1
|
Wang T, Chen X, Li J, Qin S. Phylogenetic Structure of Synechococcus Assemblages and Its Environmental Determinants in the Bay and Strait Areas of a Continental Sea. Front Microbiol 2022; 13:757896. [PMID: 35464975 PMCID: PMC9020259 DOI: 10.3389/fmicb.2022.757896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/23/2022] [Indexed: 11/23/2022] Open
Abstract
Marine Synechococcus, a significant contributor to primary production, shows high phylogenetic diversity. However, studies on its phylogenetic composition in the Bohai Sea, the largest continental sea in China, are lacking. We sequenced rpoC1 (encodes the RNA polymerase β’ subunit protein) in samples from the Laizhou Bay (LZB) and Bohai Strait (BS) in June and November using high-throughput sequencing to reveal the phylogenetic composition of Synechococcus assemblages in the bay and strait areas of the Bohai Sea. In total, 12 lineages representing Synechococcus subclusters S5.1, S5.2, and S5.3 were identified. Spatially, clade I was obligately dominant in BS. In contrast, the Synechococcus assemblage in LZB was more diverse, with clades VI and III being highly abundant. In addition, we detected strong variation in Synechococcus structure between June and November in the Bohai Sea. Clades II, III, XX, and miyav were only detected in November. Vertically, variation in Synechococcus assemblage was not apparent among the water layers probably due to the shallow water depth with intense water mixing. Results of redundancy analysis (RDA) and random forest (RF) analysis together highlighted the key role of silicate in the Synechococcus assemblage. Our results suggested that the Bohai Sea provides various niches for different Synechococcus clades, resulting in a special phylogenetic composition of the Synechococcus assemblage, compared with that in the adjacent shelf sea and other continental seas in the world.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Environmental Science and Engineering, Ocean University of China, Qingdao, China.,CAS Key Laboratory for Experimental Study Under Deep-Sea Extreme Conditions, Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi Chen
- College of Marine Life Science, Ocean University of China, Qingdao, China
| | - Jialin Li
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Song Qin
- Key Laboratory of Coastal Biology and Biological Resource Conservation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
2
|
Lau SCK, Zhang R, Brodie EL, Piceno YM, Andersen G, Liu WT. Biogeography of bacterioplankton in the tropical seawaters of Singapore. FEMS Microbiol Ecol 2013; 84:259-69. [PMID: 23237658 DOI: 10.1111/1574-6941.12057] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Revised: 12/07/2012] [Accepted: 12/08/2012] [Indexed: 01/05/2023] Open
Abstract
Knowledge about the biogeography of marine bacterioplankton on the global scale in general and in Southeast Asia in particular has been scarce. This study investigated the biogeography of bacterioplankton community in Singapore seawaters. Twelve stations around Singapore island were sampled on different schedules over 1 year. Using PCR-DNA fingerprinting, DNA cloning and sequencing, and microarray hybridization of the 16S rRNA genes, we observed clear spatial variations of bacterioplankton diversity within the small area of the Singapore seas. Water samples collected from the Singapore Strait (south) throughout the year were dominated by DNA sequences affiliated with Cyanobacteria and Alphaproteobacteria that were believed to be associated with the influx of water from the open seas in Southeast Asia. On the contrary, water in the relatively polluted Johor Strait (north) were dominated by Betaproteobacteria, Gammaproteobacteria, and Bacteroidetes and that were presumably associated with river discharge and the relatively eutrophic conditions of the waterway. Bacterioplankton diversity was temporally stable, except for the episodic surge of Pseudoalteromonas, associated with algal blooms. Overall, these results provide valuable insights into the diversity of bacterioplankton communities in Singapore seas and the possible influences of hydrological conditions and anthropogenic activities on the dynamics of the communities.
Collapse
Affiliation(s)
- Stanley C K Lau
- Division of Environmental Science and Engineering, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
3
|
Abstract
The majority of marine dissolved organic carbon (DOC) is resistant to biological degradation and thus can remain in the water column for thousands of years, constituting carbon sequestration in the ocean. To date the origin of such recalcitrant DOC (RDOC) is unclear. A recently proposed conceptual framework, the microbial carbon pump (MCP), emphasizes the microbial transformation of organic carbon from labile to recalcitrant states. The MCP is concerned with both microbial uptakes and outputs of DOC compounds, covering a wide range from gene to ecosystem levels. In this minireview, the ATP binding cassette (ABC) transporter is used as an example for the microbial processing of DOC at the genetic level. The compositions of the ABC transporter genes of the two major marine bacterial clades Roseobacter and SAR11 demonstrate that they have distinct patterns in DOC utilization: Roseobacter strains have the advantage of taking up carbohydrate DOC, while SAR11 bacteria prefer nitrogen-containing DOC. At the ecosystem level, bacterially derived RDOC based on d-amino acid biomarkers is reported to be responsible for about a quarter of the total marine RDOC pool. Under future global warming scenarios, partitioning of primary production into DOC could be enhanced, and thus the MCP could play an even more important role in carbon sequestration by the ocean. Joint efforts to study the MCP from multiple disciplines are required to obtain a better understanding of ocean carbon cycle and its coupling with global change.
Collapse
|
4
|
Rapid differentiation of phenotypically and genotypically similar Synechococcus elongatus strains by PCR fingerprinting. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0003-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Tai V, Palenik B. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME JOURNAL 2009; 3:903-15. [PMID: 19360028 DOI: 10.1038/ismej.2009.35] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Marine cyanobacteria from the genus Synechococcus are found throughout the world's oceans and are important contributors to global primary productivity and carbon cycling. Cultured isolates and environmental DNA clone libraries of Synechococcus have demonstrated the diversity of these microbes. However, the natural distribution of this diversity through space and time and the ecological significance of their distribution are still poorly understood. To understand the seasonal dynamics of Synechococcus diversity, we have developed a quantitative PCR strategy using the gene encoding as a subunit of DNA-dependent RNA polymerase (rpoC1) and applied it to a 3-year time series of surface samples from the Scripps Institution of Oceanography pier (La Jolla, CA, USA), a coastal site in the northeastern Pacific Ocean. Synechococcus from clades I and IV were dominant throughout the time series and correlated with total Synechococcus abundance. The relative abundance of these two dominant clades showed evidence of a seasonal cycle. Synechococcus from clade IV were typically more abundant, but those from clade I dominated during periods just before the annual spring bloom of Synechococcus. Synechococcus from clades II and III were absent during spring and early summer, but appeared at low abundances in late summer and winter possibly due to changes in circulation in the Southern California Bight. As the first long-term time series describing Synechococcus population diversity, these temporal dynamics were used to interpret the genetic/genomic diversity observed in the environment and the potential factors regulating their distribution.
Collapse
Affiliation(s)
- Vera Tai
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, La Jolla, San Diego, CA 92093-0202, USA
| | | |
Collapse
|
6
|
Cai H, Jiao N. Diversity and abundance of nitrate assimilation genes in the northern South china sea. MICROBIAL ECOLOGY 2008; 56:751-764. [PMID: 18481138 DOI: 10.1007/s00248-008-9394-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 02/26/2008] [Accepted: 04/03/2008] [Indexed: 05/26/2023]
Abstract
Marine heterotrophic microorganisms that assimilate nitrate play an important role in nitrogen and carbon cycling in the water column. The nasA gene, encoding the nitrate assimilation enzyme, was selected as a functional marker to examine the nitrate assimilation community in the South China Sea (SCS). PCR amplification, restriction fragment length polymorphism (RFLP) screening, and phylogenetic analysis of nasA gene sequences were performed to characterize in situ nitrate assimilatory bacteria. Furthermore, the effects of nutrients and other environmental factors on the genetic heterogeneity of nasA fragments from the SCS were evaluated at the surface in three stations, and at two other depths in one of these stations. The diversity indices and rarefaction curves indicated that the nasA gene was more diverse in offshore waters than in the Pearl River estuary. The phylotype rank abundance curve showed an abundant and unique RFLP pattern in all five libraries, indicating that a high diversity but low abundance of nasA existed in the study areas. Phylogenetic analysis of environmental nasA gene sequences further revealed that the nasA gene fragments came from several common aquatic microbial groups, including the Proteobacteria, Cytophaga-Flavobacteria (CF), and Cyanobacteria. In addition to the direct PCR/sequence analysis of environmental samples, we also cultured a number of nitrate assimilatory bacteria isolated from the field. Comparison of nasA genes from these isolates and from the field samples indicated the existence of horizontal nasA gene transfer. Application of real-time quantitative PCR to these nasA genes revealed a great variation in their abundance at different investigation sites and water depths.
Collapse
Affiliation(s)
- Haiyuan Cai
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361005, People's Republic of China
| | | |
Collapse
|
7
|
Abstract
Although many environmental microbial populations are large and genetically diverse, both the level of diversity and the extent to which it is ecologically relevant remain enigmatic. Because the effective (or long-term) population size, N(e), is one of the parameters that determines population genetic diversity, tests and simulations that assume selectively neutral mutations may help to identify the processes that have shaped microbial diversity. Using ecologically important genes, tests of selective neutrality suggest that adaptive as well as non-adaptive types of selection act and that departure from neutrality may be widespread or restricted to small groups of genotypes. Population genetic simulations using population sizes between 10(3) and 10(7) suggest extremely high levels of microbial diversity in environments that sustain large populations. However, census and effective population sizes may differ considerably, and because we know nothing of the evolutionary history of environmental microbial populations, we also have no idea what N(e) of environmental populations is. On the one hand, this reflects our ignorance of the microbial world. On the other hand, the tests and simulations illustrate interactions between microbial diversity and microbial population genetics that should inform our thinking in microbial ecology. Because of the different views on microbial diversity across these disciplines, such interactions are crucial if we are to understand the role of genes in microbial communities.
Collapse
Affiliation(s)
- Ted H M Mes
- Marine Microbiology, NIOO-CEME, Netherlands Institute of Ecology, Korringaweg 7, 4400 AC Yerseke, The Netherlands. /
| |
Collapse
|
8
|
Ahlgren NA, Rocap G. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl Environ Microbiol 2006; 72:7193-204. [PMID: 16936060 PMCID: PMC1636174 DOI: 10.1128/aem.00358-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine microbial communities often contain multiple closely related phylogenetic clades, but in many cases, it is still unclear what physiological traits differentiate these putative ecotypes. The numerically abundant marine cyanobacterium Synechococcus can be divided into at least 14 clades. In order to better understand ecotype differentiation in this genus, we assessed the diversity of a Synechococcus community from a well-mixed water column in the Sargasso Sea during March 2002, a time of year when this genus typically reaches its annual peak in abundance. Diversity was estimated from water sampled at three depths (approximately 5, 70, and 170 m) using both culture isolation and construction of cyanobacterial 16S-23S rRNA internal transcribed sequence clone libraries. Clonal isolates were obtained by enrichment with ammonium, nitrite, or nitrate as the sole N source, followed by pour plating. Each method sampled the in situ diversity differently. The combined methods revealed a total of seven Synechococcus phylotypes including two new putative ecotypes, labeled XV and XVI. Although most other isolates grow on nitrate, clade XV exhibited a reduced efficiency in nitrate utilization, and both clade XV and XVI are capable of chromatic adaptation, demonstrating that this trait is more widely distributed among Synechococcus strains than previously known. Thus, as in its sister genus Prochlorococcus, light and nitrogen utilization are important factors in ecotype differentiation in the marine Synechococcus lineage.
Collapse
Affiliation(s)
- Nathan A Ahlgren
- School of Oceanography, University of Washington, Box 357940, Seattle, WA 98195, USA
| | | |
Collapse
|