1
|
Sahin D, Kepekci RA, Türkmenoğlu B, Akkoc S. Biological evaluations and computational studies of newly synthesized thymol-based Schiff bases as anticancer, antimicrobial and antioxidant agents. J Biomol Struct Dyn 2025; 43:3375-3389. [PMID: 38147403 DOI: 10.1080/07391102.2023.2297813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/17/2023] [Indexed: 12/28/2023]
Abstract
Three new thymol-based molecules were synthesized and evaluated as anticancer, antimicrobial and antioxidant agents. Liver, colon, lung and prostate cancer cell lines were utilized in cytotoxicity tests. The results demonstrated that synthesized molecules had a cytotoxic effect against the screened cell lines. One of the molecules (4a) was found to have a higher efficacy towards the colon cancer cell line (DLD-1) with an IC50 value of 12.39 µM and the other (4c) towards the prostate cancer cell line (PC3) with an IC50 value of 7.67 µM than the positive control drug cisplatin. To assess the antimicrobial activity of molecules (4a-c), Gram-positive bacteria, Gram-negative bacteria and yeast were subjected to agar disc diffusion and broth microdilution assays. The investigation of antioxidant potential was conducted using the DPPH radical scavenging activity assay. While all compounds displayed strong cytotoxic and antioxidant properties, they exhibited only moderate antimicrobial activity. Molecular docking studies were performed on epidermal growth factor receptor (EGFR), vascular endothelial growth factor receptor 2 (VEGFR-2), focal adhesion kinase (FAK), B-Raf and phosphoinositide 3-kinase (PI3K). The binding energies and interactions obtained from the docking results of compounds (4a-c) supported the experimental results. Drug similarity rates and pharmacokinetic properties were analyzed with the absorption, distribution, metabolism and excretion (ADME) method. Geometric parameters such as chemical potential (µ), electrophilicity index (ω) and chemical softness (σ) of compounds (4a-c) were calculated using the 6-31*G basis set B3LYP method.
Collapse
Affiliation(s)
- Dicle Sahin
- Department of Pharmaceutical Research and Development, Institute of Health Sciences, Suleyman Demirel University, Isparta, Türkiye
| | | | - Burçin Türkmenoğlu
- Department of Analytical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Türkiye
| | - Senem Akkoc
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Suleyman Demirel University, Isparta, Türkiye
- Faculty of Engineering and Natural Sciences, Bahçeşehir University, Istanbul, Türkiye
| |
Collapse
|
2
|
Kim YJ, Kim BG, Chun YG, Kim HR, Woo SH, Choi YS, Kim BK. Effect of astaxanthin and carvacrol co-encapsulated emulsion and chitosan on the physicochemical, rheological, and antimicrobial properties in nitrite-free meat spread. Food Chem 2025; 469:142605. [PMID: 39798245 DOI: 10.1016/j.foodchem.2024.142605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025]
Abstract
The quality and safety of meat products are critical concerns in the food industry, and consumer demand for clean-label products is increasing. To meet these needs, this study aimed to develop a nitrite-free meat spread using an astaxanthin (0.04 wt%) and carvacrol (15 wt%) co-encapsulated emulsion (AE) and chitosan. Thermal stability and antimicrobial activity of prepared AE were evaluated. Nitrite-free meat spreads were formulated by adding astaxanthin and carvacrol-containing oil (AO), AE, and/or chitosan, and physicochemical, rheological, and antimicrobial properties were assessed. Adding AE, and/or 1 % chitosan improved the physicochemical and antimicrobial properties of the meat spreads. AE increased the unsaturated fatty acid content, improved redness, reduced cooking loss, and enhanced emulsion stability. Microsurface and rheological analyses revealed a more uniform fat/oil distribution and lower textural values in samples containing AE. AE and/or chitosan also enhanced microbiological stability. Correlation analysis suggested that AE and/or chitosan could effectively replace nitrite.
Collapse
Affiliation(s)
- Yun Jeong Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Bo-Gyeong Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yong-Gi Chun
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Ha Ram Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Seung-Hye Woo
- Korea Food Research Institute, Wanju 55365, Republic of Korea
| | - Yun-Sang Choi
- Korea Food Research Institute, Wanju 55365, Republic of Korea.
| | - Bum-Keun Kim
- Korea Food Research Institute, Wanju 55365, Republic of Korea; Department of Food Biotechnology, University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
3
|
Wanmolee W, Kraithong W, Phanthasri J, Pipattanaporn P, Samun Y, Youngjan S, Yodsin N, Saengsrichan A, Treetong A, Phawa C, Pakawanit P, Fuangnawakij K, Laurenti D, Geantet C, Sakdaronnarong C, Khemthong P, Sukrong S. Structural properties and sustained antimicrobial activity of thymol-loaded cellulose nanofibers from one-pot synthesis via in situ dynamic microfluidization. Int J Biol Macromol 2025; 306:141712. [PMID: 40043968 DOI: 10.1016/j.ijbiomac.2025.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/15/2025] [Accepted: 03/02/2025] [Indexed: 03/09/2025]
Abstract
The physicochemical properties of cellulose nanofibers (CNFs) are significantly influenced by their production methods and surface modifications. This study presents an eco-friendly approach for synthesizing CNFs impregnated with thymol via a single-step in-situ dynamic high-pressure microfluidization process. Optimal conditions for preserving the intrinsic structure and desirable properties of CNFs were explored using various ethanol-water ratios with thymol. The physicochemical properties and characteristics of CNFs were analyzed using advanced techniques. Thymol-impregnated CNFs at an ethanol-to-water ratio of 10:90 (E10W90) demonstrated a sustained cumulative release of up to 27.5 % over 50 h and complete inhibition of bacterial growth within 3 h against S. aureus and E. coli. Density functional theory analysis indicated that thymol adsorption onto the CNF surface is facilitated by hydrogen bonding. This investigation proposes a novel, energy-efficient method for thymol impregnation, achieving prolonged antimicrobial activity without complex surface modifications.
Collapse
Affiliation(s)
- Wanwitoo Wanmolee
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok 10800, Thailand; Center of Eco-Materials and Cleaner Technology, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Wasawat Kraithong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jakkapop Phanthasri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pornnapa Pipattanaporn
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Yodsagon Samun
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand
| | - Saran Youngjan
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry, Faculty of Science, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Aphinan Saengsrichan
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Alongkot Treetong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chaiyasit Phawa
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Phakkhananan Pakawanit
- Synchrotron Research and Applications Division, Synchrotron Light Research Institute (Public Organization), Nakhon Ratchasima 30000, Thailand
| | - Kajornsak Fuangnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Dorothée Laurenti
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256, CNRS-Université Claude Bernard Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Christophe Geantet
- Institut de recherches sur la catalyse et l'environnement de Lyon (IRCELYON), UMR 5256, CNRS-Université Claude Bernard Lyon1, 2 av. Albert Einstein, 69626 Villeurbanne Cedex, France
| | - Chularat Sakdaronnarong
- Department of Chemical Engineering, Faculty of Engineering, Mahidol University, 25/25 Putthamonthon 4 Road, Salaya, Putthamonthon, Nakhon Pathom 73170, Thailand
| | - Pongtanawat Khemthong
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand.
| | - Suchada Sukrong
- Center of Excellence in DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 103300, Thailand.
| |
Collapse
|
4
|
Tran JS, Ward RD, Iruegas-López R, Ebersberger I, Peters JM. Chemical genomics informs antibiotic and essential gene function in Acinetobacter baumannii. PLoS Genet 2025; 21:e1011642. [PMID: 40153700 PMCID: PMC11975115 DOI: 10.1371/journal.pgen.1011642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/07/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025] Open
Abstract
The Gram-negative pathogen, Acinetobacter baumannii, poses a serious threat to human health due to its role in nosocomial infections that are resistant to treatment with current antibiotics. Despite this, our understanding of fundamental A. baumannii biology remains limited, as many essential genes have not been experimentally characterized. These essential genes are critical for bacterial survival and, thus, represent promising targets for drug discovery. Here, we systematically probe the function of essential genes by screening a CRISPR interference knockdown library against a diverse panel of chemical inhibitors, including antibiotics. We find that most essential genes show chemical-gene interactions, allowing insights into both inhibitor and gene function. For instance, knockdown of lipooligosaccharide (LOS) transport genes increased sensitivity to a broad range of chemicals. Cells with defective LOS transport showed cell envelope hyper-permeability that was dependent on continued LOS synthesis. Using phenotypes across our chemical-gene interaction dataset, we constructed an essential gene network linking poorly understood genes to well-characterized genes in cell division and other processes. Finally, our phenotype-structure analysis identified structurally related antibiotics with distinct cellular impacts and suggested potential targets for underexplored inhibitors. This study advances our understanding of essential gene and inhibitor function, providing a valuable resource for mechanistic studies, therapeutic strategies, and future key targets for antibiotic development.
Collapse
Affiliation(s)
- Jennifer Suzanne Tran
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan David Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Genetics Training Program, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Rubén Iruegas-López
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Institute of Cell Biology and Neuroscience, Goethe University, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| | - Jason Matthew Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
5
|
Yang S, Su P, Li L, Liu S, Wang Y. Advances and mechanisms of traditional Chinese medicine and its active ingredients against antibiotic-resistant Escherichia coli infections. J Pharm Anal 2025; 15:101117. [PMID: 40026356 PMCID: PMC11871446 DOI: 10.1016/j.jpha.2024.101117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/28/2024] [Accepted: 09/30/2024] [Indexed: 03/05/2025] Open
Abstract
In clinical practice, antibiotics have historically been utilized for the treatment of pathogenic bacteria. However, the gradual emergence of antibiotic resistance among bacterial strains has posed a significant challenge to this approach. In 2022, Escherichia coli, a Gram-negative bacterium renowned for its widespread pathogenicity and high virulence, emerged as the predominant pathogenic bacterium in China. The rapid emergence of antibiotic-resistant E. coli strains has rendered antibiotics insufficient to fight E. coli infections. Traditional Chinese medicine (TCM) has made remarkable contributions to the health of Chinese people for thousands of years, and its significant therapeutic effects have been proven in clinical practice. In this paper, we provide a comprehensive review of the advances and mechanisms of TCM and its active ingredients against antibiotic-resistant E. coli infections. First of all, this review introduces the classification, antibiotic resistance characteristics and mechanisms of E. coli. Then, the TCM formulas and extracts are listed along with their active ingredients against E. coli, including extraction solution, minimum inhibitory concentration (MIC), and the antibacterial mechanisms. In addition, there is growing evidence supporting the synergistic therapeutic strategy of combining TCM with antibiotics for the treatment of antibiotic-resistant E. coli infections, and we provide a summary of this evidence and its underlying mechanisms. In conclusion, we present a comprehensive review of TCM and highlight its potential and advantages in the prevention and treatment of E. coli infections. We hold the opinion that TCM will play an important role in global health, pharmaceutical development, and livestock farming in the future.
Collapse
Affiliation(s)
- Shuo Yang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ping Su
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lu Li
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuang Liu
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yi Wang
- Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| |
Collapse
|
6
|
Fratini F, Pecorini C, Resci I, Copelotti E, Nocera FP, Najar B, Mancini S. Evaluation of the Synergistic Antimicrobial Activity of Essential Oils and Cecropin A Natural Peptide on Gram-Negative Bacteria. Animals (Basel) 2025; 15:282. [PMID: 39858282 PMCID: PMC11760479 DOI: 10.3390/ani15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In an era dominated by the phenomenon of antibiotic resistance, it is increasingly important to look for alternatives to synthetic antibiotics. In light of these considerations, the synergistic use of essential oils and Antimicrobial Peptides (AMPs) seems a viable strategy. In this study, we assessed the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Fractional Inhibitory Concentration (FIC) of three Essential Oils (EOs): winter savory (Satureja montana), bergamot (Citrus bergamia) and cinnamon (Cinnamomum zeylanicum) and of the insect antimicrobial peptide Cecropin A (CecA), alone and in combination with EOs, against two Gram-negative ATCC bacterial strains: Escherichia coli and Salmonella enterica serovar Typhimurium. The MIC results showed that winter savory EO (SmEO) and cinnamon EO (CzEO) exhibited the strongest antibacterial activity against both bacterial strains, whereas bergamot EO (CbEO) and CecA demonstrated comparatively lower antibacterial efficacy. These results were also confirmed by the MBC values. The FIC Indices (FICI) revealed that the most effective synergies were observed with the combinations SmEO/CzEO and SmEO/CbEO against E. coli, while against S. enterica Typhimurium the best combinations were CbEO/CzEO and SmEO/CzEO. Regarding CecA, although it was not the most efficient agent either individually or in combination, it is noteworthy that, when combined, it exhibited antibacterial activity even at a 1:64 dilution.
Collapse
Affiliation(s)
- Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Chiara Pecorini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Emma Copelotti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Basma Najar
- RD3—Pharmacognosy, Bioanalysis & Drug Discovery Unit, Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Free University of Brussels, Campus Plaine, Blvd Triomphe, CP 205/5, B-1050 Brussels, Belgium;
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| |
Collapse
|
7
|
Lakes JE, Ramos LI, Cardenas ML, Mast NL, Flythe MD. Effects of phyto-phenolic compounds on ammonia production by select amino acid fermenting bacteria. FEMS Microbiol Lett 2025; 372:fnaf018. [PMID: 39914460 DOI: 10.1093/femsle/fnaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
Bacteria that ferment amino acids to ammonia can be categorized as generalists or specialist hyper-ammonia-producing bacteria. In the rumens of ruminant animals, most of the ammonia produced is eventually excreted as urea in urine. This process can be controlled with off-label use of antibiotics, but the practice can lead to antibiotic resistance; therefore, discovery of antibiotic alternatives is pertinent. Plant-derived phenolic compounds have demonstrated antimicrobial efficacy for such purposes. This study investigated the antimicrobial and metabolic suppressive potential of six phenolic compounds on five amino acid fermenting bacteria: Clostridium sporogenes MD1, C. aminophilum F, Acetoanaerobium sticklandii SR, Peptostreptococcus sp. BG1, and Prevotella bryantii B14. Inhibitory action of the compounds was determined using a 10% v/v serial dilution method in basal media. Carvacrol (1 mM), thymol (1 mM), and eugenol (10 mM) demonstrated the greatest antimicrobial potential, where carvacrol and eugenol inhibited growth of all five species and thymol four species except BG1. The cinnamic acids (trans and hydro) demonstrated variable activity against all organisms. Suppression of metabolic activity was determined via colorimetric assay quantifying ammonia in washed stationary phase culture supernatant after 24 h of metabolism on fresh substrate. Carvacrol and eugenol yielded the greatest reduction of ammonia by all organisms except B14, which produced no ammonia under the growth conditions. Thymol greatly reduced ammonia production of four organisms except F. These data demonstrate that eugenol, carvacrol, and thymol may be worthy antimicrobial candidates for the control of ammonia-producing organisms.
Collapse
Affiliation(s)
- Jourdan E Lakes
- USDA Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, Kentucky, United States of America, 40546, KY
| | - Leah I Ramos
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, Texas, United States of America, 78363, TX
| | - Maedean L Cardenas
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, Texas, United States of America, 78363, TX
| | - Natasha L Mast
- Department of Animal Science and Veterinary Technology, Texas A&M University-Kingsville, Kingsville, Texas, United States of America, 78363, TX
| | - Michael D Flythe
- USDA Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, Kentucky, United States of America, 40546, KY
- Department of Animal and Food Sciences, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, United States of America, 40546, KY
| |
Collapse
|
8
|
Santos MKR, Seghetto R, Hauptli L, Paiano D, da Silva AS, Benetti Filho V, Wagner G, de Oliveira Moraes P. Blended phytogenics as an alternative to growth-promoting antibiotics in newly weaned piglets. Trop Anim Health Prod 2024; 57:5. [PMID: 39710793 DOI: 10.1007/s11250-024-04225-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/29/2024] [Indexed: 12/24/2024]
Abstract
The research aimed to evaluate the effects of a commercial blend of phytogenic compounds on the digestibility, antioxidant system, intestinal microbiota, and performance of weaned piglets. Two experiments compared three treatments (diets): control, zinc bacitracin (300 g/t) and blended phytogenic compounds (400 g/t). The first experiment analised of digestibility of the dry matter, organic matter, crude protein, crude energy and metabolizable energy, in addition to blood parameters and gut microbiota in 15 piglets commercial cross-bred, weaned at 28 days of age, castrated males, weighing 9.40 ± 0.622 kg housed in metabolic cages. In the second experiment, performance was evaluated on 108 piglets commercial cross-bred, weaned at 26 days of age, females and castrated males, weighing 7.52 ± 0.356 kg housed in collective stalls with 1,5 m² (3 animals/stall). A completely randomized design was used. The data were subjected to analysis of variance, and the means compared by the Tukey test at 5% significance. There were no differences in piglet digestibility and performance. There was a reduction in the levels of the enzyme superoxide dismutase, lipid peroxidation, and haptoglobulin, and an increase in the levels of the non-protein thiol compound and IgA for the animals receiving the phytogenic compound when compared with the piglets of the other treatments (p < 0.05). A tendency in diversity was observed in the intestinal microbiota of piglets receiving the phytogenic compound in the feed (p = 0.054). Due to its important role in the antioxidant system and intestinal microbiota, it is suggested that the blend of phytogenic additives can replace antibiotics growth promoters in the diet of newly weaned piglets.
Collapse
Affiliation(s)
- Manoela Karolina Ribeiro Santos
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Ronaldo Seghetto
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Lucélia Hauptli
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Diovani Paiano
- Universidade do Estado de Santa Catarina, Beloni Trombeta Zanin 680E - Santo Antônio, Chapecó, 89815-630, SC, Brazil
| | - Aleksandro Schafer da Silva
- Universidade do Estado de Santa Catarina, Beloni Trombeta Zanin 680E - Santo Antônio, Chapecó, 89815-630, SC, Brazil
| | - Vilmar Benetti Filho
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Glauber Wagner
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil
| | - Priscila de Oliveira Moraes
- Centro de Ciências Agrárias-CCA, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346 - Itacorubi, Florianopolis, SC, 88034-000, Brazil.
| |
Collapse
|
9
|
Hofmeisterová L, Bajer T, Walczak M, Šilha D. Chemical Composition and Antibacterial Effect of Clove and Thyme Essential Oils on Growth Inhibition and Biofilm Formation of Arcobacter spp. and Other Bacteria. Antibiotics (Basel) 2024; 13:1232. [PMID: 39766622 PMCID: PMC11672449 DOI: 10.3390/antibiotics13121232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/13/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Background: In recent years, significant resistance of microorganisms to antibiotics has been observed. A biofilm is a structure that significantly aids the survival of the microbial population and also significantly affects its resistance. Methods: Thyme and clove essential oils (EOs) were subjected to chemical analysis using gas chromatography coupled to mass spectrometry (GC-MS) and gas chromatography with a flame ionization detector (GC-FID). Furthermore, the antimicrobial effect of these EOs was tested in both the liquid and vapor phases using the volatilization method. The effect of the EOs on growth parameters was monitored using an RTS-8 bioreactor. However, the effect of the EOs on the biofilm formation of commonly occurring bacteria with pathogenic potential was also monitored, but for less described and yet clinically important strains of Arcobacter spp. Results: In total, 37 and 28 compounds were identified in the thyme and clove EO samples, respectively. The most common were terpenes and also derivatives of phenolic substances. Both EOs exhibited antimicrobial activity in the liquid and/or vapor phase against at least some strains. The determined antimicrobial activity of thyme and clove oil was in the range of 32-1024 µg/mL in the liquid phase and 512-1024 µg/mL in the vapor phase, respectively. The results of the antimicrobial effect are also supported by similar conclusions from monitoring growth curves using the RTS bioreactor. The effect of EOs on biofilm formation differed between strains. Biofilm formation of Pseudomonas aeruginosa was completely suppressed in an environment with a thyme EO concentration of 1024 µg/mL. On the other hand, increased biofilm formation was found, e.g., in an environment of low concentration (1-32 µg/mL). Conclusions: The potential of using natural matrices as antimicrobials or preservatives is evident. The effect of these EOs on biofilm formation, especially Arcobacter strains, is described for the first time.
Collapse
Affiliation(s)
- Leona Hofmeisterová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Tomáš Bajer
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| | - Maciej Walczak
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100 Toruń, Poland;
| | - David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic;
| |
Collapse
|
10
|
Sakthivel S, Thangavel P, Saravanakumar I, Muthuvijayan V. Fabrication of Thymol-loaded Isabgol/Konjac Glucomannan-based Microporous Scaffolds with Enriched Antioxidant and Antibacterial Properties for Skin Tissue Engineering Applications. Chem Asian J 2024; 19:e202400839. [PMID: 39340792 DOI: 10.1002/asia.202400839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/30/2024]
Abstract
An antioxidant, antibacterial, and biocompatible biomaterial is essential to repair skin wounds effectively. Here, we have employed two natural biopolymers, isabgol (ISAB) and konjac glucomannan (KGM), to prepare microporous scaffolds by freezing and lyophilization. The scaffolds are loaded with thymol (THY) to impart potent antioxidant and antibacterial activities. The physicochemical properties of the ISAB+KGM+THY scaffold, like porosity (41.8±2.4 %), swelling, and biodegradation, were optimal for tissue regeneration application. Compared to the control, ISAB+KGM+THY scaffolds promote attachment, migration, and proliferation of L929 fibroblasts. The antioxidant activity of the ISAB+KGM+THY scaffold was significantly improved after loading THY. This would protect the tissues from oxidative damage. The antibacterial activity of the ISAB+KGM+THY scaffold was significantly higher than that of the control, which would help prevent bacterial infection. The vascularization ability of the ISAB+KGM scaffold was not altered by incorporating THY in the ISAB+KGM scaffold. Therefore, a strong antioxidant, antibacterial, and biocompatible nature of the ISAB+KGM+THY scaffold could be useful for various biomedical applications.
Collapse
Affiliation(s)
- Shruthi Sakthivel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Ponrasu Thangavel
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Iniyan Saravanakumar
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Vignesh Muthuvijayan
- Tissue Engineering and Biomaterials Laboratory, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
11
|
Tran JS, Ward RD, Iruegas-López R, Ebersberger I, Peters JM. Chemical genomics informs antibiotic and essential gene function in Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627103. [PMID: 39677645 PMCID: PMC11643038 DOI: 10.1101/2024.12.05.627103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The Gram-negative pathogen, Acinetobacter baumannii , poses a serious threat to human health due to its role in nosocomial infections that are resistant to treatment with current antibiotics. Despite this, our understanding of fundamental A. baumannii biology remains limited, as many essential genes have not been experimentally characterized. These essential genes are critical for bacterial survival and, thus, represent promising targets for drug discovery. Here, we systematically probe the function of essential genes by screening a CRISPR interference knockdown library against a diverse panel of chemical inhibitors, including antibiotics. We find that most essential genes show chemical-gene interactions, allowing insights into both inhibitor and gene function. For instance, knockdown of lipooligosaccharide (LOS) transport genes increased sensitivity to a broad range of chemicals. Cells with defective LOS transport showed cell envelope hyper-permeability that was dependent on continued LOS synthesis. Using phenotypes across our chemical-gene interaction dataset, we constructed an essential gene network linking poorly understood genes to well-characterized genes in cell division and other processes. Finally, our phenotype-structure analysis identified structurally related antibiotics with distinct cellular impacts and suggested potential targets for underexplored inhibitors. This study advances our understanding of essential gene and inhibitor function, providing a valuable resource for mechanistic studies, therapeutic strategies, and future key targets for antibiotic development.
Collapse
|
12
|
Meijer MMY, Brand HVD, Palmieri C, Niknafs S, Khaskheli AA, Roura E. Early-life immunomodulation by carvacrol delivered in ovo in broiler chickens. Poult Sci 2024; 103:104286. [PMID: 39326180 PMCID: PMC11470485 DOI: 10.1016/j.psj.2024.104286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
In the first 2 wk after hatching, broiler chickens are vulnerable to enteric pathogens due to underdeveloped gastrointestinal and immune systems. Carvacrol has been reported to improve digestive and immune functions. This study aimed to optimize immune development of broiler chickens by delivering carvacrol in ovo. Effects of 2 in ovo treatments delivered at embryonic day (E)17.5 (saline or carvacrol) were evaluated at 3 stages (E19.5, hatch, and d 14 posthatch). Hatchability, performance parameters, lymphoid organ and yolk sac weights were determined. Histomorphology assessment was performed for jejunal samples at hatch and bursa of Fabricius samples at hatch and d 14. Gene expression of immune-relevant genes was determined for jejunal, bursal, and yolk sac samples over time. At hatch, BW was 0.85% lower (P = 0.02) after in ovo carvacrol delivery compared to the controls. Interactions between in ovo treatment and age were found for gene expression. At hatch, carvacrol treatment resulted in lower expression of proinflammatory cytokines IL-8 and IFN-γ in the yolk sac compared to the controls (P = 0.05 and < .001, respectively) suggesting a potential role for carvacrol-mediated immune modulation. At d 14, carvacrol treatment led to lower expression of proinflammatory cytokine IL-6 in the bursa compared to the controls (P = 0.002). In ovo carvacrol delivery led to bursal histomorphometric changes, including a larger cortex in the bursal follicles (P = 0.03), and a higher cortex/medulla ratio (P = 0.04) compared to the controls, indicating increased B-cell stimulation and maturation. Main effects were found for carvacrol treatment in the jejunum, with overall higher expression of proinflammatory mediators IL-1β and NF-κB, and anti-inflammatory IL-10 compared to the controls (P = 0.04, 0.02, and 0.02 respectively) from E19.5 to d 14. Age-related main effects showed various alterations in expression dynamics of immune-related genes across all tissues over time. Our findings suggest changes in immune parameters occur as the chicken develops, but these mostly do not interact with in ovo carvacrol treatment. In ovo carvacrol treatment alters immune activity of broiler chickens independent of age.
Collapse
Affiliation(s)
- Mila M Y Meijer
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Henry van den Brand
- Department of Animal Sciences, Adaptation Physiology Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Chiara Palmieri
- School of Veterinary Science, University of Queensland, Brisbane, Australia
| | - Shahram Niknafs
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Asad A Khaskheli
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia
| | - Eugeni Roura
- Centre for Animal Science and Centre for Nutrition and Food Sciences, Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, Australia.
| |
Collapse
|
13
|
Sulaiman M, Ebehairy L, Nissapatorn V, Rahmatullah M, Villegas J, Dupa HJ, Verzosa RC, Dolma KG, Shabaz M, Lanting S, Rusdi NA, Abdullah NH, Bin Break MK, Khoo T, Wang W, Wiart C. Antibacterial phenolic compounds from the flowering plants of Asia and the Pacific: coming to the light. PHARMACEUTICAL BIOLOGY 2024; 62:713-766. [PMID: 39392281 PMCID: PMC11486068 DOI: 10.1080/13880209.2024.2407530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024]
Abstract
CONTEXT The emergence of pan-resistant bacteria requires the development of new antibiotics and antibiotic potentiators. OBJECTIVE This review identifies antibacterial phenolic compounds that have been identified in Asian and Pacific Angiosperms from 1945 to 2023 and analyzes their strengths and spectra of activity, distributions, molecular masses, solubilities, modes of action, structures-activities, as well as their synergistic effects with antibiotics, toxicities, and clinical potential. METHODS All data in this review was compiled from Google Scholar, PubMed, Science Direct, Web of Science, and library search; other sources were excluded. We used the following combination of keywords: 'Phenolic compound', 'Plants', and 'Antibacterial'. This produced 736 results. Each result was examined and articles that did not contain information relevant to the topic or coming from non-peer-reviewed journals were excluded. Each of the remaining 467 selected articles was read critically for the information that it contained. RESULTS Out of ∼350 antibacterial phenolic compounds identified, 44 were very strongly active, mainly targeting the cytoplasmic membrane of Gram-positive bacteria, and with a molecular mass between 200 and 400 g/mol. 2-Methoxy-7-methyljuglone, [6]-gingerol, anacardic acid, baicalin, vitexin, and malabaricone A and B have the potential to be developed as antibacterial leads. CONCLUSIONS Angiosperms from Asia and the Pacific provide a rich source of natural products with the potential to be developed as leads for treating bacterial infections.
Collapse
Affiliation(s)
- Mazdida Sulaiman
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Layane Ebehairy
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology, University of Development Alternative, Dhaka, Bangladesh
| | - Jhonnel Villegas
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Helina Jean Dupa
- Faculty of Education and Teacher Training, Davao Oriental State University, Mati, Philippines
| | - Ricksterlie C. Verzosa
- Faculty of Agriculture and Life Science, Davao Oriental State University, Mati, Philippines
| | - Karma G. Dolma
- Department of Microbiology, Sikkim Manipal University, Gangtok, India
| | - Muhamad Shabaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Scholastica Lanting
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Azizun Rusdi
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Nor Hayati Abdullah
- Natural Product Division, Forest Research Institute of Malaysia, Kepong, Malaysia
| | - Mohammed Khaled Bin Break
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Ha’il, Ha’il, Saudi Arabia
| | - Teng Jin Khoo
- School of Pharmacy, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Christophe Wiart
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| |
Collapse
|
14
|
Truschi S, Marini L, Cacciari I, Baldi A, Bruschi P, Lenzi A, Baales J, Zeisler-Diehl VV, Schreiber L, Marvasi M. Relationship between Salmonella enterica attachment and leaf hydrophobicity, roughness, and epicuticular waxes: a focus on 30 baby-leaf salads. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9287-9296. [PMID: 39030951 DOI: 10.1002/jsfa.13751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/23/2024] [Accepted: 07/04/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND The first step in the contamination of leafy vegetables by human pathogens is their attachment to the leaf surface. The success of this is influenced strongly by the physical and chemical characteristics of the surface itself (number and size of stomata, presence of trichomes and veins, epicuticular waxes, hydrophobicity, etc.). This study evaluated the attachment of Salmonella enterica to 30 baby-leaf salads and tested whether the differences found among them were related to the following leaf traits: hydrophobicity, roughness, and epicuticular waxes. RESULTS Differences in susceptibility to contamination by S. enterica were found between the 30 baby-leaf salads investigated. The lowest attachment was found in wild lettuce (Lactuca serriola L.) and lamb's lettuce 'Trophy F1' (Valerianella locusta [L.] Laterr.), with values of 1.63 ± 0.39 Log(CFU/cm2) and 1.79 ± 0.54 Log(CFU/cm2), respectively. Attachment was correlated with hydrophobicity (measured as contact angle) (r = -0.39) and epicuticular waxes (r = -0.81) but not with roughness (r = 0.24). The most important wax components for attachment were alcohols and, in particular, the three-dimensional (3D) wax crystals of C26 alcohol, but fatty acids probably also had a role. Both these compounds increased hydrophobicity. The presence of thymol, whose antimicrobial properties are well known, was found in lamb's lettuce. CONCLUSIONS The findings of this study can help to predict and control the attachment and contamination of leafy salads by enterobacteria. They also provide useful information for breeding programs aiming to develop cultivars that are less susceptible to human pathogens, enhancing the food safety of vegetables. © 2024 The Author(s). Journal of the Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Stefania Truschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Lorenzo Marini
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ilaria Cacciari
- CNR, Institute of Applied Physics 'Nello Carrara', Sesto Fiorentino, Italy
| | - Ada Baldi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Piero Bruschi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Anna Lenzi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Johanna Baales
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Bonn, Germany
| | | | - Lukas Schreiber
- Institute of Cellular and Molecular Botany (IZMB), University of Bonn, Bonn, Germany
| | | |
Collapse
|
15
|
Alimohammadi Z, Shirzadi H, Taherpour K, Rahmatnejad E, Khatibjoo A. Effects of cinnamon, rosemary and oregano on growth performance, blood biochemistry, liver enzyme activities, excreta microbiota and ileal morphology of Campylobacter jejuni-challenged broiler chickens. Vet Med Sci 2024; 10:e70034. [PMID: 39294894 PMCID: PMC11410678 DOI: 10.1002/vms3.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/12/2024] [Accepted: 08/23/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Phytogenic additives would be helpful to mitigate the detrimental impact of Campylobacter jejuni on broiler chickens. OBJECTIVE The experiment aimed to assess the effects of cinnamon, rosemary and oregano powder on physiological responses of broiler chickens challenged with C. jejuni from 0 to 42 days of age. METHODS A total of 192 one-day-old male broiler chickens were divided into 6 treatment groups. The treatments included: negative control (NC; basal diet without additives and no C. jejuni challenge), positive control (PC; basal diet with C. jejuni challenge), PC with cinnamon, rosemary or oregano powder (3 g/kg each), and PC with Erythromycin (55 mg/kg). Except for the NC group, all chicks were orally challenged with 2 × 108 CFU/mL C. jejuni daily from days 21-25. Feed intake, body weight gain (BWG), feed conversion ratio (FCR), energy efficiency ratio (EER) and protein efficiency ratio (PER) were assessed during the rearing period (0-42 days). On day 42 of age, fresh excreta samples were collected from each pen to determine apparent dry matter digestibility and excreta microbiota. In addition, at the end of the experiment, blood samples were collected to evaluate blood profile and liver enzyme activities. RESULTS C. jejuni challenge (PC treatment) decreased BWG, EER and PER, while increasing FCR of broiler chickens (p < 0.05), whereas rosemary, oregano and Erythromycin improved these performance parameters akin to NC. PC diet showed negative effect in ileal morphology, alleviated by additives except cinnamon (p < 0.05). Dietary additives successfully reduced Campylobacter levels and increased Lactobacilli counts in the PC. Rosemary and oregano lowered plasma total cholesterol (p < 0.05). Alanine aminotransferase elevation by C. jejuni challenge in the PC group was prevented by rosemary, oregano and Erythromycin (p < 0.05). CONCLUSIONS Oregano and rosemary alleviate the impact of C. jejuni challenge.
Collapse
Affiliation(s)
- Zahra Alimohammadi
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Hassan Shirzadi
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Kamran Taherpour
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| | - Enayat Rahmatnejad
- Department of Animal ScienceFaculty of Agriculture and Natural ResourcesPersian Gulf UniversityBushehrIran
| | - Ali Khatibjoo
- Department of Animal ScienceFaculty of AgricultureIlam UniversityIlamIran
| |
Collapse
|
16
|
Zhang Y, Feng T, Zhou X, Zhang Z. Photoelectrocatalytic-Microbial Biohybrid for Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407239. [PMID: 39233547 DOI: 10.1002/adma.202407239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Nitrogen (N2) conversion to ammonia (NH3) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH3 synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N2 fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH3 production yield of 1.85 µmol h-1/108 cells (4.14 µmol h-1 cm-2). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH3 synthesis. The enhancement mechanism of NH3 synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.
Collapse
Affiliation(s)
- Yingjie Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Tianhang Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
17
|
Liu Q, Li L, Yang Z, Xiong X, Song Q, Li B, Zou H, Zhang L, Liu T. Antifungal Effect of Oregano Essential Oil Against Penicillium expansum on Pyrus sinkiangensis. J Fungi (Basel) 2024; 10:752. [PMID: 39590672 PMCID: PMC11595797 DOI: 10.3390/jof10110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Given the increasing demand for fruit safety assurance and environmental protection, plant essential oils have gained significant attention as natural alternatives for control of postharvest decay caused by various pathogens. In postharvest management, it is particularly important to effectively control postharvest decay without compromising the quality attributes of fruits. Although oregano essential oil (OEO) has been extensively studied for its antimicrobial properties against various postharvest pathogens, few studies have focused on its interactions with postharvest fruits. In this study, OEO was applied for management of postharvest decay of Pyrus sinkiangensis caused by Penicillium expansum, and its antifungal mechanisms and impacts on the quality attributes of pears were investigated. The OEO exhibited notable inhibitory effects, with determined MIC (0.02%) and MFC (0.04%) against P. expansum, which highlighted its potential as a viable alternative to synthetic fungicides. Our findings revealed that OEO disrupted P. expansum by compromising the integrity of the fungal plasma membrane, as evidenced by changes in plasma membrane permeability and the leakage of cellular components. The OEO treatment significantly reduced weight loss, maintained firmness, and preserved soluble-solid content in the treated pears. In addition, OEO treatment stimulated the intrinsic antioxidant mechanisms of pears, as demonstrated by elevated activities of superoxide dismutase and catalase during storage. This study provides compelling evidence for the antifungal and quality-preserving properties of OEO in the postharvest management of pears, underscoring its potential as an alternative to synthetic fungicides for controlling postharvest decay. The elucidation of the interaction between OEO and P. sinkiangensis would greatly enhance our comprehensive understanding of the biological activities of OEO and facilitate its practical application in the postharvest management of pears.
Collapse
Affiliation(s)
- Qun Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Li Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Zhenyuan Yang
- Liuzhou Quality Inspection and Testing Research Center, Liuzhou 545001, China
| | - Xiaodi Xiong
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Qi Song
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Baishu Li
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Hang Zou
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| | - Lixiang Zhang
- College of Advanced Agriculture and Ecological Environment, Hei Longjiang University, No. 74, Xuefu Road, Nangang District, Harbin 150080, China
| | - Tao Liu
- Chinese Academy of Inspection and Quarantine, No. A3, Gaobeidian North Road, Chaoyang District, Beijing 100123, China; (Q.L.)
- Technology Innovation Center of Animal and Plant Product Quality, Safety and Control, State Administration for Market Regulation, Beijing 100176, China
| |
Collapse
|
18
|
da Silva AT, Cândido AECM, Júnior EDCM, do É GN, Moura MPS, Souza RDFS, Guimarães ML, Peixoto RDM, de Oliveira HP, da Costa MM. Bactericidal and Synergistic Effects of Lippia origanoides Essential Oil and Its Main Constituents against Multidrug-Resistant Strains of Acinetobacter baumannii. ACS OMEGA 2024; 9:43927-43939. [PMID: 39493982 PMCID: PMC11525495 DOI: 10.1021/acsomega.4c07565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Bacterial resistance in Acinetobacter baumannii is a significant public health challenge, as these bacteria can evade multiple antibiotics, leading to difficult-to-treat infections with high mortality rates. As part of the search for alternatives, essential oils from medicinal plants have shown promising antibacterial potential due to their diverse chemical constituents. This study evaluated the antibacterial, antibiofilm, and synergistic activities of the essential oil of Lippia origanoides (EOLo) and its main constituents against multidrug-resistant clinical isolates of A. baumannii. Additionally, the antibacterial and antibiofilm potential of a nanoemulsion containing carvacrol (NE-CAR) was assessed. EOLo was extracted through hydrodistillation, and its components were identified via gas chromatography coupled with mass spectrometry. The A. baumannii isolates (n = 9) were identified and tested for antimicrobial susceptibility using standard disk diffusion methods. Antibacterial activity was determined by broth microdilution, while antibiofilm activity was measured using colorimetric methods with crystal violet and scanning electron microscopy. Synergism tests with antibiotics (meropenem, ciprofloxacin, gentamicin, and ampicillin+sulbactam) were performed using the checkerboard method. The primary constituents of EOLo included carvacrol (48.44%), p-cymene (14.58%), and thymol (10.16%). EOLo, carvacrol, and thymol demonstrated significant antibacterial activity, with carvacrol showing the strongest effect. They were also effective in reducing biofilm formation, as was NE-CAR. The combinations with antibiotics revealed significant synergistic effects, lowering the minimum inhibitory concentration of the tested antibiotics. Therefore, this study confirms the notable antibacterial activity of the essential oil of L. origanoides and its constituents, especially carvacrol, suggesting its potential as a therapeutic alternative for A. baumannii infections.
Collapse
Affiliation(s)
- Alisson T. da Silva
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Ana Elisa C. M. Cândido
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Edilson do C. M. Júnior
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Gutiele N. do É
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Marigilson P. S. Moura
- College
of Pharmaceutical Sciences (CFARM), Universidade
Federal do Vale do São Francisco (UNIVASF), Av. José de Sá Maniçoba, Centro, Petrolina, Pernambuco 56304-205, Brazil
| | - Renata de F. S. Souza
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Milena L. Guimarães
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Rodolfo de M. Peixoto
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| | - Helinando P. de Oliveira
- Laboratory
of Impedance Spectroscopy and Organic Materials, Institute of Materials
Science, Universidade Federal do Vale do
São Francisco (UNIVASF), Juazeiro, Bahia 48902-300, Brazil
| | - Mateus M. da Costa
- Animal
Microbiology and Immunology Laboratory, Universidade Federal do Vale do São Francisco (UNIVASF), Campus Agricultural Sciences, Petrolina, Pernambuco 56300-000, Brazil
| |
Collapse
|
19
|
Farhadi K, Rajabi E, Varpaei HA, Iranzadasl M, Khodaparast S, Salehi M. Thymol and carvacrol against Klebsiella: anti-bacterial, anti-biofilm, and synergistic activities-a systematic review. Front Pharmacol 2024; 15:1487083. [PMID: 39512827 PMCID: PMC11540684 DOI: 10.3389/fphar.2024.1487083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Klebsiella poses a significant global threat due to its high antibiotic resistance rate. In recent years, researchers have been seeking alternative antimicrobial agents, leading to the introduction of natural compounds such as monoterpenes, specifically thymol and carvacrol. This review aims to illustrate the potential antimicrobial, anti-biofilm, and synergistic traits of thymol and carvacrol in combat against Klebsiella. Methods Searching PubMed, Scopus, and Web of Science, we reviewed available evidence on the antibacterial effects of thymol, carvacrol, or combined with other compounds against Klebsiella until May 2024. Reference checking was performed after the inclusion of studies. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration (FIC), and anti-biofilm activity were gathered, and the MBC/MIC ratio was calculated to assess the bactericidal efficacy. Results We retrieved 38 articles out of 2,652 studies screened. The gathered data assessed the anti-microbial activity of thymol, carvacrol, and both compounds in 17, 10, and 11 studies, respectively. The mean (± standard deviation) non-weighted MIC was 475.46 μg/mL (±509.95) out of 60 MIC for thymol and 279.26 μg/mL (±434.38) out of 68 MIC for carvacrol. Thymol and carvacrol showed anti-biofilm activities in the forms of disruption, inhibition, and mass reduction of biofilms. The MBC/MIC ratio was lower than 4 in 45 out of 47 cases, showing high bactericidal efficacy. FIC values were gathered for 68 combinations of thymol and carvacrol with other compounds, and they were mostly synergistic or additive. Conclusion Thymol and carvacrol alone or in combination with other compounds, specifically known antibiotics, show great antimicrobial activity.
Collapse
Affiliation(s)
- Kousha Farhadi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Erta Rajabi
- Faculty of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Hesam Aldin Varpaei
- College of Nursing, Michigan State University, East Lansing, MI, United States
| | - Maryam Iranzadasl
- Department of Traditional Medicine, School of Persian Medicine, Shahed University, Tehran, Iran
| | - Sepideh Khodaparast
- Neuroscience Institute, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Mohammadreza Salehi
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Department of Infectious Diseases, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
20
|
Retnosari R, Ali AH, Zainalabidin S, Ugusman A, Oka N, Latip J. The recent discovery of a promising pharmacological scaffold derived from carvacrol: A review. Bioorg Med Chem Lett 2024; 109:129826. [PMID: 38830427 DOI: 10.1016/j.bmcl.2024.129826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Carvacrol, called CA, is a dynamic phytoconstituent characterized by a phenol ring abundantly sourced from various natural reservoirs. This versatile scaffold serves as a pivotal template for the design and synthesis of novel drug molecules, harboring promising biological activities. The active sites positioned at C-4, C-6, and the hydroxyl group (-OH) of CA offer fertile ground for creating potent drug candidates from a pharmacological standpoint. In this comprehensive review, we delve into diverse synthesis pathways and explore the biological activity of CA derivatives. We aim to illuminate the potential of these derivatives in discovering and developing efficacious treatments against a myriad of life-threatening diseases. By scrutinizing the structural modifications and pharmacophore placements that enhance the activity of CA derivatives, we aspire to inspire the innovation of novel therapeutics with heightened potency and effectiveness.
Collapse
Affiliation(s)
- Rini Retnosari
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry, Universitas Negeri Malang, Jl. Semarang No. 5 Malang, Indonesia
| | - Amatul Hamizah Ali
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Satirah Zainalabidin
- Programme of Biomedical Science, Centre for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, 50300 Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Natsuhisa Oka
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Jalifah Latip
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
21
|
Boukhira S, Amrati FEZ, Chebaibi M, Grafov A, Mothana RA, Al-Yousef HM, Bousta D. The chemical composition and the preservative, antimicrobial, and antioxidant effects of Thymus broussonetii Boiss. essential oil: an in vitro and in silico approach. Front Chem 2024; 12:1402310. [PMID: 39027726 PMCID: PMC11254817 DOI: 10.3389/fchem.2024.1402310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 04/30/2024] [Indexed: 07/20/2024] Open
Abstract
Introduction The aim of this study was to evaluate the antioxidant, antimicrobial, and preservative efficacy of Thymus broussonetii Boiss. essential oil (EO) in a topically applied formulation using a challenge test. Methods The essential oil was extracted from the aerial part of T. broussonetii using hydrodistillation, and the obtained EO was further analyzed by gas chromatography/mass spectrometry (GC/MS). The antioxidant effect of the EO was evaluated using three methods: the inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH), β-carotene-linoleic acid, and the ferric reducing antioxidant power (FRAP) methods. The antimicrobial activity and the minimum inhibitory concentration (MIC) of this EO were assayed by the disk-diffusion method and the broth microdilution method, respectively. The preservative efficacy of T. broussonetii EO was assayed at 1% and 2% (v/w) in a topical cream formulation using a challenge test against standard-specific microorganisms recommended by the European Pharmacopoeia. Furthermore, the identified phytochemical compounds were docked for their effect on nicotinamide adenine dinucleotide phosphate oxidase, human casein kinase 1 alpha 1 (CSNK1A1), glycogen synthase kinase 3, Staphylococcus aureus nucleoside diphosphate kinase, Escherichia coli beta-ketoacyl-[acyl-carrier protein] synthase, Pseudomonas aeruginosa LasR ligand-binding domain, and sterol 14-alpha demethylase (CYP51) from Candida albicans. The ADME/toxicity was predicted by analyzing the absorption, distribution, metabolism, and excretion parameters. Results and discussion chemical composition of the EO revealed the presence of thymol (63.09%), p-cymene (11%), and γ-terpinene (8.99%) as the major components. The antioxidant assays revealed that the essential oil exhibited strong antioxidant activity, as indicated by the minimum inhibitory concentration IC50 (IC50 = 210 ± 0.3 μg/mL for the DPPH assay, IC50 = 145 ± 0.1 μg/mL for the β-carotene assay, and IC50 = 84 ± 0.21 μg/mL for the FRAP assay) when compared to quercetin and butylated hydroxytoluene (BHT) as controls. The investigated essential oil exhibited important antimicrobial activity against all the tested microorganisms, and the MICs of the EO against bacteria and fungi were 0.02%-1%. Moreover, the EO of T. broussonetii evaluated at 2% (v/w) in a cream formulation succeeded in satisfying the A criteria for preservation efficacy against S. aureus, E. coli, and Aspergillus brasiliensis but exhibited less efficacy against P. aeruginosa (1.78 log reduction in the number of CFU/g after 7 days of evaluation) and C. albicans (1.09 log reduction in the number of CFU/g after 14 days of evaluation) when compared to the synthetic preservative phenoxyethanol 1% (v/w). In silico results showed that the antimicrobial activity of T. broussonetii EO is mostly attributed to thymol, terpinen-4-ol, and aromadendrene, while the antioxidant activity is attributed to thymol. These results indicate that the EO of T. broussonetii possesses important antimicrobial and antioxidant properties and can, therefore, be used as a natural preservative ingredient in the cosmetic industry.
Collapse
Affiliation(s)
- Smahane Boukhira
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Guelmim, Morocco
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
| | - Fatima Ez-Zahra Amrati
- Laboratory of Cell Biology and Molecular Genetics (LBCGM), Department of Biology, Faculty of Sciences, Faculty of Sciences, Ibn Zohr University, Agadir, Souss-Massa, Morocco
| | - Mohamed Chebaibi
- Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez, Morocco
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan M. Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dalila Bousta
- National Agency of Medicinal and Aromatic Plants, Taounate, Morocco
- Laboratory of Biotechnology, Health, Agrofood and Environment (LBEAS), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco
| |
Collapse
|
22
|
Boveiri Dehsheikh A, Mahmoodi Sourestani M, Enayatizamir N, Safdarian M, Mottaghipisheh J. Oliveria decumbens, a Long-Neglected Plant with Promising Phytochemical and Biological Properties. Chem Biodivers 2024; 21:e202400810. [PMID: 38743456 DOI: 10.1002/cbdv.202400810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/13/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Oliveria decumbens is a folkloric medicinal plant belonging to the Apiaceae family, traditionally utilized to treat various diseases like gastrointestinal disorders, fever, and wounds. This review aims to provide a comprehensive overview of the plant's phytochemical composition and biological properties, with potential implications for various industries and avenues of further research. The data presented here has been compiled through searches utilizing the keyword "Oliveria" across scientific databases such as PubMed, Web of Science, Scopus, ScienceDirect, and SciFinder. Carvacrol and thymol have been identified as the primary volatile constituents, though the complete profile of the plant extract remains to be fully elucidated. Notably, Oliveria decumbens essential oil exhibits significant antibacterial, antifungal, antioxidant, and anticancer properties. Additionally, the plant extract demonstrates promising antiprotozoal, antiviral, hepatoprotective, and immunostimulant effects, although these findings are primarily derived from preliminary studies. While in vitro and in vivo investigations have validated some traditional uses of O. decumbens, further pre-clinical testing is warranted to ascertain both efficacy and safety profiles. Moreover, the identification of specific components within the plant extract is crucial for a more comprehensive understanding of the mechanisms of action underlying its therapeutic properties within the realm of phytomedicine.
Collapse
Affiliation(s)
- Anahita Boveiri Dehsheikh
- Department of Horticultural Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Naeimeh Enayatizamir
- Department of Soil Science, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mehdi Safdarian
- Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Javad Mottaghipisheh
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE, 75007, Uppsala, Sweden
| |
Collapse
|
23
|
Choudhary P, Bhanjana G, Kumar S, Dilbaghi N. Antibacterial Activity of Sustainable Thymol Nanoemulsion Formulations Against the Bacterial Blight Disease on Cluster Bean Caused by Xanthomonas axonopodis. Indian J Microbiol 2024; 64:694-704. [PMID: 39011014 PMCID: PMC11246338 DOI: 10.1007/s12088-024-01256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 03/06/2024] [Indexed: 07/17/2024] Open
Abstract
The aim of the present study was nanoencapsulation of thymol to improve its poor water solubility and preservation of encapsulated thymol against environmental conditions. Another goal of the current investigation was to assess the antibacterial activity of thymol nanoemulsion as a sustainable biopesticide to control the bacterial blight of cluster bean. An oil-in-water (o/w) nanoemulsion containing thymol was prepared by a high-energy emulsification method using gum acacia and soya lecithin as natural emulsifiers/surfactants. The characterization of thymol nanoemulsion was carried out using dynamic light scattering (DLS), transmission electron microscope (TEM) and Fourier transform infrared spectroscopy (FTIR). A mean particle size of about 83.38 nm was recorded within 10 min of sonication. The stability analysis of optimized nanoemulsion showed kinetic stability up to two months of storage at room temperature. The thymol nanoemulsion was found to be spherical with a size ranging from 80-200 nm in diameter using transmission electron microscopy. Fourier transform infrared spectroscopy was used to study the molecular interaction between emulsifier/surfactant and thymol. The antibacterial studies of thymol nanoemulsion (0.01-0.06%, v/v) by growth inhibition analysis showed a potential antibacterial effect against Xanthomonas axonopodis pv. cyamopsidis (18-0.1 log CFU/ml). Further, in field experiments, foliar spray of the different concentration of thymol nanoemulsion (0.01-0.06%, v/v) significantly increased the percent efficiency of disease control (25.06-94.48%) and reduced the disease intensity (67.33-4.25%) of bacterial blight in cluster bean.
Collapse
Affiliation(s)
- Pooja Choudhary
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001 India
| | - Gaurav Bhanjana
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001 India
| | - Sandeep Kumar
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001 India
- Physics Department, Punjab Engineering College (Deemed to be University), Chandigarh, 160012 India
| | - Neeraj Dilbaghi
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar, Haryana 125001 India
| |
Collapse
|
24
|
Girard C, Chabrillat T, Kerros S, Fravalo P, Thibodeau A. Essential oils mix effect on chicks ileal and caecal microbiota modulation: a metagenomics sequencing approach. Front Vet Sci 2024; 11:1350151. [PMID: 38638639 PMCID: PMC11025455 DOI: 10.3389/fvets.2024.1350151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Microbiota plays a pivotal role in promoting the health and wellbeing of poultry. Essential oils (EOs) serve as an alternative solution for modulating poultry microbiota. This study aimed to investigate, using amplicon sequencing, the effect of a complex and well-defined combination of EOs feed supplement on both ileal and caecal broiler microbiota, within the context of Salmonella and Campylobacter intestinal colonization. Material and methods For this experiment, 150-day-old Ross chicks were randomly allocated to two groups: T+ (feed supplementation with EO mix 500 g/t) and T- (non-supplemented). At day 7, 30 birds from each group were orally inoculated with 106 CFU/bird of a Salmonella enteritidis and transferred to the second room, forming the following groups: TS+ (30 challenged birds receiving infeed EO mix at 500g/t) and TS- (30 challenged birds receiving a non-supplemented control feed). At day 14, the remaining birds in the first room were orally inoculated with 103 CFU/bird of two strains of Campylobacter jejuni, resulting in the formation of groups T+C+ and T-C+. Birds were sacrificed at day 7, D10, D14, D17, and D21. Ileal and caecal microbiota samples were analyzed using Illumina MiSeq sequencing. At D7 and D14, ileal alpha diversity was higher for treated birds (p <0.05). Results and discussion No significant differences between groups were observed in caecal alpha diversity (p>0.05). The ileal beta diversity exhibited differences between groups at D7 (p < 0.008), D10 (p = 0.029), D14 (p = 0.001) and D17 (p = 0.018), but not at D21 (p = 0.54). For all time points, the analysis indicated that 6 biomarkers were negatively impacted, while 10 biomarkers were positively impacted. Sellimonas and Weissella returned the lowest (negative) and highest (positive) coefficient, respectively. At each time point, treatments influenced caecal microbiota beta diversity (p < 0.001); 31 genera were associated with T+: 10 Ruminoccocaceae genera were alternatively more abundant and less abundant from D7, 7 Lachnospiraceae genera were alternatively more and less abundant from D10, 6 Oscillospiraceae genera were variable depending on the date and 4 Enterobacteriaceae differed from D7. During all the experiment, Campylobacter decreased in treated birds (p < 0.05). This study showed that EO mix modulates ileal and caecal microbiota composition both before and during challenge conditions, increasing alpha diversity, especially in ileum during the early stages of chick life.
Collapse
Affiliation(s)
| | | | | | - Philippe Fravalo
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Alexandre Thibodeau
- Faculty of Veterinary Medicine, Research Chair in Meat-Safety (CRSV), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Swine and Avian Infectious Disease Research Centre (CRIPA), Université de Montréal, Saint-Hyacinthe, QC, Canada
- Faculty of Veterinary Medicine, Groupe de recherche et d'enseignement en salubrité alimentaire (GRESA), Université de Montréal, Saint-Hyacinthe, QC, Canada
| |
Collapse
|
25
|
Abdollahi A, Fereydouni N, Moradi H, Karimivaselabadi A, Zarenezhad E, Osanloo M. Nanoformulated herbal compounds: enhanced antibacterial efficacy of camphor and thymol-loaded nanogels. BMC Complement Med Ther 2024; 24:138. [PMID: 38566054 PMCID: PMC10985855 DOI: 10.1186/s12906-024-04435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
Herbal components are highly useful assets for the advancement of novel antibacterial drugs. Nanotechnology holds great promise as an approach to enhance the effectiveness and develop the composition of these substances. The study developed nanogels incorporating camphor, thymol, and a combination derived from the initial nanoemulsions with particle sizes of 103, 85, and 135 nm, respectively. The viscosity of nanogels and the successful loading of compounds in them were examined by viscometery and ATR-FTIR studies. The bactericidal properties of the nanogels were examined against four bacterial strains. The nanogel containing camphor and thymol at 1250 µg/mL concentration exhibited complete growth suppression against Pseudomonas aeruginosa and Staphylococcus aureus. The thymol nanogel at 1250 µg/mL and the camphor nanogel at 2500 µg/mL exhibited complete inhibition of growth on Listeria monocytogenes and Escherichia coli, respectively. Both nanogels showed favorable effectiveness as antibacterial agents and could potentially examine a wide range of pathogens and in vivo studies.
Collapse
Affiliation(s)
- Abbas Abdollahi
- Department of Microbiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Narges Fereydouni
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Hamid Moradi
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran
- Department of Clinical Biochemistry, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Abolfazl Karimivaselabadi
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Zarenezhad
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
26
|
Preljević K, Pašić I, Vlaović M, Matić IZ, Krivokapić S, Petrović N, Stanojković T, Živković V, Perović S. Comparative analysis of chemical profiles, antioxidant, antibacterial, and anticancer effects of essential oils of two Thymus species from Montenegro. Fitoterapia 2024; 174:105871. [PMID: 38428618 DOI: 10.1016/j.fitote.2024.105871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/22/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
The essential oils of Thymus vulgaris (TVEO) and Thymus serpyllum (TSEO) show different biological activities. The aim of the study was to evaluate the biological activities of TVEO and TSEO from Montenegro. The main components of TVEO were p-cymene (29.52%), thymol (22.8%) and linalool (4.73%) while the main components of TSEO were p-cymene (19.04%), geraniol (11,09%), linalool (9.16%), geranyl acetate (6.49%) and borneol (5.24%). Antioxidant activity determined via DPPH for TVEO was 4.49 and FRAP 1130.27, while for TSEO it was estimated that DPPH was 4.88 μL/mL and FRAP was 701.25 μmol FRAP/L. Both essential oils were active against all tested bacteria, with the highest level of sensitivity of E. coli with MIC of 1.5625 μL/mL. Essential oils showed strong cytotoxic effects on human cancer cell lines, with IC50 values ranging from 0.20 to 0.24 μL/mL for TVEO and from 0.32 to 0.49 μL/mL for TSEO. TVEO caused apoptosis in cervical adenocarcinoma HeLa cells through activation of caspase-3 and caspase-8, while TSEO caused apoptosis through caspase-3. EOs decreased levels of oxidative stress in normal MRC-5 cells. HeLa cells treated with TVEO had reduced MMP2 expression levels, while cells treated with TSEO had lowered MMP2 and MMP9 levels. The treatment of HeLa cells with TVEO increased the levels of miR-16 and miR-34a, indicating potential tumor-suppressive properties. Our findings suggest that Thymus essential oils may be considered as good candidates for further investigation as cancer-chemopreventive and cancer-therapeutic agents.
Collapse
Affiliation(s)
- Kenan Preljević
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Ivana Pašić
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia
| | - Milorad Vlaović
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Ivana Z Matić
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia.
| | - Slađana Krivokapić
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| | - Nina Petrović
- Institute for Oncology and Radiology of Serbia, Belgrade 11000, Serbia; "VINČA" Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade 11000, Serbia
| | | | - Vladimir Živković
- Center for Ecotoxicological Researches of Montenegro, Podgorica 81000, Montenegro
| | - Svetlana Perović
- University of Montenegro, Faculty of Natural Sciences and Mathematics, Department of Biology, Podgorica 81000, Montenegro
| |
Collapse
|
27
|
Aouadhi C, Jouini A, Maaroufi K, Maaroufi A. Antibacterial Effect of Eight Essential Oils against Bacteria Implicated in Bovine Mastitis and Characterization of Primary Action Mode of Thymus capitatus Essential Oil. Antibiotics (Basel) 2024; 13:237. [PMID: 38534672 DOI: 10.3390/antibiotics13030237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 03/28/2024] Open
Abstract
During the current investigation, eight essential oils (EOs) were tested for their antimicrobial activity against six species, belonging to the genus of staphylococcus, multi-resistant to antibiotics (S. epidermidis, S. cohni, S. wareneri, S. scuiri, S. chromogenes, S. pasteuri), three methicillin-resistant Staphylococcus aureus strains (MRSA) and two strains of Escherichia coli, producing extended-spectrum β-lactamase (ESBL) responsible for bovine mastitis. Our results indicated that the antimicrobial activities of eight EOs varied significantly among the types of EOs and bacterial species. Thymus capitatus and Trachyspermum ammi EOs display important antibacterial activity against all tested strains, with the inhibition zone diameters situated between 20 and 45 mm, while EOs of Artemisia absinthium, Eucalyptus globulus, Eucalyptus camaldulensis, Myrtus communis and Mentha pulegium exerted an intermediate activity. For Cymbopogon citratus, this effect depends on bacteria species. In fact, an important effect was observed against S. warneri, S. epidermidis, S. cohenii, S. pasteuri and MRSA (EC 39+) strains. In addition, the important lytic effect was observed against MRSA strains, showing that Gram-positive bacteria were more sensitive to T. capitatus EO than Gram-negative ones. Concerning the characterization of the mode action of T. capitatus, experiments of kill-time, bacteriolytic, loss of salt tolerance and loss of cytoplasmic material showed that the used EO was able to destroy cell walls and membranes followed by the loss of vital intracellular materials. In addition, it inhibits the normal synthesis of DNA, causing the bacterial death of E. coli and MRSA strains. This study shows the potential of using of EOs, particularly T. capitaus, to inhibit the growth of Gram-positive and Gram-negative bacteria multi-resistant to antibiotics causing bovine mastitis.
Collapse
Affiliation(s)
- Chedia Aouadhi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Ahlem Jouini
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
| | - Karima Maaroufi
- Laboratory of Functional Physiology and Bio-Resources Valorization, Higher Institute of Biotechnology of Beja, University of Jendouba, Beja 9000, Tunisia
| | - Abderrazak Maaroufi
- Laboratory of Epidemiology and Veterinary Microbiology, Group of Bacteriology and Biotechnology, Pasteur Institute of Tunisia (IPT), University of Tunis El Manar (UTM), BP 74, 13 Place Pasteur, Belvédère, Tunis 1002, Tunisia
| |
Collapse
|
28
|
Amiri S, Sepahvand S, Radi M, Abedi E. A comparative study between the performance of thymol-nanoemulsion and thymol-loaded nanostructured lipid carriers on the textural, microbial, and sensory characteristics of sausage. Curr Res Food Sci 2024; 8:100704. [PMID: 38435278 PMCID: PMC10907395 DOI: 10.1016/j.crfs.2024.100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024] Open
Abstract
The objective of this research was to compare the function of thymol-loaded nanostructured lipid carriers (NLC) and a thymol-nanoemulsion (NE) with nitrite (120 mg/kg) on quality parameters of sausage. The droplet size of the NLC and NE was 140 and 86.39 nm with encapsulation efficiency of 97 and 94%, respectively. The results on sausage showed that all samples containing NLC and NE exhibited the lowest increase in peroxide value, total volatile base-nitrogen, and TBA with the highest inhibitory effect on the growth of E. coli, C. perfringens, lactic acid bacteria, psychrophilic bacteria, mold and yeast, and total viable counts as well as good texture and sensory attributes with the best results in the NLC + nitrite and NE + nitrite samples. The L* and a* values were relatively higher in the samples treated with nitrite, NLC + nitrite, and NE + nitrite after 4-week storage. This increase in redness was associated with the maintenance of oxymyoglobin levels and a decrease in metmyoglobin production. The results of this study indicated that the combined use of NLC/NE (particularly NE) with 60 mg/kg nitrite significantly improved the oxidative and color stability, and delayed the spoilage and off-flavor in sausage.
Collapse
Affiliation(s)
- Sedigheh Amiri
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Somayeh Sepahvand
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Mohsen Radi
- Department of Food Science and Technology, Yasuj Branch, Islamic Azad University, Yasuj, Iran
- Sustainable Agriculture and Food Security Research Group, Yasuj Branch, Islamic Azad University, Yasuj, Iran
| | - Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran
| |
Collapse
|
29
|
Li JG, Chen XF, Lu TY, Zhang J, Dai SH, Sun J, Liu YH, Liao XP, Zhou YF. Increased Activity of β-Lactam Antibiotics in Combination with Carvacrol against MRSA Bacteremia and Catheter-Associated Biofilm Infections. ACS Infect Dis 2023; 9:2482-2493. [PMID: 38019707 DOI: 10.1021/acsinfecdis.3c00338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
β-Lactam antibiotics are the mainstay for the treatment of staphylococcal infections, but their utility is greatly limited by the emergence and rapid dissemination of methicillin-resistant Staphylococcus aureus (MRSA). Herein, we evaluated the ability of the plant-derived monoterpene carvacrol to act as an antibiotic adjuvant, revitalizing the anti-MRSA activity of β-lactam antibiotics. Increased susceptibility of MRSA to β-lactam antibiotics and significant synergistic activities were observed with carvacrol-based combinations. Carvacrol significantly inhibited MRSA biofilms and reduced the production of exopolysaccharide, polysaccharide intercellular adhesin, and extracellular DNA and showed synergistic biofilm inhibition in combination with β-lactams. Transcriptome analysis revealed profound downregulation in the expression of genes involved in two-component systems and S. aureus infection. Mechanistic studies indicate that carvacrol inhibits the expression of staphylococcal accessory regulator sarA and interferes with SarA-mecA promoter binding that decreases mecA-mediated β-lactam resistance. Consistently, the in vivo experiment also supported that carvacrol restored MRSA sensitivity to β-lactam antibiotic treatments in both murine models of bacteremia and biofilm-associated infection. Our results indicated that carvacrol has a potential role as a combinatorial partner with β-lactam antibiotics to address MRSA infections.
Collapse
Affiliation(s)
- Jian-Guo Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Xiao-Feng Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ting-Yin Lu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jing Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Yantai Fushan Center for Animal Disease Control and Prevention, Fushan, Yantai, Shandong 265500, China
| | - Shu-He Dai
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Jian Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Ya-Hong Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiao-Ping Liao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| | - Yu-Feng Zhou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
30
|
Farhadi Z, Sadeghi AA, Motamedi Sedeh F, Chamani M. The effects of thymol, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on viability, the Nosema sp. spore load and the expression of vg and sod-1 genes in infected honey bees. Anim Biotechnol 2023; 34:4736-4745. [PMID: 36905146 DOI: 10.1080/10495398.2023.2187409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
This study was done to investigate the effects of thymol, fumagillin, oxalic acid (Api-Bioxal) and hops extract (Nose-Go) on Nosema sp. spore load, the expression of vitellogenin (vg) and superoxide-dismutase-1 (sod-1) genes and mortality of bees infected with N. ceranae. Five healthy colonies were assigned as the negative control, and 25 Nosema sp. infected colonies were assigned to five treatment groups including: the positive control: no additive to sirup; fumagillin 26.4 mg/L, thymol 0.1 g/L, Api-Bioxal 0.64 g/L and Nose-Go 5.0 g/L sirup. The reduction in the number of Nosema sp. spores in fumagillin, thymol, Api-Bioxal and Nose-Go compared to the positive control was 54, 25, 30 and 58%, respectively. Nosema sp. infection in all infected groups increased (p < .05) Escherichia coli population compared to the negative control. Nose-Go had a negative effect on lactobacillus population compared to other substances. Nosema sp. infection decreased vg and sod-1 genes expression in all infected groups compared to the negative control. Fumagillin and Nose-Go increased the expression of vg gene, and Nose-Go and thymol increased the expression of sod-1 gene than the positive control. Nose-Go has the potential to treat nosemosis if the necessary lactobacillus population is provided in the gut.
Collapse
Affiliation(s)
- Zahra Farhadi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ali Asghar Sadeghi
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Farahnaz Motamedi Sedeh
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Mohammad Chamani
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
31
|
Luise D, Correa F, Negrini C, Virdis S, Mazzoni M, Dalcanale S, Trevisi P. Blend of natural and natural identical essential oil compounds as a strategy to improve the gut health of weaning pigs. Animal 2023; 17:101031. [PMID: 38035660 DOI: 10.1016/j.animal.2023.101031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023] Open
Abstract
Weaning is one of the most critical phases in pig's life, often leading to postweaning diarrhoea (PWD). Zinc oxide (ZnO), at pharmacological doses, has been largely used to prevent PWD; however, due to antimicrobial co-resistant and environmental pollution issues, the EU banned its use in June 2022. Natural or natural identical components of essential oils and their mixture with organic acids are possible alternatives studied for their antimicrobial, anti-inflammatory and antioxidant abilities. This study aimed to evaluate the effect of two blends of natural or natural identical components of essential oils and organic acids compared to ZnO on health, performance, and gut health of weaned pigs. At weaning (d0), 96 piglets (7 058 ± 895 g) were assigned to one of four treatments balanced for BW and litter: CO (control treatment), ZnO (2 400 mg/kg ZnO from d0 to d14); Blend1 (cinnamaldehyde, ajowan and clove essential oils, 1 500 mg/kg feed); Blend2 (cinnamaldehyde, eugenol and short- and medium-chain fatty acids, 2 000 mg/kg feed). Pigs were weighed weekly until d35. Faeces were collected at d13 and d35 for microbiota (v3-v4 regions of the 16 s rRNA gene) and Escherichia coli (E. coli) count analysis. At d14 and d35, eight pigs/treatment were slaughtered; pH was recorded on intestinal contents and jejunal samples were collected for morphological and gene expression analysis. From d7-d14, the Blend2 had a lower average daily gain (ADG) than CO and ZnO (P < 0.05). ZnO and Blend1 never differed in ADG and feed intake. At d14, ZnO had a lower caecum pH than all other treatments. The CO treatment had a higher abundance of haemolytic E. coli than Blend1 (P = 0.01). At d13, the ZnO treatment had a lower alpha diversity (P < 0.01) and a different microbial beta diversity (P < 0.001) compared to the other treatments. At d13, the ZnO treatment was characterised by a higher abundance of Prevotellaceae_NK3B31_group (Linear Discriminant Analysis (LDA) score = 4.5, P = 0.011), Parabacteroides (LDA score = 4.5, P adj. = 0.005), the CO was characterised by Oscillospiraceae UCG-005 (LDA score = 4.3, P adj. = 0.005), Oscillospiraceae NK4A214_group (LDA score = 4.2, P adj. = 0.02), the Blend2 was characterised by Megasphaera (LDA score = 4.1, P adj. = 0.045), and Ruminococcus (LDA score = 3.9, P adj. = 0.015) and the Blend1 was characterised by Christensenellaceae_R-7_group (LDA score = 4.6, P adj. < 0.001) and Treponema (LDA score = 4.5, P adj. < 0.001). In conclusion, Blend1 allowed to maintain the gut health of postweaning piglets through modulation of the gut microbiome, the reduction of haemolytic E. coli while Blend2 did not help piglets.
Collapse
Affiliation(s)
- D Luise
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - F Correa
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - C Negrini
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - S Virdis
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - M Mazzoni
- Department of Veterinary Science, University of Bologna, 40064 Ozzano dell'Emilia, Italy
| | - S Dalcanale
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - P Trevisi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy.
| |
Collapse
|
32
|
Jiang W, Liang X, Li H, Mo L, Chen W, Wang T, Wang H, Xing Y, Liao J. Inhibitory effect of tannic acid on the growth of Apiospora arundinis and 3-Nitropropionic acid production. J Appl Microbiol 2023; 134:lxad264. [PMID: 37960923 DOI: 10.1093/jambio/lxad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/24/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023]
Abstract
AIMS This study aimed to investigate the inhibitory effect of tannic acid (TA) on the growth of Apiospora arundinis and 3-Nitropropionic acid (3-NPA) production. METHODS AND RESULTS To investigate the antifungal mechanism, the effects of TA on the hypha growth, electrical conductivity, hypha morphology, defense-related enzymes, and 3-NPA production of A. arundinis were studied. TA concentrations of 640 and 1280 μg ml-1 exhibited strong antifungal activity against A. arundinis. The results of scanning electron microscopy and transmission electron microscopy showed that the hypha of the A. arundinis was severely deformed after TA treatment, and the cell membrane was blurred and thin, vacuoles were obviously shrunken and smaller, and most of the organelles were decomposed into irregular fragments. The increased electrical conductivity and malondialdehyde content indicated that TA caused peroxidation of unsaturated fatty acids and damaged the structure of the cell membrane. The decrease of intracellular ATPase and succinate dehydrogenase content indicated that TA damaged the function of mitochondria, and participated in the inhibition of respiratory metabolism. In addition, TA significantly reduced 3-NPA production and completely inhibited 3-NPA production at 640 and 1280 μg ml-1. CONCLUSION TA effectively inhibited both growth of A. arundinis in vitro and 3-NPA production.
Collapse
Affiliation(s)
- Wenyan Jiang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Xuelian Liang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Huiling Li
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Leixing Mo
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Wei Chen
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Tianshun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Haijun Wang
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Yihao Xing
- Genebank of Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| | - Jie Liao
- Agro-Products Quality Safety and Testing Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China
| |
Collapse
|
33
|
Makabenta JMV, Nabawy A, Chattopadhyay AN, Park J, Li CH, Goswami R, Luther DC, Huang R, Hassan MA, Rotello VM. Antimicrobial-loaded biodegradable nanoemulsions for efficient clearance of intracellular pathogens in bacterial peritonitis. Biomaterials 2023; 302:122344. [PMID: 37857021 PMCID: PMC10872928 DOI: 10.1016/j.biomaterials.2023.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.
Collapse
Affiliation(s)
- Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States.
| |
Collapse
|
34
|
Tsouggou N, Oikonomou A, Papadimitriou K, Skandamis PN. 16S and 18S rDNA Amplicon Sequencing Analysis of Aesthetically Problematic Microbial Mats on the Walls of the Petralona Cave: The Use of Essential Oils as a Cleaning Method. Microorganisms 2023; 11:2681. [PMID: 38004693 PMCID: PMC10673238 DOI: 10.3390/microorganisms11112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
The presence of microbial communities on cave walls and speleothems is an issue that requires attention. Traditional cleaning methods using water, brushes, and steam can spread the infection and cause damage to the cave structures, while chemical agents can lead to the formation of toxic compounds and damage the cave walls. Essential oils (EOs) have shown promising results in disrupting the cell membrane of bacteria and affecting their membrane permeability. In this study, we identified the microorganisms forming unwanted microbial communities on the walls and speleothems of Petralona Cave using 16S and 18S rDNA amplicon sequencing approaches and evaluated the efficacy of EOs in reducing the ATP levels of these ecosystems. The samples exhibited a variety of both prokaryotic and eukaryotic microorganisms, including Proteobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, the SAR supergroup, Opisthokonta, Excavata, Archaeplastida, and Amoebozoa. These phyla are often found in various habitats, including caves, and contribute to the ecological intricacy of cave ecosystems. In terms of the order and genus taxonomy, the identified biota showed abundances that varied significantly among the samples. Functional predictions were also conducted to estimate the differences in expressed genes among the samples. Oregano EO was found to reduce ATP levels by 87% and 46% for black and green spots, respectively. Consecutive spraying with cinnamon EO further reduced ATP levels, with reductions of 89% for black and 88% for green spots. The application of a mixture solution caused a significant reduction up to 96% in ATP levels of both areas. Our results indicate that EOs could be a promising solution for the treatment of microbial communities on cave walls and speleothems.
Collapse
Affiliation(s)
- Natalia Tsouggou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Alexandra Oikonomou
- Ephorate of Palaeoanthropology and Speleology, Hellenic Republic Ministry of Culture and Sports, Ardittou 34b, 11636 Athens, Greece;
| | - Konstantinos Papadimitriou
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| | - Panagiotis N. Skandamis
- Laboratory of Food Quality Control & Hygiene, Department of Food Science & Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (N.T.); (P.N.S.)
| |
Collapse
|
35
|
Doghish AS, Shehabeldine AM, El-Mahdy HA, Hassanin MMH, Al-Askar AA, Marey SA, AbdElgawad H, Hashem AH. Thymus Vulgaris Oil Nanoemulsion: Synthesis, Characterization, Antimicrobial and Anticancer Activities. Molecules 2023; 28:6910. [PMID: 37836753 PMCID: PMC10574288 DOI: 10.3390/molecules28196910] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Essential oil nanoemulsions have received much attention due to their biological activities. Thus, a thyme essential oil nanoemulsion (Th-nanoemulsion) was prepared using a safe and eco-friendly method. DLS and TEM were used to characterize the prepared Th-nanoemulsion. Our findings showed that the nanoemulsion was spherical and ranged in size from 20 to 55.2 nm. The micro-broth dilution experiment was used to evaluate the in vitro antibacterial activity of a Th-emulsion and the Th-nanoemulsion. The MIC50 values of the thymol nanoemulsion were 62.5 mg/mL against Escherichia coli and Klebsiella oxytoca, 250 mg/mL against Bacillus cereus, and 125 mg/mL against Staphylococcus aureus. Meanwhile, it emerged that the MIC50 values of thymol against four strains were not detected. Moreover, the Th-nanoemulsion exhibited promising antifungal activity toward A. brasiliensis and A. fumigatus, where inhibition zones and MIC50 were 20.5 ± 1.32 and 26.4 ± 1.34 mm, and 12.5 and 6.25 mg/mL, respectively. On the other hand, the Th-nanoemulsion displayed weak antifungal activity toward C. albicans where the inhibition zone was 12.0 ± 0.90 and MIC was 50 mg/mL. Also, the Th-emulsion exhibited antifungal activity, but lower than that of the Th-nanoemulsion, toward all the tested fungal strains, where MIC was in the range of 12.5-50 mg/mL. The in vitro anticancer effects of Taxol, Th-emulsion, and Th-nanoemulsion were evaluated using the standard MTT method against breast cancer (MCF-7) and hepatocellular carcinoma (HepG2). Additionally, the concentration of VEGFR-2 was measured, and the activities of caspase-8 (casp-8) and caspase-9 (casp-9) were evaluated. The cytotoxic effect was the most potent against the MCF-7 breast cancer cell line after the Th-nanoemulsion treatment (20.1 ± 0.85 µg/mL), and was 125.1 ± 5.29 µg/mL after the Th-emulsion treatment. The lowest half-maximal inhibitory concentration (IC50) value, 20.1 ± 0.85 µg/mL, was achieved when the MCF-7 cell line was treated with the Th-nanoemulsion. In addition, Th-nanoemulsion treatments on MCF-7 cells led to the highest elevations in casp-8 and casp-9 activities (0.66 ± 0.042 ng/mL and 17.8 ± 0.39 pg/mL, respectively) compared to those with Th-emulsion treatments. In comparison to that with the Th-emulsion (0.982 0.017 ng/mL), the VEGFR-2 concentration was lower with the Th-nanoemulsion treatment (0.672 ± 0.019ng/mL). In conclusion, the Th-nanoemulsion was successfully prepared and appeared in nanoform with a spherical shape according to DLS and TEM, and also exhibited antibacterial, antifungal, as well as anticancer activities.
Collapse
Affiliation(s)
- Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt;
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Amr M. Shehabeldine
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| | - Hesham A. El-Mahdy
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Egypt;
| | - Mahmoud M. H. Hassanin
- Ornamental, Medicinal and Aromatic Plant Disease Department, Plant Pathology Research Institute, Agricultural Research Center (ARC), Giza 12619, Egypt;
| | - Abdulaziz A. Al-Askar
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Samy A. Marey
- Department of Botany and Microbiology, Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (A.A.A.-A.); (S.A.M.)
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research, Department of Biology, University of Antwerp, 2020 Antwerp, Belgium;
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City 11884, Egypt
| |
Collapse
|
36
|
Zermeño-Cervantes LA, Martínez-Díaz SF, Venancio-Landeros AA, Cardona-Félix CS. Evaluating the efficacy of endolysins and membrane permeabilizers against Vibrio parahaemolyticus in marine conditions. Res Microbiol 2023; 174:104104. [PMID: 37422006 DOI: 10.1016/j.resmic.2023.104104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 05/31/2023] [Accepted: 06/29/2023] [Indexed: 07/10/2023]
Abstract
Endolysins have garnered significant attention as a potential alternative to antibiotics in aquaculture, mainly for combating Vibrio spp., Gram-negative pathogens responsible for infectious outbreaks. However, endolysin effectiveness against Gram-negative bacteria is limited due to the outer membrane's poor permeability. The combat against marine pathogens poses an additional challenge of finding endolysins that retain their activity in high ionic strength conditions. Thus, this study aimed to demonstrate that certain endolysins retain muralytic activity in seawater and also evaluated outer membrane permeabilizers as endolysin adjuvants. The effectiveness of KZ144 and LysPA26 endolysins, along with EDTA and oregano essential oil, was evaluated against Vibrio parahaemolyticus ATCC-17802 in natural seawater. Results revealed the muralytic activity of both endolysins in seawater. However, the endolysins appeared to counteract the permeabilizers' effect during the initial bactericidal assays. Further investigations revealed that the observed effect was not antagonistic. After the permeabilizer action, V. parahaemolyticus likely used endolysins as a growth substrate. Endolysins may not play an indifferent role if they fail to exert a bactericidal effect. Instead, they can serve as a substrate for fast-growing bacteria, such as V. parahaemolyticus, increasing bacterial density. It should be considered a potential drawback of endolysins' proteinaceous nature as bactericidal agents.
Collapse
Affiliation(s)
- Lina Angélica Zermeño-Cervantes
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Sergio Francisco Martínez-Díaz
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - Alberto Antony Venancio-Landeros
- Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| | - César Salvador Cardona-Félix
- CONACyT-Instituto Politécnico Nacional-CICIMAR, Av. Instituto Politécnico Nacional S/N, Col. Playa Palo de Santa Rita, La Paz, B. C. S., CP. 23096, México.
| |
Collapse
|
37
|
Bukvicki D, D’Alessandro M, Rossi S, Siroli L, Gottardi D, Braschi G, Patrignani F, Lanciotti R. Essential Oils and Their Combination with Lactic Acid Bacteria and Bacteriocins to Improve the Safety and Shelf Life of Foods: A Review. Foods 2023; 12:3288. [PMID: 37685221 PMCID: PMC10486891 DOI: 10.3390/foods12173288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
The use of plant extracts (e.g., essential oils and their active compounds) represents an interesting alternative to chemical additives and preservatives applied to delay the alteration and oxidation of foods during their storage. Essential oils (EO) are nowadays considered valuable sources of food preservatives as they provide a healthier alternative to synthetic chemicals while serving the same purpose without affecting food quality parameters. The natural antimicrobial molecules found in medicinal plants represent a possible solution against drug-resistant bacteria, which represent a global health problem, especially for foodborne infections. Several solutions related to their application on food have been described, such as incorporation in active packaging or edible film and direct encapsulation. However, the use of bioactive concentrations of plant derivatives may negatively impact the sensorial characteristics of the final product, and to solve this problem, their application has been proposed in combination with other hurdles, including biocontrol agents. Biocontrol agents are microbial cultures capable of producing natural antimicrobials, including bacteriocins, organic acids, volatile organic compounds, and hydrolytic enzymes. The major effect of bacteriocins or bacteriocin-producing LAB (lactic acid bacteria) on food is obtained when their use is combined with other preservation methods. The combined use of EOs and biocontrol agents in fruit and vegetables, meat, and dairy products is becoming more and more important due to growing concerns about potentially dangerous and toxic synthetic additives. The combination of these two hurdles can improve the safety and shelf life (inactivation of spoilage or pathogenic microorganisms) of the final products while maintaining or stabilizing their sensory and nutritional quality. This review critically describes and collects the most updated works regarding the application of EOs in different food sectors and their combination with biocontrol agents and bacteriocins.
Collapse
Affiliation(s)
- Danka Bukvicki
- Faculty of Biology, Institute of Botany and Botanical Garden ‘Jevremovac’, University of Belgrade, Takovska 43, 11000 Belgrade, Serbia;
| | - Margherita D’Alessandro
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy; (M.D.); (S.R.); (D.G.); (G.B.); (F.P.); (R.L.)
- Interdepartmental Centre for Industrial Agri-Food Research, University of Bologna, 47521 Cesena, Italy
| |
Collapse
|
38
|
Li R, Zhuang D, Feng H, Wang S, Zhu J. Novel “all-in-one” multifunctional gelatin-based film for beef freshness maintaining and monitoring. Food Chem 2023; 418:136003. [PMID: 36996647 DOI: 10.1016/j.foodchem.2023.136003] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023]
Abstract
In this study, a novel multifunctional food packaging was developed by incorporating alizarin (AL) and oregano essential oil Pickering emulsion (OEOP) into a gelatin film matrix. The incorporation of OEOP and alizarin improved the UV-vis resistance property of the film, blocking almost all UV-vis light (decreasing 71.80% to 0.06% at 400 nm). The elongation-at-break (EBA) was 4.02 times of that of gelatin film, indicating the improved mechanical properties of the films. This film showed a significant color change from yellow to purple in the pH range of 3-11 and a considerable sensitivity to ammonia vapor within 4 min, which was attributed to the deprotonation of the alizarin molecule. The film's antioxidant and dynamic antimicrobial capacity was significantly improved owing to the sustained release effect of OEOP. Furthermore, the multifunctional film effectively slowed down the beef spoilage rate and provided real-time visual monitoring of freshness through color changes. Additionally, the color change of the beef quality was linked to the RGB values of the film through a smartphone APP. Overall, this work broadens the possibilities of applications in the food packaging industry for multifunctional food packaging film with preservation and monitoring functions.
Collapse
|
39
|
Santo AP, Agostini B, Cuzman OA, Michelozzi M, Salvatici T, Perito B. Essential oils to contrast biodeterioration of the external marble of Florence Cathedral. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162913. [PMID: 36933708 DOI: 10.1016/j.scitotenv.2023.162913] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 05/06/2023]
Abstract
The search for more sustainable strategies to contrast biodeterioration of stone cultural heritage has been developing in recent years to find alternatives to synthetic biocides, since their toxicity and potential impact on the environment and health. In this study, the application of the oregano and thyme essential oils (EOs) was tested to control microbial growth on the external marble of Florence Cathedral affected by extended darkening. Before in situ application, preliminary tests were carried out to evaluate the interference of the EOs with marble (colorimetric and water absorption assays on marble specimens) and their efficacy in inhibiting marble microbiota (sensitivity test on nutrient media). EOs inhibited the whole cultivable microbiota sampled from the Cathedral marble at a very low concentration, while they did not interfere with colour and water absorption capability of uncolonised marble samples when applied as a 2 % solution. Then the two EOs and the commercial biocide Biotin T were used in in situ trials on marble in two outdoor study sites of Florence Cathedral. The effectiveness of the treatments was assessed through short- and mid-term evaluation by multidisciplinary in situ non-invasive (colorimetric and ATP assays, microscopy) and ex situ (microbial viable titer) tests. Concerning results, we found a good correspondence between parameters for evaluation of viability (bacterial and fungi viable titer) and activity (ATP determination) and some correspondence among these and microscopy and colorimetry. Considering the whole data, treatments with oregano and thyme EOs were effective against microbial community, in more cases comparably to the commercial biocide. Some differences found, particularly by viable titer, in the two study sites or in bacterial and fungal components of the microbiota can be partly attributed to differences in structure and colonization pattern of the microbial community due to the peculiar climatic conditions of the differently exposed study areas.
Collapse
Affiliation(s)
- Alba Patrizia Santo
- Department of Earth Sciences, University of Florence, Via La Pira 4, Florence 50121, Italy
| | | | - Oana Adriana Cuzman
- Institute of Heritage Science, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Marco Michelozzi
- Institute of Biosciences and Bioresources, National Research Council, Via Madonna del Piano 10, Sesto Fiorentino, Florence 50019, Italy
| | - Teresa Salvatici
- Department of Earth Sciences, University of Florence, Via La Pira 4, Florence 50121, Italy
| | - Brunella Perito
- Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence 50019, Italy.
| |
Collapse
|
40
|
Umam K, Feng CS, Yang G, Tu PC, Lin CY, Yang MT, Kuo TF, Yang WC, Tran Nguyen Minh H. Phytochemistry, Pharmacology and Mode of Action of the Anti-Bacterial Artemisia Plants. Bioengineering (Basel) 2023; 10:633. [PMID: 37370564 DOI: 10.3390/bioengineering10060633] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/19/2023] [Accepted: 05/20/2023] [Indexed: 06/29/2023] Open
Abstract
Over 70,000 people die of bacterial infections worldwide annually. Antibiotics have been liberally used to treat these diseases and, consequently, antibiotic resistance and drug ineffectiveness has been generated. In this environment, new anti-bacterial compounds are being urgently sought. Around 500 Artemisia species have been identified worldwide. Most species of this genus are aromatic and have multiple functions. Research into the Artemisia plants has expanded rapidly in recent years. Herein, we aim to update and summarize recent information about the phytochemistry, pharmacology and toxicology of the Artemisia plants. A literature search of articles published between 2003 to 2022 in PubMed, Google Scholar, Web of Science databases, and KNApSAcK metabolomics databases revealed that 20 Artemisia species and 75 compounds have been documented to possess anti-bacterial functions and multiple modes of action. We focus and discuss the progress in understanding the chemistry (structure and plant species source), anti-bacterial activities, and possible mechanisms of these phytochemicals. Mechanistic studies show that terpenoids, flavonoids, coumarins and others (miscellaneous group) were able to destroy cell walls and membranes in bacteria and interfere with DNA, proteins, enzymes and so on in bacteria. An overview of new anti-bacterial strategies using plant compounds and extracts is also provided.
Collapse
Affiliation(s)
- Khotibul Umam
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Faculty of Life Science and Technology, Biotechnology Department, Sumbawa University of Technology, Sumbawa Besar 84371, NTB, Indonesia
| | - Ching-Shan Feng
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Greta Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Ping-Chen Tu
- Sun Ten Pharmaceutical Co., Ltd., New Taipei City 23143, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Meng-Ting Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Tien-Fen Kuo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 40227, Taiwan
- Molecular and Biological Agricultural Sciences, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan, and National Chung-Hsing University, Taichung 40227, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 40227, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 40402, Taiwan
| | | |
Collapse
|
41
|
Saidi S, Remok F, Handaq N, Drioiche A, Gourich AA, Menyiy NE, Amalich S, Elouardi M, Touijer H, Bouhrim M, Bouissane L, Nafidi HA, Bin Jardan YA, Bourhia M, Zair T. Phytochemical Profile, Antioxidant, Antimicrobial, and Antidiabetic Activities of Ajuga iva (L.). Life (Basel) 2023; 13:life13051165. [PMID: 37240812 DOI: 10.3390/life13051165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/03/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
In Morocco, many applications in ethnomedicine on Ajuga iva (L.) have been recognized as able to treat various pathologies such as diabetes, stress, and microbial infections. The objective of this work is to carry out phytochemical, biological, and pharmacological investigations on the extracts of Ajuga iva leaves in order to confirm its therapeutic effects. The phytochemical screening carried out on the different extracts of Ajuga iva showed its richness in primary (lipids and proteins) and secondary metabolites (flavonoids, tannins, reducing compounds, oses, and holoside. The best contents of polyphenols, flavonoids, and tannins evaluated by spectrophotometric methods were found in the hydroethanolic extract (69.850 ± 2.783 mg EAG/g DE, 17.127 ± 0.474 mg EQ/g DE, 5.566 ± 0.000 mg EQC/g DE), respectively. Analysis of the chemical composition of the aqueous extract by LC/UV/MS revealed 32 polyphenolic compounds including ferulic acid (19.06%), quercetin (10.19%), coumaric acid (9.63%), and apigenin-7-(2-O-apiosylglucoside) (6.8%). The antioxidant activity of Ajuga iva extracts was evaluated by three methods (DPPH*, FRAP, CAT). The hydroethanolic extract recorded the strongest reducing power: DPPH* (IC50 = 59.92 ± 0.7 µg/mL), FRAP (EC50 = 196.85 ± 1.54 (µg/mL), and CAT (199.21 ± 0.37 mg EAG/gE). A strong correlation between phenolic compounds and antioxidant activities was confirmed by the determination of Pearson's coefficient. The antimicrobial activity of Ajuga iva studied by the microtiter method revealed potent antifungal and antibacterial qualities against Candida parapsilosis and Staphylococcus aureus BLACT. An in vivo oral glucose tolerance test (OGTT) using normal rats revealed that the antihyperglycemic action of the aqueous extract significantly reduced postprandial hyperglycaemia at (30 min, p < 0.01) and area under the curve (AUC glucose), p < 0.01. Similarly, the aqueous extract, tested on pancreatic α-amylase enzyme activity in vitro and in vivo significantly inhibited pancreatic α-amylase activity with IC50 = 1.52 ± 0.03 mg/mL. In conclusion, the extract from Ajuga iva could be a good source of bioactive molecules, which exhibit potent antioxidant and antimicrobial activity, as well as strong antidiabetic activity, for applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Soukaina Saidi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Firdaous Remok
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Nadia Handaq
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
- Plant Valorization and Protection Research Team, Laboratory of Environmental Biology and Sustainable Development, Higher Normal School of Tetouan, Abdelmaek Essaadi University, Tetouan 93000, Morocco
| | - Aziz Drioiche
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Aman Allah Gourich
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Naoual El Menyiy
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Smail Amalich
- Laboratory of Pharmacology and Phytochemistry, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco
| | - Mohamed Elouardi
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Hanane Touijer
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni Mellal 23000, Morocco
| | - Latifa Bouissane
- Laboratory of Molecular Chemistry, Materials and Catalysis, Faculty of Science and Technologies, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco
| | - Hiba-Allah Nafidi
- Department of Food Science, Faculty of Agricultural and Food Sciences, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Yousef A Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Laayoune 70000, Morocco
| | - Touriya Zair
- Research Team of Bioactive Molecules and Environment Chemistry, Laboratory of Innovative Materials and Biotechnology of Natural Resources, Faculty of Sciences, Moulay Ismail University, Meknes 50070, Morocco
| |
Collapse
|
42
|
Jena B, Biswal B, Sarangi A, Giri AK, Bhattacharya D, Acharya L. GC/MS Profiling and Evaluation of Leaf Essential Oil for Bactericidal Effect and Free Radical Scavenging Activity of Plectranthus amboinicus (Lour.) Spreng Collected from Odisha, India. Chem Biodivers 2023; 20:e202200691. [PMID: 36692091 DOI: 10.1002/cbdv.202200691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Plectranthus amboinicus (Lour.) Spreng, known as the Indian borage or Mexican mint, is one of the most documented species in the family Lamiaceae for its therapeutic and pharmaceutical values. It is found in the tropical and subtropical regions of the world. The leaf essential oil has immense medicinal benefits like treating illnesses of the skin and disorders like colds, asthma, constipation, headaches, coughs, and fevers. After analyzing earlier reports with regard to the quantity and quality of leaf oil yield, we discovered that the germplasm taken from Odisha is preferable to other germplasms. The objective of the present work is to evaluate the free radical scavenging activity and bactericidal effect of leaf essential oil (EO) of Plectranthus amboinicus (Lour.) Spreng collected from the state of Odisha, India. The hydro distillation technique has been used for essential oil extraction. Upon GC/MS analysis, approximately 57 compounds were identified with Carvacrol as the major compound (peak area=20.25 %), followed by p-thymol (peak area=20.17 %), o-cymene (peak area=19.41 %) and carene (peak area=15.89 %). On evaluation of free radical scavenging activity, it was recorded that the best value of inhibitory concentration, was for DPPH with IC50 =18.64 ppm and for H2 O2 with IC50 =9.35 ppm. The EO showed efficient bactericidal effect against both gram positive (Mycobacterium smegmatis, Staphylococcus aureus, Enterococcus faecium) and gram negative (Escherichia coli, Vibrio cholerae, Klebsiella pneumoniae) bacteria studied through well diffusion method. Fumigatory action of the essential oil was found against M. smegmatis, the model organism for tuberculosis study. Alamar Blue assay, gave a result with MIC value for M. smegmatis i. e., 0.12 μg/ml and the MBC value of 0.12 μg/ml. Hence, P. amboinicus found in Odisha can be suggested as an elite variety and should be further investigated for efficient administration in drug formulation.
Collapse
Affiliation(s)
- Biswajit Jena
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Bhagyashree Biswal
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Ashirbad Sarangi
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Alok Kumar Giri
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debapriya Bhattacharya
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Laxmikanta Acharya
- Molecular Biology and Genetic Engineering Lab, Center for Biotechnology, Siksha O Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| |
Collapse
|
43
|
Enzymatic Synthesis of Thymol Octanoate, a Promising Hybrid Molecule. Catalysts 2023. [DOI: 10.3390/catal13030473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Interest in the synthesis and application of thymol esters has increased in recent years due to the numerous applications associated with its biological activities. The enzymatic synthesis of thymol octanoate by esterification of thymol and octanoic acid was explored using soluble lipases and immobilized lipase biocatalysts in solvent-free systems. Candida antarctica lipase B in its soluble form was the most active biocatalyst for this reaction. Different thymol and lipase feeding strategies were evaluated to maximize thymol octanoate production. The results suggest that there could be lipase inhibition by the ester product of the reaction. In this way, the optimal reaction condition was given using a thymol/acid molar ratio of 1:4 mol/mol. Under these conditions the conversion of thymol was close to 94% and the lipase maintained more than 90% of its initial activity after the reaction, showing the potential of the enzyme to be used in successive reaction cycles.
Collapse
|
44
|
Martinez J, Ramírez C, Gil J, Quiñones W, Durango D. Antifungal activity against anthracnose-causing species of homopterocarpin derivatives. Heliyon 2023; 9:e13082. [PMID: 36798775 PMCID: PMC9925875 DOI: 10.1016/j.heliyon.2023.e13082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/30/2023] Open
Abstract
Derivatives of 3,9-dimethoxypterocarpan (1, homopterocarpin) were prepared by nitration, amination, and oxidation reactions, among others, and their antifungal activity was evaluated against the phytopathogenic fungi Colletotrichum gloeosporioides and C. lindemuthianum. Derivatives were purified by chromatographic techniques and identified by nuclear magnetic resonance spectroscopy. Eight derivatives were obtained from 1 corresponding to 3,9-dimethoxy-8-nitropterocarpan (2), 3,9-dimethoxy-2,8-dinitropterocarpan (3), 3,9-dimethoxy-2,8,10-trinitropterocarpan (4), 2,8-diamino-3,9-dimethoxypterocarpan (5), 3,9-dimethylcoumestan (6), medicarpin (7), 2'-hydroxy-4-(2-hydroxyethylsulfanyl)-7,4'-dimethoxyisoflavan (8), and 4-(2-hydroxyethylsulfanyl)-7,2',4'-trimethoxyisoflavan (9). The in vitro antifungal activity of the derivatives was determined at concentrations between 35 and 704 μM. Compounds 7 and 8 at 704 μM, showed an inhibition of radial growth and spore germination close to 100%, exceeding that found for the starting compound 1, which was 46%. Growth inhibition assays were also performed for the derivative 8 on papaya fruits (Carica papaya L. cv. Hawaiana) and mango (Mangifera indica L. cv. Hilacha) infected with C. gloeosporioides. Compound 8 showed fungal growth inhibition in fruits higher than that found for 1 and thymol (a recognized natural antifungal), under the same conditions. In general, derivatives that exhibited greater antifungal activity correspond to the compounds containing hydroxyl groups in the structure. Some of the compounds obtained could be considered promising for the control of phytopathogenic fungi.
Collapse
Affiliation(s)
- Janio Martinez
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia,Corresponding author.
| | - Cesar Ramírez
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia
| | - Jesús Gil
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias Agrarias, Departamento de Ingeniería Agrícola y Alimentos, Carrera 65, 59a-110, Medellín, Colombia
| | - Winston Quiñones
- Grupo de Química Orgánica de Productos Naturales, Instituto de Química, Universidad de Antioquia, Calle 70, Medellín P.O. Box 1226, Colombia
| | - Diego Durango
- Universidad Nacional de Colombia-Sede Medellín, Facultad de Ciencias, Escuela de Química, Carrera 65, 59a-110, Medellín, Colombia,Corresponding author.
| |
Collapse
|
45
|
Paiano RB, de Sousa RLM, Bonilla J, Moreno LZ, de Souza EDF, Baruselli PS, Moreno AM. In vitro effects of cinnamon, oregano, and thyme essential oils against Escherichia coli and Trueperella pyogenes isolated from dairy cows with clinical endometritis. Theriogenology 2023; 196:106-111. [PMID: 36413866 DOI: 10.1016/j.theriogenology.2022.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/11/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
Abstract
Clinical endometritis causes serious economic losses in dairy farms, mainly due to its negative health impact on fertility and milk production, as well as the additional costs of medicines used to treat the affected animals. The therapy for uterine diseases is principally performed with antibiotic treatment; however, its indiscriminate use in dairy herds can favor the increase in the resistance of pathogenic bacteria, leading to treatment failures. In this regard, the use of unconventional treatment may be a good option to reduce the use of antimicrobials in milk production. The objective of the present study was to evaluate the antibacterial activity of cinnamon, oregano, and thyme essential oils, and their combinations, against bovine uterine pathogens. The antibacterial activities of these essential oils were evaluated by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC), and Fractional Inhibitory Concentration (FIC) indices against Escherichia coli and Trueperella pyogenes, which were isolated from dairy cows with clinical endometritis. Among the essential oils evaluated, the lowest MIC and MBC values observed were obtained with cinnamon essential oil alone. The association among essential oils showed different kinds of interactions, and in some situations, antagonism was observed. This study demonstrated a promising antimicrobial activity of cinnamon's essential oil, indicating that it has excellent potential to be explored as a possible alternative in the treatment of clinical endometritis in dairy cows.
Collapse
Affiliation(s)
- Renan B Paiano
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil; Department of Population Medicine, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| | - Ricardo L M de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, 225 Duque de Caxias, Pirassununga, SP, 13635-900, Brazil
| | - Jeannine Bonilla
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, 225 Duque de Caxias, Pirassununga, SP, 13635-900, Brazil; Department of Food Science, University of Guelph, Guelph, ON, N1G2 W1, Canada
| | - Luisa Z Moreno
- Departamento de Medicina Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| | | | - Pietro S Baruselli
- Departamento de Reprodução Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| | - Andrea M Moreno
- Departamento de Medicina Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, 87 Professor Orlando Marques de Paiva Avenue, São Paulo, SP, 05508-01, Brazil
| |
Collapse
|
46
|
Tagnaout I, Zerkani H, Bencheikh N, Amalich S, Bouhrim M, Mothana RA, Alhuzani MR, Bouharroud R, Hano C, Zair T. Chemical Composition, Antioxidants, Antibacterial, and Insecticidal Activities of Origanum elongatum (Bonnet) Emberger & Maire Aerial Part Essential Oil from Morocco. Antibiotics (Basel) 2023; 12:antibiotics12010174. [PMID: 36671374 PMCID: PMC9855143 DOI: 10.3390/antibiotics12010174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/05/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
The aim of this research is to profile the chemical composition of the essential oil (EO) extracted from the aerial parts of Origanum elongatum (O. elongatum) and to evaluate its antioxidant, antibacterial and insecticidal activities on Ceratitis capitata adults. Gas chromatography coupled with mass spectrometry (GC/MS) revealed a total of 27 constituents in EO of O. elongatum, which accounted for 99.08% of its constituents. Carvacrol (57.32%) was a main component, followed by p-cymene (14.70%) and γ-terpinene (9.84%). The antioxidant activity of O. elongatum EO was investigated using DPPH (1,1-diphenyl-2-picrylhydrazyl), FRAP (Ferric reducing antioxidant power), and TCA (the total antioxidant capacity) methods. This EO exhibited a remarkable antiradical and reducing power against DPPH (IC50 = 2.855 ± 0.018μL/mL), FRAP (EC0.5 = 0.124 ± 0.013µL/mL) and TCA (IC50 = 14.099 ± 0.389 mg AAE/g of the EO). The antibacterial tests in vitro, using the disc and dilution methods, were carried out on nine pathogenic bacteria isolated from the hospital patients, such as Enterococcus faecalis, Serratia fonticola, Staphylococcus aureus, Acinétobacter baumannii, Klebsiella oxytoca, Klebsiella pneumoniae sensible, E.coli sensible, E.coli resistante, and Enterobacter aerogenes. The EO demonstrated a considerable antibacterial activity with minimum inhibitory concentrations (MIC) from 2 to 8 µL/mL against all strains except Staphylococcus aureus (MIC = 32 µL/mL). Regarding the insecticidal activity, the fumigation test indicated a high efficacy (100% mortality), and a lethal dose of LD50 = 17 ± 0.53 μL/L air was found after 24 h of exposureTherefore, O. elongatum EO could be utilized as a natural antioxidant, antibiotic and biopesticides.
Collapse
Affiliation(s)
- Imane Tagnaout
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
| | - Hannou Zerkani
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
| | - Noureddine Bencheikh
- Faculty of Sciences, University Mohammed First, Boulevard Mohamed VI BP 717, Oujda 60000, Morocco
- Correspondence: (N.B.); (T.Z.)
| | - Smail Amalich
- Laboratory of Phytochemistry, National Agency of Medicinal and Aromatic Plants of Taounate, Taounate 34012, Morocco
| | - Mohamed Bouhrim
- Laboratory of Biological Engineering, Team of Functional and Pathological Biology, Faculty of Sciences and Technology Beni Mellal, University Sultan Moulay Slimane, Beni-Mellal 23000, Morocco
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohammed R. Alhuzani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Rachid Bouharroud
- Integrated Crop Production Unit, Regional Center for Agronomic Research of Agadir, Agadir 80350, Morocco
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 28000 Chartres, France
| | - Touriya Zair
- Chemistry of Bioactive Molecules and the Environment, Faculty of Science, University Moulay Ismail, Zitoune Meknes B.P. 11201, Meknes 50050, Morocco
- Correspondence: (N.B.); (T.Z.)
| |
Collapse
|
47
|
Sakai T, Sakamoto JJ, Asada R, Furuta M, Tsuchido T. Different patterns of germination inhibition by carvacrol and thymol in Bacillus subtilis spores. JOURNAL OF MICROORGANISM CONTROL 2023; 28:3-13. [PMID: 37277956 DOI: 10.4265/jmc.28.1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study aimed to clarify how the phenolic monoterpene carvacrol and its structural isomer thymol both as essential oil components (EOCs) inhibit the germination of Bacillus subtilis spore. Germination was evaluated by the OD600 reduction rate in a growth medium and phosphate buffer containing either l-alanine (l-Ala) system or l-asparagine, d-glucose, d-fructose plus KCl (AGFK) system. The germination of the wild-type spores in the Trypticase Soy broth (TSB) was found to be greatly inhibited by thymol than by carvacrol. Such a difference in the germination inhibition was confirmed by the dipicolinic acid (DPA) release from germinating spores in the AGFK buffer system, but not in the l-Ala system. Similar to the wild-type spores, no difference in the inhibitory activity between the EOCs was also indicated with the gerB, gerK-deletion mutant spores in the l-Ala buffer system and the above substantial difference was also done with the gerA-deleted mutant spores in the AGFK. Fructose was found to release spores from the EOC inhibition and inversely even stimulated. Increased concentrations of glucose and fructose partially suppressed the germination inhibition by carvacrol. The results obtained should contribute to the elucidation of the control effects of these EOCs on bacterial spores in foods.
Collapse
Affiliation(s)
- Toshio Sakai
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
| | - Jin J Sakamoto
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Faculty of Chemistry, Materials, and Bioengineering, Kansai University
| | - Ryoko Asada
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University
| | - Masakazu Furuta
- Department of Quantum and Radiation Engineering, Graduate School of Engineering, Osaka Prefecture University
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
- Radiation Research Center, Organization for Research Promotion, Osaka Prefecture University
| | - Tetsuaki Tsuchido
- Research Center of Microorganism Control, Organization for Research Promotion, Osaka Prefecture University
| |
Collapse
|
48
|
Ijinu TP, Prabha B, Pushpangadan P, George V. Essential Oil-Derived Monoterpenes in Drug Discovery and Development. DRUG DISCOVERY AND DESIGN USING NATURAL PRODUCTS 2023:103-149. [DOI: 10.1007/978-3-031-35205-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
49
|
Corona-Gómez L, Hernández-Andrade L, Mendoza-Elvira S, Suazo FM, Ricardo-González DI, Quintanar-Guerrero D. In vitro antimicrobial effect of essential tea tree oil( Melaleuca alternifolia), thymol, and carvacrol on microorganisms isolated from cases of bovine clinical mastitis. Int J Vet Sci Med 2022; 10:72-79. [PMID: 36259046 PMCID: PMC9543160 DOI: 10.1080/23144599.2022.2123082] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Both Gram-negative and Gram-positive bacteria have recently developed antibiotic resistance to treatments for bovine mastitis, creating a serious concern for public and animal health. The objective of this study was to analyse in vitro microbicidal activity of tea tree oil, thymol and carvacrol (composed of oregano and thyme essential oils) on bacteria isolated from clinical mastitis. Field isolates and ATCC strains of the Staphylococcus spp, Streptococcus spp, Escherichia coli, Klebsiella pneumoniae, and Candida albicans genera were analysed. The agar diffusion technique was used to test bactericidal susceptibility and plate microdilution was utilized to determine the minimum inhibitory, bactericidal, and fractional inhibitory concentrations. Thymol alone and the combinations of thymol-carvacrol and thymol-TTO obtained the highest inhibition diameters for Gram-negative bacteria, while for Gram-positive bacteria and C. albicans, thymol and the combination thymol-carvacrol obtained the highest indices. TTO, thymol, and carvacrol had MIC values of 1.56–25 mg/ml, 0.05–0.4 mg/ml, and 0.02–0.2 mg/ml, respectively. CMB results for the Gram-negative and gram-positive groups were 0.39–0.78 mg/ml, and for C. albicans, 0.78–1.56 mg/ml. Results for the fractional inhibitory concentrations show that the TTO+thymol and thymol+carvacrol combinations had additive activity against groups of Gram-negative bacteria and C. albicans. These natural components, evaluated individually and in combinations, have an effectiveness above 70%.
Collapse
Affiliation(s)
- Lysett Corona-Gómez
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| | - Laura Hernández-Andrade
- Departamento de Bacteriología del Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa de Morelos, Cuautitlán Izcalli, México
| | - Susana Mendoza-Elvira
- Laboratorio de Microbiología y Virología de las Enfermedades Respiratorias del Cerdo, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli
| | | | - Daniel Israel Ricardo-González
- Departamento de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - David Quintanar-Guerrero
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli, México
| |
Collapse
|
50
|
Sreelatha S, Kumar N, Rajani S. Biological effects of Thymol loaded chitosan nanoparticles (TCNPs) on bacterial plant pathogen Xanthomonas campestris pv. campestris. Front Microbiol 2022; 13:1085113. [PMID: 36620059 PMCID: PMC9815552 DOI: 10.3389/fmicb.2022.1085113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Engineered nanomaterials can provide eco-friendly alternatives for crop disease management. Chitosan based nanoparticles has shown beneficial applications in sustainable agricultural practices and effective healthcare. Previously we demonstrated that Thymol loaded chitosan nanoparticles (TCNPs) showed bactericidal activity against Xanthomonas campestris pv campestris (Xcc), a bacterium that causes black rot disease in brassica crops. Despite the progress in assessing the antibacterial action of TCNPs, the knowledge about the molecular response of Xcc when exposed to TCNPs is yet to be explored. In the present study, we combined physiological, spectroscopic and untargeted metabolomics studies to investigate the response mechanisms in Xcc induced by TCNPs. Cell proliferation and membrane potential assays of Xcc cells exposed to sub-lethal concentration of TCNPs showed that TCNPs affects the cell proliferation rate and damages the cell membrane altering the membrane potential. FTIR spectroscopy in conjunction with untargeted metabolite profiling using mass spectrometry of TCNPs treated Xcc cells revealed alterations in amino acids, lipids, nucleotides, fatty acids and antioxidant metabolites. Mass spectroscopy analysis revealed a 10-25% increase in nucleic acid, fatty acids and antioxidant metabolites and a 20% increase in lipid metabolites while a decrease of 10-20% in amino acids and carbohydrates was seen in in TCNP treated Xcc cells. Overall, our results demonstrate that the major metabolic perturbations induced by TCNPs in Xcc are associated with membrane damage and oxidative stress, thus providing information on the mechanism of TCNPs mediated cytotoxicity. This will aid towards the development of nano- based agrochemicals as an alternative to chemical pesticides in future.
Collapse
|