region two restriction enzyme recognition sites were used for insertion of an Escherichia coli-specific replicon and an erythromycin resistance gene for selection in Propionibacterium. Hybrid vectors obtained in this way replicated in both E. coli and P. freudenreichii. Whereas electroporation of P. freudenreichii with vector DNA isolated from an E. coli transformant yielded 10 to 30 colonies per microg of DNA, use of vector DNA reisolated from a Propionibacterium transformant dramatically increased the efficiency of transformation (> or =10(8) colonies per microg of DNA). It could be shown that restriction-modification was responsible for this effect. The high efficiency of the system described here permitted successful transformation of Propionibacterium with DNA ligation mixtures.
Collapse
Affiliation(s)
- J P Jore
- TNO Nutrition and Food Research, 3700 AJ Zeist, The Netherlands.
| | | | | | | | | |
Collapse
|
17
|
van der Werf MJ, Venema K. Bifidobacteria: genetic modification and the study of their role in the colon. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2001; 49:378-383. [PMID: 11170602 DOI: 10.1021/jf000952o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Bifidobacteria are among the most common bacteria in the human intestine and are thought to have a positive effect on human health. Therefore, there is an increasing interest in using these microorganisms as probiotics, either in fermented dairy products or formulated as tablets. However, convincing scientific data supporting their health claims are scarce. The study of the role of bifidobacteria in the colon is complicated by the fact that they are part of a complex ecosystem also interacting with the human host and by the fact that their in vivo study encounters many ethical constraints. Several tools have been developed at TNO with which the role of bifidobacteria can be studied. These include (i) an efficient transformation protocol for the introduction of foreign DNA into Bifidobacterium strains and (ii) in vitro models of the stomach/small intestine (TIM-1) and large intestine (TIM-2), creating an environment closely resembling that of the in vivo situation. With these tools, biomarkers from bifidobacteria quantifying their positive effect on gut health can be identified.
Collapse
Affiliation(s)
- M J van der Werf
- Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research, P.O. Box 360, 3700 AJ Zeist, The Netherlands.
| | | |
Collapse
|
18
|
O'Riordan K, Fitzgerald GF. Molecular characterisation of a 5.75-kb cryptic plasmid from Bifidobacterium breve NCFB 2258 and determination of mode of replication. FEMS Microbiol Lett 1999; 174:285-94. [PMID: 10339821 DOI: 10.1111/j.1574-6968.1999.tb13581.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A small cryptic plasmid originating from Bifidobacterium breve NCFB 2258 was cloned and its complete nucleotide sequence determined. pCIBb1 is a circular DNA molecule, 5750 bp in size with a GC composition of 57%. Computer-assisted analysis identified 10 possible open reading frames (ORFs), seven of which could be assigned no function from homology searches. One ORF, rep (380 amino acids), was postulated to encode a replication protein similar to known replication proteins of rolling circle replicons, particularly those of the pC194 family. Demonstration of single-stranded forms of the plasmid in cell lysates that could be specifically degraded by S1 nuclease provided experimental evidence to substantiate a replication mechanism via single-stranded intermediates. Two other ORFs, par (199 amino acids) and an ftsK-like gene (286 amino acids), were assigned putative functions based on the presence of conserved motifs in their deduced proteins.
Collapse
Affiliation(s)
- K O'Riordan
- Department of Microbiology, University College, Cork, Ireland
| | | |
Collapse
|
19
|
Rossi M, Brigidi P, Gonzalez Vara y Rodriguez A, Matteuzzi D. Characterization of the plasmid pMB1 from Bifidobacterium longum and its use for shuttle vector construction. Res Microbiol 1996; 147:133-43. [PMID: 8761732 DOI: 10.1016/0923-2508(96)80213-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The nucleotide sequence of the 1847-bp Bifidobacterium longum B2577 cryptic plasmid pMB1 was determined. The plasmid had a G+C content of 62.0%, and contained two open reading frames, orf1 and orf2, likely arranged in an operon. The proteins encoded by orf1 and orf2 show the highest degree of similarity with similarly arranged peptide sequences translated from Corynebacterium glutamicum pXZ10142 and Mycobacterium fortuitum pAL5000 plasmids. Recombinant plasmids containing the pMB1 replicon were able to replicate in Bifidobacterium animalis MB209. The successful transformation of this strain with pMB1-based plasmids facilitated characterization of this replicon, results of which showed that both orf1 and orf2 are necessary for plasmid replication. A family of new Escherichia coli-B. animalis shuttle plasmids, based on the pMB1 replicon and expressing a cat and an ery gene, was constructed.
Collapse
Affiliation(s)
- M Rossi
- Department of Pharmaceutical Sciences, University of Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Argnani A, Leer RJ, van Luijk N, Pouwels PH. A convenient and reproducible method to genetically transform bacteria of the genus Bifidobacterium. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 1):109-114. [PMID: 8581157 DOI: 10.1099/13500872-142-1-109] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A protocol was developed for the introduction of foreign plasmid DNA into various Bifidobacterium strains. The method, which is applicable to all Bifidobacterium species tested so far, is based on electroporation of bacteria made competent by preincubation in electroporation buffer for several hours at 4 degrees C. Transformation of Bifidobacterium could be achieved with a plasmid vector originating from Bifidobacterium and with plasmid vectors from Corynebacterium, but not with vectors carrying replicons from Lactococcus or Lactobacillus.
Collapse
Affiliation(s)
- Alessandra Argnani
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, PO Box 5815, 2280 HV Rijswijk, The Netherlands
| | - Rob J Leer
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, PO Box 5815, 2280 HV Rijswijk, The Netherlands
| | - Nicole van Luijk
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, PO Box 5815, 2280 HV Rijswijk, The Netherlands
| | - Peter H Pouwels
- TNO Nutrition and Food Research Institute, Department of Molecular Genetics and Gene Technology, PO Box 5815, 2280 HV Rijswijk, The Netherlands
| |
Collapse
|
21
|
HOOVER DG, HUGHES DB. Current Status and Future Trends of Bifidobacteria-related Research and Products in the USA. ACTA ACUST UNITED AC 1991. [DOI: 10.12938/bifidus1982.10.2_113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|