1
|
Sterzi L, Nodari R, Di Marco F, Ferrando ML, Saluzzo F, Spitaleri A, Allahverdi H, Papaleo S, Panelli S, Rimoldi SG, Batisti Biffignandi G, Corbella M, Cavallero A, Prati P, Farina C, Cirillo DM, Zuccotti G, Bandi C, Comandatore F. Genetic barriers more than environmental associations explain Serratia marcescens population structure. Commun Biol 2024; 7:468. [PMID: 38632370 PMCID: PMC11023947 DOI: 10.1038/s42003-024-06069-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Bacterial species often comprise well-separated lineages, likely emerged and maintained by genetic isolation and/or ecological divergence. How these two evolutionary actors interact in the shaping of bacterial population structure is currently not fully understood. In this study, we investigate the genetic and ecological drivers underlying the evolution of Serratia marcescens, an opportunistic pathogen with high genomic flexibility and able to colonise diverse environments. Comparative genomic analyses reveal a population structure composed of five deeply-demarcated genetic clusters with open pan-genome but limited inter-cluster gene flow, partially explained by Restriction-Modification (R-M) systems incompatibility. Furthermore, a large-scale research on hundred-thousands metagenomic datasets reveals only a partial habitat separation of the clusters. Globally, two clusters only show a separate gene composition coherent with ecological adaptations. These results suggest that genetic isolation has preceded ecological adaptations in the shaping of the species diversity, an evolutionary scenario coherent with the Evolutionary Extended Synthesis.
Collapse
Affiliation(s)
- Lodovico Sterzi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Riccardo Nodari
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Federico Di Marco
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Laura Ferrando
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Saluzzo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Hamed Allahverdi
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Stella Papaleo
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Simona Panelli
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
| | - Sara Giordana Rimoldi
- Laboratorio di Microbiologia Clinica, Virologia e Diagnostica delle Bioemergenze, ASST Fatebenefratelli Sacco, Milan, Italy
| | | | - Marta Corbella
- Department of Microbiology & Virology, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | | | - Paola Prati
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna (IZSLER), Pavia, Italy
| | - Claudio Farina
- Laboratory of Microbiology and Virology, Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Gianvincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy
- Department of Paediatrics, Children's Hospital "V. Buzzi", Milano, Italy
| | - Claudio Bandi
- Department of Biosciences and Pediatric Clinical Research Center "Romeo Ed Enrica Invernizzi", University of Milan, 20133, Milan, Italy
| | - Francesco Comandatore
- Department of Biomedical and Clinical Sciences, Pediatric Clinical Research Center "Romeo and Enrica Invernizzi", Università Di Milano, 20157, Milan, Italy.
| |
Collapse
|
2
|
Ahmed T, Noman M, Qi Y, Shahid M, Hussain S, Masood HA, Xu L, Ali HM, Negm S, El-Kott AF, Yao Y, Qi X, Li B. Fertilization of Microbial Composts: A Technology for Improving Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3550. [PMID: 37896014 PMCID: PMC10609736 DOI: 10.3390/plants12203550] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Microbial compost plays a crucial role in improving soil health, soil fertility, and plant biomass. These biofertilizers, based on microorganisms, offer numerous benefits such as enhanced nutrient acquisition (N, P, and K), production of hydrogen cyanide (HCN), and control of pathogens through induced systematic resistance. Additionally, they promote the production of phytohormones, siderophore, vitamins, protective enzymes, and antibiotics, further contributing to soil sustainability and optimal agricultural productivity. The escalating generation of organic waste from farm operations poses significant threats to the environment and soil fertility. Simultaneously, the excessive utilization of chemical fertilizers to achieve high crop yields results in detrimental impacts on soil structure and fertility. To address these challenges, a sustainable agriculture system that ensures enhanced soil fertility and minimal ecological impact is imperative. Microbial composts, developed by incorporating characterized plant-growth-promoting bacteria or fungal strains into compost derived from agricultural waste, offer a promising solution. These biofertilizers, with selected microbial strains capable of thriving in compost, offer an eco-friendly, cost-effective, and sustainable alternative for agricultural practices. In this review article, we explore the potential of microbial composts as a viable strategy for improving plant growth and environmental safety. By harnessing the benefits of microorganisms in compost, we can pave the way for sustainable agriculture and foster a healthier relationship between soil, plants, and the environment.
Collapse
Affiliation(s)
- Temoor Ahmed
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Muhammad Noman
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| | - Yetong Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan;
| | - Sabir Hussain
- Department of Environmental Sciences, Government College University, Faisalabad 38040, Pakistan;
| | - Hafiza Ayesha Masood
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
- MEU Research Unit, Middle East University, Amman 11831, Jordan
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China;
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, Abha 62529, Saudi Arabia;
| | - Attalla F. El-Kott
- Department of Biology, College of Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Xingjiang Qi
- Xianghu Laboratory, Hangzhou 311231, China; (T.A.)
| | - Bin Li
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
3
|
Verma KK, Song XP, Li DM, Singh M, Wu JM, Singh RK, Sharma A, Zhang BQ, Li YR. Silicon and soil microorganisms improve rhizospheric soil health with bacterial community, plant growth, performance and yield. PLANT SIGNALING & BEHAVIOR 2022; 17:2104004. [PMID: 35943127 PMCID: PMC9364706 DOI: 10.1080/15592324.2022.2104004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The interaction of silicon and soil microorganisms stimulates crop enhancement to ensure sustainable agriculture. Silicon may potentially increase nutrient availability in rhizosphere with improved plants' growth, development as it does not produce phytotoxicity. The rhizospheric microbiome accommodates a variety of microbial species that live in a small area of soil directly associated with the hidden half plants' system. Plant growth-promoting rhizobacteria (PGPR) play a major role in plant development in response to adverse climatic conditions. PGPRs may enhance the growth, quality, productivity in variety of crops, and mitigate abiotic stresses by reprogramming stress-induced physiological variations in plants via different mechanisms, such as synthesis of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, exopolysaccharides, volatile organic compounds, atmospheric nitrogen fixation, and phosphate solubilization. Our article eye upon interactions of silicon and plant microbes which seems to be an opportunity for sustainable agriculture for series of crops and cropping systems in years to come, essential to safeguard the food security for masses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Dong-Mei Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Munna Singh
- Department of Botany, University of Lucknow, Lucknow, India
| | - Jian-Ming Wu
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement/Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/ Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
4
|
Antoszewski M, Mierek-Adamska A, Dąbrowska GB. The Importance of Microorganisms for Sustainable Agriculture-A Review. Metabolites 2022; 12:1100. [PMID: 36422239 PMCID: PMC9694901 DOI: 10.3390/metabo12111100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In the face of climate change, progressive degradation of the environment, including agricultural land negatively affecting plant growth and development, endangers plant productivity. Seeking efficient and sustainable agricultural techniques to replace agricultural chemicals is one of the most important challenges nowadays. The use of plant growth-promoting microorganisms is among the most promising approaches; however, molecular mechanisms underneath plant-microbe interactions are still poorly understood. In this review, we summarized the knowledge on plant-microbe interactions, highlighting the role of microbial and plant proteins and metabolites in the formation of symbiotic relationships. This review covers rhizosphere and phyllosphere microbiomes, the role of root exudates in plant-microorganism interactions, the functioning of the plant's immune system during the plant-microorganism interactions. We also emphasized the possible role of the stringent response and the evolutionarily conserved mechanism during the established interaction between plants and microorganisms. As a case study, we discussed fungi belonging to the genus Trichoderma. Our review aims to summarize the existing knowledge about plant-microorganism interactions and to highlight molecular pathways that need further investigation.
Collapse
Affiliation(s)
| | - Agnieszka Mierek-Adamska
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | | |
Collapse
|
5
|
Suyal DC, Joshi D, Kumar S, Bhatt P, Narayan A, Giri K, Singh M, Soni R, Kumar R, Yadav A, Devi R, Kaur T, Kour D, Yadav AN. Himalayan Microbiomes for Agro-environmental Sustainability: Current Perspectives and Future Challenges. MICROBIAL ECOLOGY 2022; 84:643-675. [PMID: 34647148 DOI: 10.1007/s00248-021-01849-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
The Himalayas are one of the most mystical, yet least studied terrains of the world. One of Earth's greatest multifaceted and diverse montane ecosystems is also one of the thirty-four global biodiversity hotspots of the world. These are supposed to have been uplifted about 60-70 million years ago and support, distinct environments, physiography, a variety of orogeny, and great biological diversity (plants, animals, and microbes). Microbes are the pioneer colonizer of the Himalayas that are involved in various bio-geological cycles and play various significant roles. The applications of Himalayan microbiomes inhabiting in lesser to greater Himalayas have been recognized. The researchers explored the applications of indigenous microbiomes in both agricultural and environmental sectors. In agriculture, microbiomes from Himalayan regions have been suggested as better biofertilizers and biopesticides for the crops growing at low temperature and mountainous areas as they help in the alleviation of cold stress and other biotic stresses. Along with alleviation of low temperature, Himalayan microbes also have the capability to enhance plant growth by availing the soluble form of nutrients like nitrogen, phosphorus, potassium, zinc, and iron. These microbes have been recognized for producing plant growth regulators (abscisic acid, auxin, cytokinin, ethylene, and gibberellins). These microbes have been reported for bioremediating the diverse pollutants (pesticides, heavy metals, and xenobiotics) for environmental sustainability. In the current perspectives, present review provides a detailed discussion on the ecology, biodiversity, and adaptive features of the native Himalayan microbiomes in view to achieve agro-environmental sustainability.
Collapse
Affiliation(s)
- Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Sirmaur, Himachal Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Uttarakhand, India
| | - Saurabh Kumar
- Division of Crop Research, Research Complex for Eastern Region, Patna, Bihar, India
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
| | - Arun Narayan
- Forest Research Institute, Dehradun, 2480 06, India
| | - Krishna Giri
- Rain Forest Research Institute, Jorhat, 785 010, India
| | - Manali Singh
- Department of Biotechnology, Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, 243123, Uttar Pradesh, India
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwa Vidyalaya, Raipur, Chhattisgarh, India
| | - Rakshak Kumar
- Department of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Ashok Yadav
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, India.
| |
Collapse
|
6
|
Phour M, Sindhu SS. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability. PLANTA 2022; 256:85. [PMID: 36125564 DOI: 10.1007/s00425-022-03997-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
The responses of plants to different abiotic stresses and mechanisms involved in their mitigation are discussed. Production of osmoprotectants, antioxidants, enzymes and other metabolites by beneficial microorganisms and their bioengineering ameliorates environmental stresses to improve food production. Progressive intensification of global agriculture, injudicious use of agrochemicals and change in climate conditions have deteriorated soil health, diminished the microbial biodiversity and resulted in environment pollution along with increase in biotic and abiotic stresses. Extreme weather conditions and erratic rains have further imposed additional stress for the growth and development of plants. Dominant abiotic stresses comprise drought, temperature, increased salinity, acidity, metal toxicity and nutrient starvation in soil, which severely limit crop production. For promoting sustainable crop production in environmentally challenging environments, use of beneficial microbes has emerged as a safer and sustainable means for mitigation of abiotic stresses resulting in improved crop productivity. These stress-tolerant microorganisms play an effective role against abiotic stresses by enhancing the antioxidant potential, improving nutrient acquisition, regulating the production of plant hormones, ACC deaminase, siderophore and exopolysaccharides and accumulating osmoprotectants and, thus, stimulating plant biomass and crop yield. In addition, bioengineering of beneficial microorganisms provides an innovative approach to enhance stress tolerance in plants. The use of genetically engineered stress-tolerant microbes as inoculants of crop plants may facilitate their use for enhanced nutrient cycling along with amelioration of abiotic stresses to improve food production for the ever-increasing population. In this chapter, an overview is provided about the current understanding of plant-bacterial interactions that help in alleviating abiotic stress in different crop systems in the face of climate change. This review largely focuses on the importance and need of sustainable and environmentally friendly approaches using beneficial microbes for ameliorating the environmental stresses in our agricultural systems.
Collapse
Affiliation(s)
- Manisha Phour
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
- University Institute of Biotechnology, Chandigarh University, Mohali, India
| | - Satyavir S Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India.
| |
Collapse
|
7
|
Tao A, Wang T, Pang F, Zheng X, Ayra-Pardo C, Huang S, Xu R, Liu F, Li J, Wei Y, Wang Z, Niu Q, Li D. Characterization of a novel chitinolytic Serratia marcescens strain TC-1 with broad insecticidal spectrum. AMB Express 2022; 12:100. [PMID: 35907065 PMCID: PMC9339060 DOI: 10.1186/s13568-022-01442-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/22/2022] [Indexed: 12/03/2022] Open
Abstract
The Gram-negative rod-shaped bacterium Serratia marcescens is an opportunistic pathogen of many organisms, including insects. We report the identification and optimal in vitro chitinase production conditions of a novel chitinolytic S. marcescens strain TC-1 isolated from a naturally infected white grub (Anomala corpulenta) collected from a peanut field at Nanyang city, Henan province, China. Strain identification was conducted by morphological, physiological, biochemical and molecular analyses. The amplified 16S rRNA gene of TC-1 showed a similarity greater than 99% with multiple strains of S. marcescens. Based on Neighbor-joining phylogenetic tree analysis of bacterial 16S rRNA gene sequences, TC-1 formed a clade with S. marcescens, clearly separated from other Serratia spp. The strain TC-1 showed larvicidal activities against five insect species (A. corpulenta, Plutella xylostella, Spodoptera exigua, Helicoverpa armigera, Bombyx mori) and the nematode Caenorhabditis elegans, but not against S. litura. The operating parameters of chitinase production by TC-1 were optimized by response surface methodology using a three-factor, three-level Box-Behnken experimental design. The effects of three independent variables i.e. colloidal chitin concentration (7–13 g l−1), incubation time (24–72 h) and incubation temperature (24–32 °C) on chitinase production by TC-1 were investigated. A regression model was proposed to correlate the independent variables for an optimal chitinase activity predicted as 20.946 U ml−1, using a combination of colloidal chitin concentration, incubation time and incubation temperature of 9.06 g l−1, 63.83 h and 28.12 °C, respectively. The latter agreed well with a mean chitinase activity of 20.761 ± 0.102 U ml−1 measured in the culture supernatants of TC-1 grown under similar conditions with a colloidal chitin concentration, incubation time and incubation temperature of 9 g l−1, 64 h and 28 °C, respectively. Our study revealed the S. marcescens strain TC-1 with potential as a biocontrol agent of insect pests and nematodes and demonstrated the proposed regression model's potential to guide chitinase production by this strain.
Collapse
Affiliation(s)
- Aili Tao
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Tan Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Fahu Pang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xueling Zheng
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Camilo Ayra-Pardo
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Siliang Huang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.
| | - Ruxin Xu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Fengqin Liu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Jiakang Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yibin Wei
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Zhiqing Wang
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Qiuhong Niu
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Dandan Li
- School of Life Science and Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| |
Collapse
|
8
|
Styczynski M, Biegniewski G, Decewicz P, Rewerski B, Debiec-Andrzejewska K, Dziewit L. Application of Psychrotolerant Antarctic Bacteria and Their Metabolites as Efficient Plant Growth Promoting Agents. Front Bioeng Biotechnol 2022; 10:772891. [PMID: 35284420 PMCID: PMC8907978 DOI: 10.3389/fbioe.2022.772891] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/07/2022] [Indexed: 01/04/2023] Open
Abstract
Iron is the fourth most abundant element on earth. However, its low bioavailability is a key plant-growth limiting factor. Bacteria play an important role in plant growth promotion since they produce specific secondary metabolites that may increase macro- and micronutrient accessibility in soil. Therefore, bacterial-derived iron chelators, as well as surface-active compounds, are recognised as essential to plant welfare. In this study, three cold-active Antarctic bacterial strains, i.e. Pseudomonas sp. ANT_H12B, Psychrobacter sp. ANT_H59 and Bacillus sp. ANT_WA51, were analysed. The physiological and genomic characterisation of these strains revealed their potential for plant growth promotion, reflected in the production of various biomolecules, including biosurfactants (that may lower the medium surface tension of even up to 53%) and siderophores (including ANT_H12B-produced mixed-type siderophore that demonstrated the highest production, reaching the concentration of up to 1.065 mM), increasing the availability of nutrients in the environment and neutralising fungal pathogens. Tested bacteria demonstrated an ability to promote the growth of a model plant, alfalfa, increasing shoots’ length and fresh biomass even up to 26 and 46% respectively; while their metabolites increased the bioavailability of iron in soil up to 40%. It was also revealed that the introduced strains did not disrupt physicochemical conditions and indigenous soil microbial composition, which suggests that they are promising amendments preserving the natural biodiversity of soil and increasing its fertility.
Collapse
Affiliation(s)
- Michal Styczynski
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Gabriel Biegniewski
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemyslaw Decewicz
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Bartosz Rewerski
- Institute of Microbiology, Department of Geomicrobiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Klaudia Debiec-Andrzejewska
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Institute of Microbiology, Department of Environmental Microbiology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Lukasz Dziewit,
| |
Collapse
|
9
|
Fadiji AE, Babalola OO, Santoyo G, Perazzolli M. The Potential Role of Microbial Biostimulants in the Amelioration of Climate Change-Associated Abiotic Stresses on Crops. Front Microbiol 2022; 12:829099. [PMID: 35095828 PMCID: PMC8795815 DOI: 10.3389/fmicb.2021.829099] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 02/05/2023] Open
Abstract
Crop plants are more often exposed to abiotic stresses in the current age of fast-evolving climate change. This includes exposure to extreme and unpredictable changes in climatic conditions, phytosanitary hazards, and cultivation conditions, which results in drastic losses in worldwide agricultural productions. Plants coexist with microbial symbionts, some of which play key roles in the ecosystem and plant processes. The application of microbial biostimulants, which take advantage of symbiotic relationships, is a long-term strategy for improving plant productivity and performance, even in the face of climate change-associated stresses. Beneficial filamentous fungi, yeasts, and bacteria are examples of microbial biostimulants, which can boost the growth, yield, nutrition and stress tolerance in plants. This paper highlights recent information about the role of microbial biostimulants and their potential application in mitigating the abiotic stresses occurring on crop plants due to climate change. A critical evaluation for their efficient use under diverse climatic conditions is also made. Currently, accessible products generally improve cultural conditions, but their action mechanisms are mostly unknown, and their benefits are frequently inconsistent. Thus, further studies that could lead to the more precisely targeted products are discussed.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Michele Perazzolli
- Center Agriculture Food Environment (C3A), University of Trento, San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
10
|
Niu H, Sun Y, Zhang Z, Zhao D, Wang N, Wang L, Guo H. The endophytic bacterial entomopathogen Serratia marcescens promotes plant growth and improves resistance against Nilaparvata lugens in rice. Microbiol Res 2021; 256:126956. [PMID: 34995970 DOI: 10.1016/j.micres.2021.126956] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/14/2021] [Accepted: 12/27/2021] [Indexed: 11/18/2022]
Abstract
Entomopathogenic bacteria are commonly used as biological agents to control different insect pests. However, little is known about the role of bacterial entomopathogens as endophytes in regulating both plant growth and resistance against insect pests. Here, we applied the entomopathogenic bacterium Serratia marcescens S-JS1 via rice seed inoculation and evaluated its effects on host plant growth and resistance against the rice pest Nilaparvata lugens. Furthermore, the induction of defense-related secondary metabolites by the bacterium was assessed by GC-MS/MS. We showed that S-JS1 was able to endophytically colonize the roots and shoots of rice seedlings following seed inoculation. Colonized plants showed increased seed germination (9.4-13.3 %), root (8.2-36.4 %) and shoot lengths (4.1-22.3 %), and root (26.7-69.3 %) and shoot fresh weights (19.0-49.0 %) compared to plants without inoculation. We also identified the production of indole-3-acetic acid by S-JS1, which is likely involved in enhancing rice plant growth. In a two-choice test, N. lugens adults preferred to feed on untreated control plants than on plants treated with S-JS1. In the no-choice feeding tests, the survival of N. lugens nymphs that fed on S-JS1-treated plants was significantly lower than that of nymphs that fed on untreated plants. Additionally, seeds treated with 109 cfu/mL S-JS1 resulted in elevated levels of secondary metabolites, which may be associated with N. lugens resistance in rice plants. Therefore, we suggest that the entomopathogenic bacterium S. marcescens be considered a potentially promising endophyte for use in an innovative strategy for the integrated management of insect pests.
Collapse
Affiliation(s)
- Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yang Sun
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, People's Republic of China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Lihua Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China.
| |
Collapse
|
11
|
Nordstedt NP, Jones ML. Serratia plymuthica MBSA-MJ1 Increases Shoot Growth and Tissue Nutrient Concentration in Containerized Ornamentals Grown Under Low-Nutrient Conditions. Front Microbiol 2021; 12:788198. [PMID: 34925296 PMCID: PMC8675082 DOI: 10.3389/fmicb.2021.788198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
High fertilizer rates are often applied to horticulture crop production systems to produce high quality crops with minimal time in production. Much of the nutrients applied in fertilizers are not taken up by the plant and are leached out of the containers during regular irrigation. The application of plant growth promoting rhizobacteria (PGPR) can increase the availability and uptake of essential nutrients by plants, thereby reducing nutrient leaching and environmental contamination. Identification of PGPR can contribute to the formulation of biostimulant products for use in commercial greenhouse production. Here, we have identified Serratia plymuthica MBSA-MJ1 as a PGPR that can promote the growth of containerized horticulture crops grown with low fertilizer inputs. MBSA-MJ1 was applied weekly as a media drench to Petunia×hybrida (petunia), Impatiens walleriana (impatiens), and Viola×wittrockiana (pansy). Plant growth, quality, and tissue nutrient concentration were evaluated 8weeks after transplant. Application of MBSA-MJ1 increased the shoot biomass of all three species and increased the flower number of impatiens. Bacteria application also increased the concentration of certain essential nutrients in the shoots of different plant species. In vitro and genomic characterization identified multiple putative mechanisms that are likely contributing to the strain’s ability to increase the availability and uptake of these nutrients by plants. This work provides insight into the interconnectedness of beneficial PGPR mechanisms and how these bacteria can be utilized as potential biostimulants for sustainable crop production with reduced chemical fertilizer inputs.
Collapse
Affiliation(s)
- Nathan P Nordstedt
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Michelle L Jones
- Department of Horticulture and Crop Science, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
12
|
Mohanty P, Singh PK, Chakraborty D, Mishra S, Pattnaik R. Insight Into the Role of PGPR in Sustainable Agriculture and Environment. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.667150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A multitude of roles is played by microbes in food and agriculture that include nutrient cycling and management, organic matter decomposition and fermentation. Plant growth promoting rhizobacteria (PGPR), representing microbial groups and with ability of colonizing plant roots, influence plant growth through various indirect and direct modes in order to promote its growth and/or protect it from diseases or damage due to insect attack. Thus, PGPR research has received renewed interest worldwide. Increasing number of crop-specific PGPR are being commercialized these days. Approaches like seed-inoculation and soil application either alone or in combination with bacterial culture/product for increased nutrient availability through phosphate solubilisation, potassium solubilisation, sulfur oxidation, nitrogen fixation, iron, and copper chelation are gaining popularity. Arbuscular mycorrhizal fungi (AMF) are root fungal symbiont that improve management of abiotic stress such as phosphorus deficiency. PGPR involves roles like production of indole acetic acid (IAA), ammonia (NH3), hydrogen cyanide (HCN), catalase, etc. PGPR also improve nutrient uptake by altering the level of plant hormone that enhances root surface area by increasing its girth and shape, thereby helping in absorbing more nutrients. PGPR facilitate seed germination, seedling growth and crop yield. An array of microbes including Pseudomonas, Azospirillum, Azotobacter, Klebsiella, Enterobacter, Alcaligenes, Arthrobacter, Burkholderia, Bacillus, and Serratia enhance plant growth. Various Pseudomonas sp. have demonstrated significant increase in germination, seedling growth and yield in different agricultural crops, including wheat. Hence, developing a successful crop-specific PGPR formulation, the candidate should possess characteristics like high rhizosphere competence, extensive competitive saprophytic ability, growth enhancing ability, ease of mass production, broad-spectrum action, safety toward the environment and compatibility with other partnering organisms.
Collapse
|
13
|
Kumar R, Borker SS, Thakur A, Thapa P, Kumar S, Mukhia S, Anu K, Bhattacharya A, Kumar S. Physiological and genomic evidence supports the role of Serratia quinivorans PKL:12 as a biopriming agent for the biohardening of micropropagated Picrorhiza kurroa plantlets in cold regions. Genomics 2021; 113:1448-1457. [PMID: 33744342 DOI: 10.1016/j.ygeno.2021.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/26/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
The medicinal herb, Picrorhiza kurroa Royle ex Benth has become endangered because of indiscriminate over-harvesting. Although micropropagation has been attempted for mass propagation of the plant, survival of in vitro plantlets under green house/open field poses a major challenge. Biopriming of micropropagated plantlets with plant growth-promoting rhizobacteria (PGPR) are among the successful methods to combat this problem. Serratia quinivorans PKL:12 was the best-characterized PGPR from rhizospheric soil of P. kurroa as it increased the vegetative growth and survival of the micropropagated plantlets most effectively. Complete genome (5.29 Mb) predicted genes encoding proteins for cold adaptation and plant growth-promoting traits in PKL:12. Antibiotic and biosynthetic gene cluster prediction supported PKL:12 as a potential biocontrol agent. Comparative genomics revealed 226 unique genes with few genes associated with plant growth-promoting potential. Physiological and genomic evidence supports S. quinivorans PKL:12 as a potential agent for bio-hardening of micropropagated P. kurroa plantlets in cold regions.
Collapse
Affiliation(s)
- Rakshak Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India..
| | - Shruti Sinai Borker
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Aman Thakur
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, Ghaziabad, Uttar Pradesh 201 002, India
| | - Pooja Thapa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjeet Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Srijana Mukhia
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Department of Microbiology, Guru Nanak Dev University, Amritsar 143005, Punjab, India
| | - Kumari Anu
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Amita Bhattacharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
14
|
Vega-Celedón P, Bravo G, Velásquez A, Cid FP, Valenzuela M, Ramírez I, Vasconez IN, Álvarez I, Jorquera MA, Seeger M. Microbial Diversity of Psychrotolerant Bacteria Isolated from Wild Flora of Andes Mountains and Patagonia of Chile towards the Selection of Plant Growth-Promoting Bacterial Consortia to Alleviate Cold Stress in Plants. Microorganisms 2021; 9:microorganisms9030538. [PMID: 33807836 PMCID: PMC7998784 DOI: 10.3390/microorganisms9030538] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cold stress decreases the growth and productivity of agricultural crops. Psychrotolerant plant growth-promoting bacteria (PGPB) may protect and promote plant growth at low temperatures. The aims of this study were to isolate and characterize psychrotolerant PGPB from wild flora of Andes Mountains and Patagonia of Chile and to formulate PGPB consortia. Psychrotolerant strains were isolated from 11 wild plants (rhizosphere and phyllosphere) during winter of 2015. For the first time, bacteria associated with Calycera, Orites, and Chusquea plant genera were reported. More than 50% of the 130 isolates showed ≥33% bacterial cell survival at temperatures below zero. Seventy strains of Pseudomonas, Curtobacterium, Janthinobacterium, Stenotrophomonas, Serratia, Brevundimonas, Xanthomonas, Frondihabitans, Arthrobacter, Pseudarthrobacter, Paenarthrobacter, Brachybacterium, Clavibacter, Sporosarcina, Bacillus, Solibacillus, Flavobacterium, and Pedobacter genera were identified by 16S rRNA gene sequence analyses. Ten strains were selected based on psychrotolerance, auxin production, phosphate solubilization, presence of nifH (nitrogenase reductase) and acdS (1-aminocyclopropane-1-carboxylate (ACC) deaminase) genes, and anti-phytopathogenic activities. Two of the three bacterial consortia formulated promoted tomato plant growth under normal and cold stress conditions. The bacterial consortium composed of Pseudomonas sp. TmR5a & Curtobacterium sp. BmP22c that possesses ACC deaminase and ice recrystallization inhibition activities is a promising candidate for future cold stress studies.
Collapse
Affiliation(s)
- Paulina Vega-Celedón
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| | - Guillermo Bravo
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Alexis Velásquez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Fernanda P. Cid
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Miryam Valenzuela
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid Ramírez
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Ingrid-Nicole Vasconez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Inaudis Álvarez
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile; (F.P.C.); (M.A.J.)
- Center of Plant-Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Avenida Francisco Salazar 1145, Temuco 4811230, Chile
| | - Michael Seeger
- Molecular Microbiology and Environmental Biotechnology Laboratory, Department of Chemistry, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (G.B.); (A.V.); (M.V.); (I.-N.V.); (I.Á.)
- Center of Biotechnology “Dr. Daniel Alkalay Lowitt”, Universidad Técnica Federico Santa María, General Bari 699, Valparaíso 2390136, Chile;
- Correspondence: (P.V.-C.); (M.S.); Tel.: +56-322654685 (P.V.-C.)
| |
Collapse
|
15
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
16
|
Keswani C, Singh SP, Cueto L, García-Estrada C, Mezaache-Aichour S, Glare TR, Borriss R, Singh SP, Blázquez MA, Sansinenea E. Auxins of microbial origin and their use in agriculture. Appl Microbiol Biotechnol 2020; 104:8549-8565. [PMID: 32918584 DOI: 10.1007/s00253-020-10890-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/31/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022]
Abstract
To maintain the world population demand, a sustainable agriculture is needed. Since current global vision is more friendly with the environment, eco-friendly alternatives are desirable. In this sense, plant growth-promoting rhizobacteria could be the choice for the management of soil-borne diseases of crop plants. These rhizobacteria secrete chemical compounds which act as phytohormones. Indole-3-acetic acid (IAA) is the most common plant hormone of the auxin class which regulates various processes of plant growth. IAA compound, in which structure can be found a carboxylic acid attached through a methylene group to the C-3 position of an indole ring, is produced both by plants and microorganisms. Plant growth-promoting rhizobacteria and fungi secrete IAA to promote the plant growth. In this review, IAA production and mechanisms of action by bacteria and fungi along with the metabolic pathways evolved in the IAA secretion and commercial prospects are revised.Key points• Many microorganisms produce auxins which help the plant growth promotion.• These auxins improve the plant growth by several mechanisms.• The auxins are produced through different mechanisms.
Collapse
Affiliation(s)
- Chetan Keswani
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Satyendra Pratap Singh
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Laura Cueto
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain
| | - Carlos García-Estrada
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, Av, Real, 1, 24006, León, Spain.,Departamento de Ciencias Biomédicas, Universidad de León, Campus de Vegazana s/n, 24071, León, Spain
| | | | - Travis R Glare
- Bio-Protection Research Centre, Lincoln University, PO Box 85084, Lincoln, 7647, New Zealand
| | - Rainer Borriss
- Humboldt-Universität zu Berlin, Institut für Biologie, Berlin, Germany.,Nord Reet UG, Marienstr. 27a, 17489, Greifswald, Germany
| | - Surya Pratap Singh
- Department of Biochemistry, Faculty of Science, Banaras Hindu University, Varanasi, India
| | - Miguel Angel Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain
| | - Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, 72590, Puebla, Pue, México.
| |
Collapse
|
17
|
Facing Climate Change: Application of Microbial Biostimulants to Mitigate Stress in Horticultural Crops. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10060794] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In the current scenario of rapidly evolving climate change, crop plants are more frequently subjected to stresses of both abiotic and biotic origin, including exposure to unpredictable and extreme climatic events, changes in plant physiology, growing season and phytosanitary hazard, and increased losses up to 30% and 50% in global agricultural productions. Plants coevolved with microbial symbionts, which are involved in major functions both at the ecosystem and plant level. The use of microbial biostimulants, by exploiting this symbiotic interaction, represents a sustainable strategy to increase plant performances and productivity, even under stresses due to climate changes. Microbial biostimulants include beneficial fungi, yeasts and eubacteria sharing the ability to improve plant nutrition, growth, productivity and stress tolerance. This work reports the current knowledge on microbial biostimulants and provides a critical review on their possible use to mitigate the biotic and abiotic stresses caused by climate changes. Currently, available products often provide a general amelioration of cultural conditions, but their action mechanisms are largely undetermined and their effects often unreliable. Future research may lead to more specifically targeted products, based on the characterization of plant-microbe and microbial community interactions.
Collapse
|
18
|
Moradtalab N, Ahmed A, Geistlinger J, Walker F, Höglinger B, Ludewig U, Neumann G. Synergisms of Microbial Consortia, N Forms, and Micronutrients Alleviate Oxidative Damage and Stimulate Hormonal Cold Stress Adaptations in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:396. [PMID: 32391028 PMCID: PMC7193188 DOI: 10.3389/fpls.2020.00396] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/19/2020] [Indexed: 05/04/2023]
Abstract
AIMS Low soil temperature in spring is a major constraint for the cultivation of tropical crops in temperate climates. This study aims at the exploitation of synergistic interactions of micronutrients, consortia of plant growth-promoting microorganisms and N forms as cold-stress protectants. METHODS Maize seedlings were exposed for two weeks to low root zone temperatures at 8-14°C under controlled conditions on a silty clay-loam soil (pH 6.9) collected from a maize field cultivation site. A pre-selection trial with fungal and bacterial PGPM strains revealed superior cold-protective performance for a microbial consortium of Trichoderma harzianum OMG16 and Bacillus spp. with Zn/Mn supplementation (CombiA+), particularly in combination with N-ammonium as a starting point for the characterization of the underlying physiological and molecular mechanisms. RESULTS In nitrate-treated plants, the cold stress treatment increased oxidative leaf damage by 133% and reduced the shoot biomass by 25%, related with reduced acquisition of phosphate (P), zinc (Zn) and manganese (Mn). The supplying of N as ammonium improved the Zn and Mn nutritional status and increased the ABA shoot concentration by 33%, as well as moderately increased detoxification of reactive oxygen species (ROS). Moreover, use of N as ammonium also increased the root auxin (IAA) concentration (+76%), with increased expression of auxin-responsive genes, involved in IAA synthesis (ZmTSA), transport (ZmPIN1a), and perception (ZmARF12). Additional inoculation with the microbial consortium promoted root colonization with the inoculant strain T. harzianum OMG16 in combination with ammonium fertilization (+140%). An increased ABA/cytokinin ratio and increased concentrations of jasmonic (JA) and salicylic acids (SA) were related to a further increase in enzymatic and non-enzymatic ROS detoxification. Additional supplementation with Zn and Mn further increased shoot IAA, root length and total antioxidants, resulting in the highest shoot biomass production and the lowest leaf damage by oxidative chemical species. CONCLUSION Our results suggest the mitigation of cold stress and reduction of stress priming effects on maize plants due to improved ROS detoxification and induction of hormonal stress adaptations relying on the strategic combination of stress-protective nutrients with selected microbial inoculants.
Collapse
Affiliation(s)
- Narges Moradtalab
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Aneesh Ahmed
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Joerg Geistlinger
- Institute of Bioanalytical Sciences, Anhalt University of Applied Sciences, Bernburg, Germany
| | - Frank Walker
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Birgit Höglinger
- Institute of Phytomedicine (360), University of Hohenheim, Stuttgart, Germany
| | - Uwe Ludewig
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| | - Günter Neumann
- Institute of Crop Science (340h), University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
19
|
Hazarika DJ, Gautom T, Parveen A, Goswami G, Barooah M, Modi MK, Boro RC. Mechanism of interaction of an endofungal bacterium Serratia marcescens D1 with its host and non-host fungi. PLoS One 2020; 15:e0224051. [PMID: 32320394 PMCID: PMC7176118 DOI: 10.1371/journal.pone.0224051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/07/2020] [Indexed: 01/17/2023] Open
Abstract
Association of bacteria with fungi is a major area of research in infection biology, however, very few strains of bacteria have been reported that can invade and reside within fungal hyphae. Here, we report the characterization of an endofungal bacterium Serratia marcescens D1 from Mucor irregularis SS7 hyphae. Upon re-inoculation, colonization of the endobacterium S. marcescens D1 in the hyphae of Mucor irregularis SS7 was demonstrated using stereo microscopy. However, S. marcescens D1 failed to invade into the hyphae of the tested Ascomycetes (except Fusarium oxysporum) and Basidiomycetes. Remarkably, Serratia marcescens D1 could invade and spread over the culture of F. oxysporum that resulted in mycelial death. Prodigiosin, the red pigment produced by the Serratia marcescens D1, helps the bacterium to invade fungal hyphae as revealed by the increasing permeability in fungal cell membrane. On the other hand, genes encoding the type VI secretion system (T6SS) assembly protein TssJ and an outer membrane associated murein lipoprotein also showed significant up-regulation during the interaction process, suggesting the involvement of T6SS in the invasion process.
Collapse
Affiliation(s)
- Dibya Jyoti Hazarika
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Trishnamoni Gautom
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Assma Parveen
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Gunajit Goswami
- DBT-North East Centre for Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Madhumita Barooah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Mahendra Kumar Modi
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
| | - Robin Chandra Boro
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, India
- * E-mail:
| |
Collapse
|
20
|
Otero M, Salcedo I, Txarterina K, González-Murua C, Duñabeitia MK. Compost Tea Reduces the Susceptibility of Pinus radiata to Fusarium circinatum in Nursery Production. PHYTOPATHOLOGY 2020; 110:813-821. [PMID: 31880986 DOI: 10.1094/phyto-04-19-0139-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nutrition is one of the factors that most limits forestry plant growth; thus, current production in nurseries is based on conventional fertilization focused on enhancing vigor. However, an excessive intake of mineral nitrogen can cause morphological imbalances and the formation of more succulent tissues which, consequently, increase susceptibility to plant pathogens. Fusarium circinatum is the causal agent of pitch canker in plants of the Pinus genus, with Pinus radiata being the species most susceptible to this disease. This study compares the response of P. radiata seedlings to infection by F. circinatum as influenced by two fertilizers-conventional and aerated compost tea (ACT)-applied during the nursery phase. The potential of ACT against F. circinatum was first tested in vitro, where it was found to inhibit the pathogen's mycelial growth and conidial germination. In the greenhouse, infected plants fertilized with ACT exhibited less severe internal and external symptoms of pitch canker and lower levels of pathogen colonization of both stems and needles than with conventional fertilizer. An analysis of the hormone content and defense-related gene expression shows greater salicylic acid production and phenylalanine ammonium-lyase and chalcone synthase expression in ACT-fertilized pine. All of the parameters assessed are consistent in showing that biofertilization with ACT reduces the susceptibility of pine seedlings to the disease compared with conventional fertilization.
Collapse
Affiliation(s)
- M Otero
- Department of Plant Biology and Ecology, Faculty of Science and Technology, UPV/EHU, Barrio Sarriena s/n, 48940-Leioa, Spain
| | - I Salcedo
- Department of Plant Biology and Ecology, Faculty of Science and Technology, UPV/EHU, Barrio Sarriena s/n, 48940-Leioa, Spain
| | - K Txarterina
- BASALAN S.A., Avenida Madariaga 1, Dpto. 9, 48014 Bilbao, Spain
| | - C González-Murua
- Department of Plant Biology and Ecology, Faculty of Science and Technology, UPV/EHU, Barrio Sarriena s/n, 48940-Leioa, Spain
| | - M K Duñabeitia
- Department of Plant Biology and Ecology, Faculty of Science and Technology, UPV/EHU, Barrio Sarriena s/n, 48940-Leioa, Spain
| |
Collapse
|
21
|
Dhakar K, Pandey A. Microbial Ecology from the Himalayan Cryosphere Perspective. Microorganisms 2020; 8:microorganisms8020257. [PMID: 32075196 PMCID: PMC7074745 DOI: 10.3390/microorganisms8020257] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 11/18/2022] Open
Abstract
Cold-adapted microorganisms represent a large fraction of biomass on Earth because of the dominance of low-temperature environments. Extreme cold environments are mainly dependent on microbial activities because this climate restricts higher plants and animals. Himalaya is one of the most important cold environments on Earth as it shares climatic similarities with the polar regions. It includes a wide range of ecosystems, from temperate to extreme cold, distributed along the higher altitudes. These regions are characterized as stressful environments because of the heavy exposure to harmful rays, scarcity of nutrition, and freezing conditions. The microorganisms that colonize these regions are recognized as cold-tolerant (psychrotolerants) or/and cold-loving (psychrophiles) microorganisms. These microorganisms possess several structural and functional adaptations in order to perform normal life processes under the stressful low-temperature environments. Their biological activities maintain the nutrient flux in the environment and contribute to the global biogeochemical cycles. Limited culture-dependent and culture-independent studies have revealed their diversity in community structure and functional potential. Apart from the ecological importance, these microorganisms have been recognized as source of cold-active enzymes and novel bioactive compounds of industrial and biotechnological importance. Being an important part of the cryosphere, Himalaya needs to be explored at different dimensions related to the life of the inhabiting extremophiles. The present review discusses the distinct facts associated with microbial ecology from the Himalayan cryosphere perspective.
Collapse
Affiliation(s)
- Kusum Dhakar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay 30095, Israel;
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Bell Road, Clement Town, Dehradun 248002, India
- Correspondence:
| |
Collapse
|
22
|
Serratia marcescens BM1 Enhances Cadmium Stress Tolerance and Phytoremediation Potential of Soybean Through Modulation of Osmolytes, Leaf Gas Exchange, Antioxidant Machinery, and Stress-Responsive Genes Expression. Antioxidants (Basel) 2020; 9:antiox9010043. [PMID: 31947957 PMCID: PMC7023057 DOI: 10.3390/antiox9010043] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 01/24/2023] Open
Abstract
The heavy metal contamination in plant-soil environment has increased manifold recently. In order to reduce the harmful effects of metal stress in plants, the application of beneficial soil microbes is gaining much attention. In the present research, the role of Serratia marcescens BM1 in enhancing cadmium (Cd) stress tolerance and phytoremediation potential of soybean plants, was investigated. Exposure of soybean plants to two Cd doses (150 and 300 µM) significantly reduced plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Additionally, Cd induced the stress levels of Cd, proline, glycine betaine, hydrogen peroxide, malondialdehyde, antioxidant enzymes (i.e., catalase, CAT; ascorbate peroxidase, APX; superoxide dismutase, SOD; peroxidise, POD), and the expression of stress-related genes (i.e., APX, CAT, Fe-SOD, POD, CHI, CHS, PHD2, VSO, NR, and P5CS) in soybean leaves. On the other hand, inoculation of Cd-stressed soybean plants with Serratia marcescens BM1 significantly enhanced the plant growth, biomass, gas exchange attributes, nutrients uptake, antioxidant capacity, and the contents of chlorophyll, total phenolics, flavonoids, soluble sugars, and proteins. Moreover, Serratia marcescens BM1 inoculation reduced the levels of cadmium and oxidative stress markers, but significantly induced the activities of antioxidant enzymes and the levels of osmolytes and stress-related genes expression in Cd-stressed plants. The application of 300 µM CdCl2 and Serratia marcescens triggered the highest expression levels of stress-related genes. Overall, this study suggests that inoculation of soybean plants with Serratia marcescens BM1 promotes phytoremediation potential and Cd stress tolerance by modulating the photosynthetic attributes, osmolytes biosynthesis, antioxidants machinery, and the expression of stress-related genes.
Collapse
|
23
|
Kour D, Rana KL, Yadav AN, Yadav N, Kumar M, Kumar V, Vyas P, Dhaliwal HS, Saxena AK. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101487] [Citation(s) in RCA: 134] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
24
|
Ahemad M. Remediation of metalliferous soils through the heavy metal resistant plant growth promoting bacteria: Paradigms and prospects. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2014.11.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
25
|
Genetic Screening and Expression Analysis of Psychrophilic Bacillus spp. Reveal Their Potential to Alleviate Cold Stress and Modulate Phytohormones in Wheat. Microorganisms 2019; 7:microorganisms7090337. [PMID: 31510075 PMCID: PMC6780275 DOI: 10.3390/microorganisms7090337] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/19/2019] [Accepted: 09/07/2019] [Indexed: 12/04/2022] Open
Abstract
Abiotic stress in plants pose a major threat to cereal crop production worldwide and cold stress is also notorious for causing a decrease in plant growth and yield in wheat. The present study was designed to alleviate cold stress on plants by inoculating psychrophilic PGPR bacteria belonging to Bacillus genera isolated from extreme rhizospheric environments of Qinghai-Tibetan plateau. The genetic screening of psychrophilic Bacillus spp. CJCL2, RJGP41 and temperate B. velezensis FZB42 revealed presence of genetic features corresponding to cold stress response, membrane transport, signal transduction and osmotic regulation. Subsequently, the time frame study for the expression of genes involved in these pathways was also significantly higher in psychrophilic strains as analyzed through qPCR analysis at 4 ℃. The inoculated cold tolerant Bacillus strains also aided in inducing stress response in wheat by regulating abscisic acid, lipid peroxidation and proline accumulation pathways in a beneficial manner. Moreover, during comparative analysis of growth promotion in wheat all three Bacillus strains showed significant results at 25 ℃. Whereas, psychrophilic Bacillus strains CJCL2 and RJGP41 were able to positively regulate the expression of phytohormones leading to significant improvement in plant growth under cold stress.
Collapse
|
26
|
Pons I, Renoz F, Noël C, Hance T. Circulation of the Cultivable Symbiont Serratia symbiotica in Aphids Is Mediated by Plants. Front Microbiol 2019; 10:764. [PMID: 31037067 PMCID: PMC6476230 DOI: 10.3389/fmicb.2019.00764] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 11/17/2022] Open
Abstract
Symbiosis is a common phenomenon in nature that substantially affects organismal ecology and evolution. Fundamental questions regarding how mutualistic associations arise and evolve in nature remain, however, poorly studied. The aphid-Serratia symbiotica bacterium interaction represents a valuable model to study mechanisms shaping these symbiotic interspecific interactions. S. symbiotica strains capable of living independently of aphid hosts have recently been isolated. These strains probably resulted from horizontal transfers and could be an evolutionary link to an intra-organismal symbiosis. In this context, we used the tripartite interaction between the aphid Aphis fabae, a cultivable S. symbiotica bacterium, and the host plant Vicia faba to evaluate the bacterium ability to circulate in this system, exploring its environmental acquisition by aphids and horizontal transmission between aphids via the host plant. Using molecular analyses and fluorescence techniques, we showed that the cultivable S. symbiotica can enter the plants and induce new bacterial infections in aphids feeding on these new infected plants. Remarkably, we also found that the bacterium can have positive effects on the host plant, mainly at the root level. Furthermore, our results demonstrated that cultivable S. symbiotica can be horizontally transferred from infected to uninfected aphids sharing the same plant, providing first direct evidence that plants can mediate horizontal transmission of certain strains of this symbiont species. These findings highlight the importance of considering symbiotic associations in complex systems where microorganisms can circulate between different compartments. Our study can thus have major implications for understanding the multifaceted interactions between microbes, insects and plants.
Collapse
Affiliation(s)
- Inès Pons
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - François Renoz
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Christine Noël
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thierry Hance
- Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
27
|
Tiryaki D, Aydın İ, Atıcı Ö. Psychrotolerant bacteria isolated from the leaf apoplast of cold-adapted wild plants improve the cold resistance of bean (Phaseolus vulgaris L.) under low temperature. Cryobiology 2019; 86:111-119. [DOI: 10.1016/j.cryobiol.2018.11.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 10/24/2018] [Accepted: 11/06/2018] [Indexed: 01/12/2023]
|
28
|
Pandey A, Yarzábal LA. Bioprospecting cold-adapted plant growth promoting microorganisms from mountain environments. Appl Microbiol Biotechnol 2018; 103:643-657. [PMID: 30465306 DOI: 10.1007/s00253-018-9515-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Mountain soils are challenging environments for all kinds of living things, including plants and microorganisms. Many cold-adapted microorganisms colonizing these extreme soils play important roles as promoters of plant growth and development; for that reason, they are called collectively plant growth-promoting microorganisms (PGPM). Even though there is seldom doubt concerning the usefulness of PGPM to develop eco-friendly bioinoculants, including biofertilizers and biocontrollers, a series of aspects need to be addressed in order to make this technology field-applicable. Among these aspects, the ecological and rhizosphere competences of PGPM are of paramount importance, particularly when considering the development of bioinoculants, well suited for the intensification of mountainous agricultural production. Studies on native, cold-adapted PGPM conducted in the Indian Himalayan region (IHR) and the Tropical Andes (TA) lead nowadays the research in this field. Noticeably, some common themes are emerging. For instance, soils in these mountain environments are colonized by many cold-adapted PGPM able to mobilize soil nutrients and to inhibit growth of plant pathogens. Studies aimed at deeply characterizing the abilities of such PGPM is likely to substantially contribute towards a better crop productivity in mountainous environments. The present review focuses on the importance of this microbial resource to improve crop productivity in IHR and TA. We also present a number of successful examples, which emphasize the effectiveness of some bioinoculants-developed from naturally occurring PGPM-when applied in the field.
Collapse
Affiliation(s)
- Anita Pandey
- Centre for Environmental Assessment and Climate Change, G.B. Pant National Institute of Himalayan Environment and Sustainable Development, Kosi-Katarmal, Almora, Uttarakhand, 263643, India.
| | - Luis Andrés Yarzábal
- Unidad de Salud y Bienestar, Universidad Católica de Cuenca, Av. Las Américas y Humboldt, Cuenca, Ecuador.,Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Av. Alberto Carnevalli, Mérida, Venezuela
| |
Collapse
|
29
|
El-Esawi MA, Alaraidh IA, Alsahli AA, Alzahrani SM, Ali HM, Alayafi AA, Ahmad M. Serratia liquefaciens KM4 Improves Salt Stress Tolerance in Maize by Regulating Redox Potential, Ion Homeostasis, Leaf Gas Exchange and Stress-Related Gene Expression. Int J Mol Sci 2018; 19:E3310. [PMID: 30355997 PMCID: PMC6274875 DOI: 10.3390/ijms19113310] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 01/09/2023] Open
Abstract
High salinity mitigates crop productivity and quality. Plant growth-promoting soil rhizobacteria (PGPR) improve plant growth and abiotic stress tolerance via mediating various physiological and molecular mechanisms. This study investigated the effects of the PGPR strain Serratia liquefaciens KM4 on the growth and physiological and molecular responsiveness of maize (Zea mays L.) plants under salinity stress (0, 80, and 160 mM NaCl). High salinity significantly reduced plant growth and biomass production, nutrient uptake, leaf relative water content, pigment content, leaf gas exchange attributes, and total flavonoid and phenolic contents in maize. However, osmolyte content (e.g., soluble proteins, proline, and free amino acids), oxidative stress markers, and enzymatic and non-enzymatic antioxidants levels were increased in maize under high salinity. On the other hand, Serratia liquefaciens KM4 inoculation significantly reduced oxidative stress markers, but increased the maize growth and biomass production along with better leaf gas exchange, osmoregulation, antioxidant defense systems, and nutrient uptake under salt stress. Moreover, it was found that all these improvements were accompanied with the upregulation of stress-related genes (APX, CAT, SOD, RBCS, RBCL, H⁺-PPase, HKT1, and NHX1), and downregulation of the key gene in ABA biosynthesis (NCED). Taken together, the results demonstrate the beneficial role of Serratia liquefaciens KM4 in improving plant growth and salt stress tolerance in maize by regulating ion homeostasis, redox potential, leaf gas exchange, and stress-related genes expression.
Collapse
Affiliation(s)
- Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, 75005 Paris, France.
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Abdulaziz A Alsahli
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Saud M Alzahrani
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Hayssam M Ali
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
- Timber Trees Research Department, Sabahia Horticulture Research Station, Horticulture Research Institute, Agriculture Research Center, Alexandria 21526, Egypt.
| | - Aisha A Alayafi
- Biological Sciences Department, Faculty of Science, University of Jeddah, Jeddah 21577, Saudi Arabia.
| | - Margaret Ahmad
- UMR CNRS 8256 (B2A), IBPS, Université Paris VI, 75005 Paris, France.
- Department of Biology, Xavier University, Cincinnati, OH 45207, USA.
| |
Collapse
|
30
|
Larvicidal potential of Skermanella sp. against rice leaf folder (Cnaphalocrosis medinalis Guenee) and pink stem borer (Sesamia inferens Walker). J Invertebr Pathol 2018; 157:74-79. [PMID: 30099012 DOI: 10.1016/j.jip.2018.08.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 08/04/2018] [Accepted: 08/07/2018] [Indexed: 11/20/2022]
Abstract
Insect pests in the rice agroecosystem, particularly the leaf folder, Cnaphalocrosis medinalis (Guenee) and stem borer, Sesamia inferens (Walker), cause significant yield losses. These pests are generally managed by farmers by application of insecticides and a few biocontrol agents. As a component of integrated pest management, biocontrol agents play a dynamic role in pest control. Although diverse microbial communities are available in the rice ecosystem, bacterial genera such as Bacillus and Pseudomonas spp. are broadly used as biocontrol agents. Therefore, an attempt was made to identify other effective entomopathogenic bacteria to manage the above mentioned pests. In this study, the two entomopathogenic bacteria isolated from diseased pink stem borer (S. inferens Walker) larvae collected from rice fields were identified as Skermanella sp. (KX611462) and Serratia sp. (KX761232). The larvicidal activity of these two bacteria was evaluated against third instar larvae of C. medinalis and S. inferens in in vitro assays and on potted rice plants (Oryza sativa var. TN1). The results of this study demonstrated 50% (LC50) larval mortality of C. medinalis at 2.95 × 103 and 5.88 × 103 colony forming units (CFU) ml-1 for Skermanella sp. and Serratia sp., respectively, under in vitro conditions, 2.57 × 104 and 3.38 × 104 CFU ml-1, respectively, in whole plant assays. Similarly, the LC50 value for Skermanella sp. was 3.80 × 104 CFU ml-1 and Serratia sp. was 2.29 × 105 CFU ml-1 for S. inferens larvae. Our study reports the larvicidal activity of Skermanella sp. against C. medinalis and S. inferens.
Collapse
|
31
|
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the Plant Microbiome for Improved Abiotic Stress Tolerance. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
32
|
Antifungal activity and patterns of N -acetyl-chitooligosaccharide degradation via chitinase produced from Serratia marcescens PRNK-1. Microb Pathog 2017; 113:218-224. [DOI: 10.1016/j.micpath.2017.10.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/20/2017] [Accepted: 10/20/2017] [Indexed: 11/20/2022]
|
33
|
Genome Sequence of Serratia marcescens MSU97, a Plant-Associated Bacterium That Makes Multiple Antibiotics. GENOME ANNOUNCEMENTS 2017; 5:5/9/e01752-16. [PMID: 28254993 PMCID: PMC5334600 DOI: 10.1128/genomea.01752-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Serratia marcescens MSU97 was isolated from the Guayana region of Venezuela due to its ability to suppress plant-pathogenic oomycetes. Here, we report the genome sequence of MSU97, which produces various antibiotics, including the bacterial acetyl-coenzyme A (acetyl-CoA) carboxylase inhibitor andrimid, the chlorinated macrolide oocydin A, and the red linear tripyrrole antibiotic prodigiosin.
Collapse
|
34
|
Mahanty T, Bhattacharjee S, Goswami M, Bhattacharyya P, Das B, Ghosh A, Tribedi P. Biofertilizers: a potential approach for sustainable agriculture development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3315-3335. [PMID: 27888482 DOI: 10.1007/s11356-016-8104-0] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 11/14/2016] [Indexed: 05/21/2023]
Abstract
The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.
Collapse
Affiliation(s)
- Trishna Mahanty
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University (A Central University), Suryamaninagar, Agartala, Tripura, 799022, India
| | - Madhurankhi Goswami
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Purnita Bhattacharyya
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India
| | - Bannhi Das
- Department of Biotechnology, Mount Carmel College, Bangalore, 560 052, India
| | - Abhrajyoti Ghosh
- Department of Biochemistry, Bose Institute Centenary Campus, Kolkata, 700054, India
| | - Prosun Tribedi
- Department of Microbiology, Assam Don Bosco University, Guwahati, Assam, 781017, India.
| |
Collapse
|
35
|
Rankl S, Gunsé B, Sieper T, Schmid C, Poschenrieder C, Schröder P. Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:130-140. [PMID: 27968982 DOI: 10.1016/j.plantsci.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 05/26/2023]
Abstract
While colonizing the rhizosphere, bacterial intra- and inter-specific communication is accomplished by N-Acyl-homoserine-lactones (AHLs) in a density-dependent manner. Moreover, plants are naturally exposed to AHLs and respond with tissue-specificity. In the present study, we investigated the influence of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-dodecanoyl-d/l-homoserine lactone (C12-HSL) on growth and root development in barley (Hordeum vulgare L.), and identified initial reactions in root cells after AHL exposures using physiological, staining, and electrophysiological methods. Treatment with short- and long-chain AHLs modulated plant growth and branched root architecture and induced nitric oxide (NO) accumulation in the calyptra and root elongation zone of excised roots in an AHL derivative-independent way. Additionally, C6- and C8-HSL treatments stimulated K+ uptake in root cells only at certain concentrations, whereas all tested concentrations of C12-HSL induced K+ uptake. In further experiments, C8-HSL promoted membrane hyperpolarization in epidermal root cells. Thus, we conclude AHLs promote plant growth and lateral root formation, and cause NO accumulation as an early response to AHLs. Furthermore, the AHL-mediated membrane hyperpolarization is leading to increased K+ uptake of the root tissue.
Collapse
Affiliation(s)
- Simone Rankl
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Benet Gunsé
- Lab. Fisiología Vegetal, Facultad Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Tina Sieper
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christoph Schmid
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Charlotte Poschenrieder
- Lab. Fisiología Vegetal, Facultad Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Peter Schröder
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
36
|
Devi KA, Pandey P, Sharma GD. Plant Growth-Promoting Endophyte Serratia marcescens AL2-16 Enhances the Growth of Achyranthes aspera L., a Medicinal Plant. HAYATI JOURNAL OF BIOSCIENCES 2016. [DOI: 10.1016/j.hjb.2016.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Zelaya-Molina LX, Hernández-Soto LM, Guerra-Camacho JE, Monterrubio-López R, Patiño-Siciliano A, Villa-Tanaca L, Hernández-Rodríguez C. Ammonia-Oligotrophic and Diazotrophic Heavy Metal-Resistant Serratia liquefaciens Strains from Pioneer Plants and Mine Tailings. MICROBIAL ECOLOGY 2016; 72:324-346. [PMID: 27138047 DOI: 10.1007/s00248-016-0771-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Mine tailings are man-made environments characterized by low levels of organic carbon and assimilable nitrogen, as well as moderate concentrations of heavy metals. For the introduction of nitrogen into these environments, a key role is played by ammonia-oligotrophic/diazotrophic heavy metal-resistant guilds. In mine tailings from Zacatecas, Mexico, Serratia liquefaciens was the dominant heterotrophic culturable species isolated in N-free media from bulk mine tailings as well as the rhizosphere, roots, and aerial parts of pioneer plants. S. liquefaciens strains proved to be a meta-population with high intraspecific genetic diversity and a potential to respond to these extreme conditions. The phenotypic and genotypic features of these strains reveal the potential adaptation of S. liquefaciens to oligotrophic and nitrogen-limited mine tailings with high concentrations of heavy metals. These features include ammonia-oligotrophic growth, nitrogen fixation, siderophore and indoleacetic acid production, phosphate solubilization, biofilm formation, moderate tolerance to heavy metals under conditions of diverse nitrogen availability, and the presence of zntA, amtB, and nifH genes. The acetylene reduction assay suggests low nitrogen-fixing activity. The nifH gene was harbored in a plasmid of ∼60 kb and probably was acquired by a horizontal gene transfer event from Klebsiella variicola.
Collapse
Affiliation(s)
- Lily X Zelaya-Molina
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Luis M Hernández-Soto
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Jairo E Guerra-Camacho
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Ricardo Monterrubio-López
- Departamento de Ingeniería Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Alfredo Patiño-Siciliano
- Departamento de Botánica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n. Col. Sto. Tomás, 11340, Mexico, D.F., Mexico.
| |
Collapse
|
38
|
Zaheer A, Mirza BS, Mclean JE, Yasmin S, Shah TM, Malik KA, Mirza MS. Association of plant growth-promoting Serratia spp. with the root nodules of chickpea. Res Microbiol 2016; 167:510-20. [PMID: 27117242 DOI: 10.1016/j.resmic.2016.04.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 11/17/2022]
Abstract
Serratia species-affiliated DNA sequences have recently been discovered in the root nodules of two chickpea cultivars; however, little is known about their potential influence on chickpea plant growth. All Serratia-affiliated sequences (1136) could be grouped into two clusters at 98% DNA similarity. The major cluster, represented by 96% of sequences, was closely associated with Serratia marcescens sequences from GenBank. In the current study, we isolated two Serratia strains, 5D and RTL100, from root nodules of a field-grown Desi cultivar from Faisalabad and Thal areas, respectively. In vitro, strain 5D showed significantly higher phosphate (P) solubilization and lactic acid production than RTL100, whereas a comparable concentration of phytohormone was produced by both isolates. The application of Serratia strain 5D as an inoculum resulted in 25.55% and 30.85% increases in the grain yield of crops grown on fertile soil in irrigated areas and nutrient-deficient soil in rainfed areas, respectively, compared to the non-inoculated control. Results of plant inoculations indicated that Serratia sp. 5D and RTL100 can serve as effective microbial inoculants, particularly in nutrient-deficient soils in rainfed areas, where chickpea is the only major crop grown during the entire year.
Collapse
Affiliation(s)
- Ahmad Zaheer
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Babur S Mirza
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Joan E Mclean
- Utah Water Research Laboratory, Utah State University, Logan, UT, USA
| | - Sumera Yasmin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Tariq Mahmud Shah
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan; Nuclear Institute for Agriculture and Biology (NIAB), P.O. Box. 128, Faisalabad, Pakistan
| | - Kauser A Malik
- Department of Biological Sciences, Forman Christian College University, Lahore 54600, Pakistan
| | - M Sajjad Mirza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), P.O. Box 577, Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan.
| |
Collapse
|
39
|
Dhakar K, Pandey A. Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Appl Microbiol Biotechnol 2016; 100:2499-510. [PMID: 26780356 DOI: 10.1007/s00253-016-7285-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/28/2015] [Accepted: 12/29/2015] [Indexed: 12/20/2022]
Abstract
Microorganisms that inhabit the extreme pH environments are classified as acidophiles and alkaliphiles. A number of studies emerged from extreme high (hot springs, hydrothermal vents) as well as low temperature (arctic and antarctic regions, sea water, ice shelf, marine sediments, cold deserts, glaciers, temperate forests, and plantations) environments have highlighted the occurrence of microorganisms (thermophiles/psychrophiles) with the ability to tolerate wide pH range, from acidic to alkaline (1.5-14.0 in some cases), under laboratory conditions. However, the sampling source (soil/sediment) of these microorganisms showed the pH to be neutral or slightly acidic/alkaline. The aim of the present review is to discuss the phenomenon of wide pH range tolerance possessed by these microorganisms as a hidden character in perspective of their habitats, possible mechanisms, phylogeny, ecological and biotechnological relevance, and future perspectives. It is believed that the genome is a probable reservoir of the hidden variations. The extremophiles have the ability to adapt against the environmental change that is probably through the expression/regulation of the specific genes that were already present in the genome. The phenomenon is likely to have broad implications in biotechnology, including both environmental (such as bioremediation, biodegradation, and biocontrol), and industrial applications (as a source of novel extremozymes and many other useful bioactive compounds with wide pH range tolerance).
Collapse
Affiliation(s)
- Kusum Dhakar
- Biotechnological Applications, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India
| | - Anita Pandey
- Biotechnological Applications, G. B. Pant Institute of Himalayan Environment and Development, Kosi-Katarmal, Almora, 263 643, Uttarakhand, India.
| |
Collapse
|
40
|
Kaira GS, Dhakar K, Pandey A. A psychrotolerant strain of Serratia marcescens (MTCC 4822) produces laccase at wide temperature and pH range. AMB Express 2015; 5:92. [PMID: 26054732 PMCID: PMC4544649 DOI: 10.1186/s13568-014-0092-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 12/26/2014] [Indexed: 11/25/2022] Open
Abstract
A psychrotolerant bacterial strain of Serratia marcescens, originally isolated from a glacial site in Indian Himalayan Region (IHR), has been investigated for laccase production under different culture conditions. The bacterial strain was found to grow between 4 to 45°C (opt. 25°C) and 3 to 14 pH (opt. 5 pH) on prescribed growth medium, coinciding with production of laccase in laccase producing medium. However, the production of laccase was more consistent toward alkaline pH. Laccase enzyme was partially purified using gel filtration chromatography. The molecular mass of laccase was determined ~53 kDa on native PAGE. The Km and Vmax values were determined to be 0.10 mM and 50.00 μM min−1, respectively, with ABTS. Inoculum size (4.0% v/v at 1.5 O.D.) resulted in significantly higher production of laccase. Carbon and nitrogen sources also affected the laccase production significantly. All the carbon sources enhanced laccase production, xylose being the best enhancer (P < 0.01). Among nitrogen sources, organic sources were found to act as inhibitors (P < 0.01), and among the in-organic sources only sodium nitrate enhanced the laccase production. Low molecular weight organic solvents significantly (P < 0.01) enhanced laccase production up to 24 h of incubation with a decline in later incubation period. Production of laccase by the psychrotolerant bacterium in wide range of temperature and pH is likely to have inference in biotechnological processes.
Collapse
|
41
|
|
42
|
Soil Bacteria and Phytohormones for Sustainable Crop Production. BACTERIAL METABOLITES IN SUSTAINABLE AGROECOSYSTEM 2015. [DOI: 10.1007/978-3-319-24654-3_5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Li B, Yu R, Liu B, Tang Q, Zhang G, Wang Y, Xie G, Sun G. Characterization and comparison of serratia marcescens isolated from edible cactus and from silkworm for virulence potential and chitosan susceptibility. Braz J Microbiol 2013; 42:96-104. [PMID: 24031610 PMCID: PMC3768933 DOI: 10.1590/s1517-83822011000100013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 05/11/2010] [Accepted: 06/21/2010] [Indexed: 12/01/2022] Open
Abstract
Representative strains of Serratia marcescens from an edible cactus plant and silkworms were characterized and a comparison based on their cellular fatty acid composition, 16S rRNA and groE gene sequence analysis as well as silkworm virulence and chitosan susceptibility was carried out. Results from this study indicate that there are no significant differences between the phenotypic and molecular characterization, virulence and chitosan susceptibility of the S. marcescens strains from the cactus plant and silkworms. Silkworms inoculated with S. marcescens from either plant or silkworm resulted in nearly 100% mortality. Chitosan solution exhibited strong antibacterial activity against S. marcescens. This activity increased with the increase of chitosan concentration and incubation time regardless of the strain source. Also, the results indicate that the plant associated S. marcescens maybe plays a possible role in the contamination of humans and animals, in particular silkworms, while chitosan showed a potential to control the contamination caused by S. marcescens.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Biotechnology, Zhejiang University , Hangzhou 310029 , China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Petersen LM, Tisa LS. Friend or foe? A review of the mechanisms that driveSerratiatowards diverse lifestyles. Can J Microbiol 2013; 59:627-40. [DOI: 10.1139/cjm-2013-0343] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Found widespread around the globe, Serratia are Gram-negative bacteria capable of thriving in a diverse number of environments that include water, soil, and the digestive tracts of various animals. Known for their ability to produce a myriad of extracellular enzymes, these bacteria also produce various secondary metabolites that directly contribute to their survival. While the effects Serratia species have on other organisms range from parasitic to symbiotic, what these bacteria have in common is their ability to resist attack, respond appropriately to environmental conditions, and outcompete other microorganisms when colonizing their respective niche. This review highlights the mechanisms utilized by Serratia species that drive their ubiquitous nature, with emphasis on the latest findings. Also discussed is how secreted compounds drive these bacteria towards pathogenic, mutualistic, and antagonistic associations.
Collapse
Affiliation(s)
- Lauren M. Petersen
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| | - Louis S. Tisa
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, 46 College Road, Durham, NH 03824-2617, USA
| |
Collapse
|
45
|
Rock phosphate solubilization by psychrotolerant Pseudomonas spp. and their effect on lentil growth and nutrient uptake under polyhouse conditions. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-012-0594-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
46
|
Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J Microbiol Biotechnol 2012; 29:109-17. [DOI: 10.1007/s11274-012-1163-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/25/2012] [Indexed: 10/27/2022]
|
47
|
Shankar M, Ponraj P, Ilakkiam D, Gunasekaran P. Root colonization of a rice growth promoting strain of Enterobacter cloacae. J Basic Microbiol 2011; 51:523-30. [DOI: 10.1002/jobm.201000342] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 02/22/2011] [Indexed: 11/07/2022]
|
48
|
Mohan M, Selvakumar G, Sushil SN, Bhatt JC, Gupta HS. Entomopathogenicity of endophytic Serratia marcescens strain SRM against larvae of Helicoverpa armigera (Noctuidae: Lepidoptera). World J Microbiol Biotechnol 2011. [DOI: 10.1007/s11274-011-0724-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Plant growth promotion traits of phosphobacteria isolated from Puna, Argentina. Arch Microbiol 2011; 193:489-96. [PMID: 21442320 DOI: 10.1007/s00203-011-0692-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Revised: 11/18/2010] [Accepted: 02/28/2011] [Indexed: 10/18/2022]
Abstract
The ability of soil microorganisms to solubilize phosphate is an important trait of plant growth-promoting bacteria leading to increased yields and smaller use of fertilizers. This study presents the isolation and characterization of phosphobacteria from Puna, northwestern Argentina and the ability to produce phosphate solubilization, alkaline phosphatase, siderophores, and indole acetic acid. The P-solubilizing activity was coincidental with a decrease in pH values of the tricalcium phosphate medium for all strains after 72 h of incubation. All the isolates showed the capacity to produce siderophores and indoles. Identification by 16S rDNA sequencing and phylogenetic analysis revealed that these strains belong to the genera Pantoea, Serratia, Enterobacter, and Pseudomonas. These isolates appear attractive for exploring their plant growth-promoting activity and potential field application.
Collapse
|
50
|
Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 2010. [DOI: 10.1007/s11274-010-0572-7] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|