1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Todorov SD, Popov I, Weeks R, Chikindas ML. Use of Bacteriocins and Bacteriocinogenic Beneficial Organisms in Food Products: Benefits, Challenges, Concerns. Foods 2022; 11:foods11193145. [PMID: 36230222 PMCID: PMC9563261 DOI: 10.3390/foods11193145] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/18/2022] Open
Abstract
This review’s objective was to critically revisit various research approaches for studies on the application of beneficial organisms and bacteriocins as effective biopreservatives in the food industry. There are a substantial number of research papers reporting newly isolated bacterial strains from fermented food products and their application as potential probiotics, including partial characterization of bacteriocins produced by these microorganisms. Most of these studies follow scientific community-accepted standard procedures and propose various applications of the studied strains and bacteriocins as potential biopreservatives for the food industry. A few investigations go somewhat further, performing model studies, exploring the application of expressed bacteriocins in a designed food product, or trying to evaluate the effectiveness of the studied potential probiotics and bacteriocins against foodborne pathogens. Some authors propose applications of bacteriocin producers as starter cultures and are exploring in situ bacteriocin production to aid in the effective control of foodborne pathogens. However, few studies have evaluated the possible adverse effects of bacteriocins, such as toxicity. This comes from well-documented reports on bacteriocins being mostly non-immunogenic and having low cytotoxicity because most of these proteinaceous molecules are small peptides. However, some studies have reported on bacteriocins with noticeable cytotoxicity, which may become even more pronounced in genetically engineered or modified bacteriocins. Moreover, their cytotoxicity can be very specific and is dependent on the concentration of the bacteriocin and the nature of the targeted cell. This will be discussed in detail in the present review.
Collapse
Affiliation(s)
- Svetoslav Dimitrov Todorov
- ProBacLab, Laboratório de Microbiologia de Alimentos, Departamento de Alimentos e Nutrição Experimental, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil
- Correspondence: ; Tel.: +359-88-9583119
| | - Igor Popov
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
| | - Michael Leonidas Chikindas
- Center for Agrobiotechnology, Don State Technical University, 344002 Rostov-on-Don, Russia
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ 08904, USA
- Department of General Hygiene, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
3
|
Bangar SP, Chaudhary V, Singh TP, Özogul F. Retrospecting the concept and industrial significance of LAB bacteriocins. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Agriopoulou S, Stamatelopoulou E, Sachadyn-Król M, Varzakas T. Lactic Acid Bacteria as Antibacterial Agents to Extend the Shelf Life of Fresh and Minimally Processed Fruits and Vegetables: Quality and Safety Aspects. Microorganisms 2020; 8:E952. [PMID: 32599824 PMCID: PMC7356186 DOI: 10.3390/microorganisms8060952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Eating fresh fruits and vegetables is, undoubtedly, a healthy habit that should be adopted by everyone (particularly due to the nutrients and functional properties of fruits and vegetables). However, at the same time, due to their production in the external environment, there is an increased risk of their being infected with various pathogenic microorganisms, some of which cause serious foodborne illnesses. In order to preserve and distribute safe, raw, and minimally processed fruits and vegetables, many strategies have been proposed, including bioprotection. The use of lactic acid bacteria in raw and minimally processed fruits and vegetables helps to better maintain their quality by extending their shelf life, causing a significant reduction and inhibition of the action of important foodborne pathogens. The antibacterial effect of lactic acid bacteria is attributed to its ability to produce antimicrobial compounds, including bacteriocins, with strong competitive action against many microorganisms. The use of bacteriocins, both separately and in combination with edible coatings, is considered a very promising approach for microbiological quality, and safety for postharvest storage of raw and minimally processed fruits and vegetables. Therefore, the purpose of the review is to discuss the biopreservation of fresh fruits and vegetables through the use of lactic acid bacteria as a green and safe technique.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Eygenia Stamatelopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| | - Monika Sachadyn-Król
- Department of Chemistry, Faculty of Food Sciences and Biotechnology, University of Life Sciences in Lublin, 20950 Lublin, Poland;
| | - Theodoros Varzakas
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (S.A.); (E.S.)
| |
Collapse
|
5
|
Choyam S, Srivastava AK, Shin JH, Kammara R. Ocins for Food Safety. Front Microbiol 2019; 10:1736. [PMID: 31428063 PMCID: PMC6687839 DOI: 10.3389/fmicb.2019.01736] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The food industry produces highly perishable products. Food spoilage represents a severe problem for food manufacturers. Therefore, it is important to identify effective preservation solutions to prevent food spoilage. Ocins (e.g., bacteriocins, lactocins, and enterocins) are antibacterial proteins synthesized by bacteria that destroy or suppress the growth of related or unrelated bacterial strains. Ocins represent a promising strategy for food preservation, because of their antagonist effects toward food spoilage microorganisms, high potency, and low toxicity. Additionally, they can be bioengineered. The most common and commercially available ocins are nisin, plantaracin, sakacin P, and pediocin. Several ocins have been characterized and studied biochemically and genetically; however, their structure-function relationship, biosynthesis, and mechanism of action are not understood. This narrative review focuses primarily on ocins and their relevance to the food industry to help prevent food spoilage. In particular, the applications and limitations of ocins in the food industry are highlighted.
Collapse
Affiliation(s)
- Shilja Choyam
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| | | | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Rajagopal Kammara
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
6
|
Barbosa AAT, Mantovani HC, Jain S. Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products. Crit Rev Biotechnol 2017; 37:852-864. [PMID: 28049350 DOI: 10.1080/07388551.2016.1262323] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bacteriocins produced by lactic acid bacteria (LAB) are well-recognized for their potential as natural food preservatives. These antimicrobial peptides usually do not change the sensorial properties of food products and can be used in combination with traditional preservation methods to ensure microbial stability. In recent years, fruit products are increasingly being associated with food-borne pathogens and spoilage microorganisms, and bacteriocins are important candidates to preserve these products. Bacteriocins have been extensively studied to preserve foods of animal origin. However, little information is available for their use in vegetable products, especially in minimally processed ready-to-eat fruits. Although, many bacteriocins possess useful characteristics that can be used to preserve fruit products, to date, only nisin, enterocin AS-48, bovicin HC5, enterocin 416K1, pediocin and bificin C6165 have been tested for their activity against spoilage and pathogenic microorganisms in these products. Among these, only nisin and pediocin are approved to be commercially used as food additives, and their use in fruit products is still limited to certain countries. Considering the increasing demand for fresh-tasting fruit products and concern for public safety, the study of other bacteriocins with biochemical characteristics that make them candidates for the preservation of these products are of great interest. Efforts for their approval as food additives are also important. In this review, we discuss why the study of bacteriocins as an alternative method to preserve fruit products is important; we detail the biotechnological approaches for the use of bacteriocins in fruit products; and describe some bacteriocins that have been tested and have potential to be tested for the preservation of fruit products.
Collapse
Affiliation(s)
| | | | - Sona Jain
- a Departamento de Morfologia , Universidade Federal de Sergipe , São Cristóvão , Sergipe , Brazil
| |
Collapse
|
7
|
Leite JA, Tulini FL, Reis-Teixeira FBD, Rabinovitch L, Chaves JQ, Rosa NG, Cabral H, De Martinis ECP. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: Preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2016.04.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Morphological changes in Salmonella Typhimurium caused by the lantibiotic bovicin HC5 in association with EDTA. ANN MICROBIOL 2015. [DOI: 10.1007/s13213-015-1117-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Prudêncio CV, Mantovani HC, Cecon PR, Vanetti MCD. Differences in the antibacterial activity of nisin and bovicin HC5 against Salmonella Typhimurium under different temperature and pH conditions. J Appl Microbiol 2014; 118:18-26. [PMID: 25358073 DOI: 10.1111/jam.12680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 10/12/2014] [Accepted: 10/14/2014] [Indexed: 11/29/2022]
Abstract
AIMS To compare the action of nisin and bovicin HC5 in combination with EDTA on Salmonella Typhimurium under different environmental conditions. METHODS AND RESULTS Salmonella Typhimurium was treated in BHI broth containing EDTA (1·5 mmol l(-1)) and nisin or bovicin HC5 (200 AU ml(-1)) under different pH and temperature conditions, and according to a central composite design with two factors (temperature and pH). Cell viability was evaluated on plate count agar for 48 h. The combination of nisin or bovicin HC5 with EDTA was able to inhibit the growth of Salmonella, but the temperature and pH conditions promoting inhibition were distinct for each bacteriocin. Nisin was bactericidal over a broad range of temperature and pH, while bovicin HC5 was bacteriostatic in most conditions and bactericidal only in specific conditions (pH >6·0 and temperature >30°C). Salmonella Typhimurium did not show tolerance to bovicin HC5 or cross-tolerance between these lantibiotics. CONCLUSIONS Nisin and bovicin HC5 both inhibited the growth of Salmonella, but the activity of each bacteriocin was differently influenced by environmental conditions. SIGNIFICANCE AND IMPACT OF THE STUDY Nisin and bovicin HC5 have the potential to inhibit the growth of Salmonella, but environmental conditions should be considered to establish optimal conditions for its application.
Collapse
Affiliation(s)
- C V Prudêncio
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
10
|
Cludia VP, Hilrio CM, Maria CDV. Inhibition of Salmonella Typhimurium by bovicin HC5 associated with chelating agents and surfactants. ACTA ACUST UNITED AC 2014. [DOI: 10.5897/ajmr2013.5792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
11
|
Pimentel-Filho NDJ, Mantovani HC, de Carvalho AF, Dias RS, Vanetti MCD. Efficacy of bovicin HC5 and nisin combination againstListeria monocytogenesandStaphylococcus aureusin fresh cheese. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12316] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Hilário C. Mantovani
- Departamento de Microbiologia; Universidade Federal de Viçosa; Viçosa Minas Gerais 36570-000 Brazil
| | - Antônio F. de Carvalho
- Departamento de Ciência e Tecnologia de Alimentos; Universidade Federal de Viçosa; Viçosa Minas Gerais 36570-000 Brazil
| | - Ricardo S. Dias
- Laboratorio de Enterotoxinas Estafilococicas; Fundacão Ezequiel Dias; Rua Pereira Carneiro 80 Gameleira Belo Horizonte - Minas Gerais 30510-010 Brazil
| | | |
Collapse
|
12
|
Barbosa AAT, Silva de Araújo HG, Matos PN, Carnelossi MAG, Almeida de Castro A. Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. Int J Food Microbiol 2013; 164:135-40. [DOI: 10.1016/j.ijfoodmicro.2013.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/03/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
|
13
|
Interaction with lipid II induces conformational changes in bovicin HC5 structure. Antimicrob Agents Chemother 2012; 56:4586-93. [PMID: 22687503 DOI: 10.1128/aac.00295-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovicin HC5 is a lantibiotic produced by Streptococcus bovis HC5 that targets the cell wall precursor lipid II. An understanding of the modes of action against target bacteria can help broadening the clinical applicability of lantibiotics in human and veterinary medicine. In this study, the interaction of bovicin HC5 with lipid II was examined using tryptophan fluorescence and circular dichroism spectroscopy with model membrane systems that do or do not allow pore formation by bovicin HC5. In the presence of lipid II, a blue-shift of 12 nm could be observed for the fluorescence emission maximum of the tryptophan residue for all of the membrane systems tested. This change in fluorescence emission was paralleled by a decrease in accessibility toward acrylamide and phospholipids carrying a spin-label at the acyl chain; the tryptophan residue of bovicin HC5 was located near the twelfth position of the membrane phospholipid acyl chains. Moreover, the binding of lipid II by bovicin HC5 induced remarkable conformational changes in the bovicin HC5 structure. The interaction of bovicin HC5 with lipid II was highly stable even at pH 2.0. These results indicate that bovicin HC5 interacts directly with lipid II and that the topology of this interaction changes under different conditions, which is relevant for the biological activity of the peptide. To our knowledge, bovicin HC5 is the only bacteriocin described thus far that is able to interact with its target in extreme pH values, and this fact might be related to its unique structure and stability.
Collapse
|
14
|
Mayer MJ, Payne J, Gasson MJ, Narbad A. Genomic sequence and characterization of the virulent bacteriophage phiCTP1 from Clostridium tyrobutyricum and heterologous expression of its endolysin. Appl Environ Microbiol 2010; 76:5415-22. [PMID: 20581196 PMCID: PMC2918958 DOI: 10.1128/aem.00989-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 06/06/2010] [Indexed: 02/01/2023] Open
Abstract
The growth of Clostridium tyrobutyricum in developing cheese leads to spoilage and cheese blowing. Bacteriophages or their specific lytic enzymes may provide a biological control method for eliminating such undesirable organisms without affecting other microflora. We isolated the virulent bacteriophage phiCTP1 belonging to the Siphoviridae and have shown that it is effective in causing lysis of sensitive strains. The double-stranded DNA genome of phiCTP1 is 59,199 bp, and sequence analysis indicated that it has 86 open reading frames. orf29 was identified as the gene coding for the phage endolysin responsible for cell wall degradation prior to virion release. We cloned and expressed the ctp1l gene in E. coli and demonstrated that the partially purified protein induced lysis of C. tyrobutyricum cells and reduced viable counts both in buffer and in milk. The endolysin was inactive against a range of clostridial species but did show lysis of Clostridium sporogenes, another potential spoilage organism. Removal of the C-terminal portion of the endolysin completely abolished lytic activity.
Collapse
Affiliation(s)
- Melinda J Mayer
- Institute of Food Research, Norwich Research Park, Colney, Norwich, United Kingdom.
| | | | | | | |
Collapse
|
15
|
Joachimsthal EL, Reeves R, Hung J, Nielsen L, Ouwerkerk D, Klieve A, Vickers C. Production of bacteriocins byStreptococcus bovisstrains from Australian ruminants. J Appl Microbiol 2010; 108:428-36. [DOI: 10.1111/j.1365-2672.2009.04432.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
De Carvalho AAT, Mantovani HC, Paiva AD, De Melo MR. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. J Appl Microbiol 2009; 107:339-47. [PMID: 19320950 DOI: 10.1111/j.1365-2672.2009.04212.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIMS To investigate the effect of media composition and agroindustrial residues on bovicin HC5 production by Streptococcus bovis HC5. METHODS AND RESULTS Batch cultures of S. bovis HC5 were grown in basal medium containing different carbon and nitrogen sources. The activity of cell-free and cell-associated bovicin HC5 was determined in culture supernatants and acidic extracts obtained from cell pellets, respectively. Streptococcus bovis HC5 produced bovicin using a variety of carbon and nitrogen sources. The highest specific activity was obtained in media containing 16 g l(-1) of glucose, after 16 h of incubation. The peak in cell-free and cell-associated bovicin HC5 activity was detected when S. bovis HC5 cultures reached stationary phase. The bovicin HC5 specific activity and bacterial cell mass increased approximately 3-fold when yeast extract and trypticase (0.5 and 1.0 g l(-1), respectively) were added together to the basal medium. Streptococcus bovis HC5 cultures produced bovicin HC5 in cheese whey and sugar cane juice and maximal volumetric productivity was obtained after 12 h of incubation. CONCLUSIONS Streptococcus bovis HC5 is a versatile lactic acid bacterium that can utilize several carbon and nitrogen sources for bovicin HC5 production. This bacterium could be a useful model to study bacteriocin production in the rumen ecosystem. SIGNIFICANCE AND IMPACT OF THE STUDY The use of agroindustrial residues as carbon sources could have an economical impact on bovicin HC5 production. To our knowledge, this is the first report to show the use of sugar cane juice for bacteriocin production by lactic acid bacteria.
Collapse
Affiliation(s)
- A A T De Carvalho
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
17
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
de Carvalho A, Vanetti M, Mantovani H. Bovicin HC5 reduces thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. J Appl Microbiol 2008; 104:1685-91. [DOI: 10.1111/j.1365-2672.2007.03710.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|