1
|
Pattinson A, Bahia S, Le Gall G, Morris CJ, Harding SV, McArthur M. Using a multi-omic approach to investigate the mechanism of 12-bis-THA activity against Burkholderia thailandensis. Front Microbiol 2023; 13:1092230. [PMID: 37252207 PMCID: PMC10213367 DOI: 10.3389/fmicb.2022.1092230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/28/2022] [Indexed: 05/31/2023] Open
Abstract
Burkholderia pseudomallei is the causative agent of the tropical disease, melioidosis. It is intrinsically resistant to many antimicrobials and treatment requires an onerous regimen of intravenous and orally administered drugs. Relapse of disease and high rates of mortality following treatment are common, demonstrating the need for new anti-Burkholderia agents. The cationic bola-amphiphile, 12,12'-(dodecane-1,12-diyl) bis (9-amino-1,2,3,4-tetrahydroacridinium), referred to as 12-bis-THA, is a molecule with the potential to treat Burkholderia infections. 12-bis-THA spontaneously forms cationic nanoparticles that bind anionic phospholipids in the prokaryotic membrane and are readily internalized. In this study, we examine the antimicrobial activity of 12-bis-THA against strains of Burkholderia thailandensis. As B. pseudomallei produces a polysaccharide capsule we first examined if this extra barrier influenced the activity of 12-bis-THA which is known to act on the bacterial envelope. Therefore two strains of B. thailandensis were selected for further testing, strain E264 which does not produce a capsule and strain E555 which does produce a capsule that is chemically similar to that found in B. pseudomallei. In this study no difference in the minimum inhibitory concentration (MIC) was observed when capsulated (E555) and unencapsulated (E264) strains of B. thailandensis were compared, however time-kill analysis showed that the unencapsulated strain was more susceptible to 12-bis-THA. The presence of the capsule did not affect the membrane permeation of 12-bis-THA at MIC concentrations. Proteomic and metabolomic analyses showed that 12-bis-THA causes a shift in central metabolism away from glycolysis and glyoxylate cycle, and suppressed the production of the F1 domain of ATP synthase. In summary, we provide insight into the molecular mechanisms underpinning the activity of 12-bis-THA against B. thailandensis and discuss its potential for further development.
Collapse
Affiliation(s)
- Adam Pattinson
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | - Sandeep Bahia
- School of Pharmacy, University of East Anglia, Norwich, United Kingdom
| | - Gwénaëlle Le Gall
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| | | | - Sarah V. Harding
- CBR Division, Defense Science and Technology Laboratory, Salisbury, United Kingdom
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Michael McArthur
- Norwich Medical School, Bob Champion Building for Research and Education, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
2
|
Transcriptome profiling of Paraburkholderia aromaticivorans AR20-38 during ferulic acid bioconversion. AMB Express 2022; 12:148. [DOI: 10.1186/s13568-022-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/01/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractThe importance and need of renewable-based, sustainable feedstocks increased in recent years. Lignin-derived monomers have high potential, energetic and economic value in the microbial bioconversion to valuable biomolecules. The bacterium Paraburkholderia aromaticivorans AR20-38 produces a remarkable yield of vanillic acid from ferulic acid at moderate and low temperatures and is therefore a good candidate for biotechnological applications. To understand this bioconversion process on a molecular level, a transcriptomic study during the bioconversion process was conducted to elucidate gene expression patterns. Differentially expressed genes, cellular transporters as well as transcriptional factors involved in the bioconversion process could be described. Additional enzymes known for xenobiotic degradation were differentially expressed and a potential membrane vesicle mechanism was detected. The bioconversion mechanism on a transcriptional level of P. aromaticivorans could be elucidated and results can be used for strain optimization. Additionally, the transcriptome study showed the high potential of the strain for other degradation applications.
Collapse
|
3
|
Córdoba-Castro LA, Salgado-Morales R, Torres M, Martínez-Aguilar L, Lozano L, Vences-Guzmán MÁ, Guan Z, Dantán-González E, Serrano M, Sohlenkamp C. Ornithine Lipids in Burkholderia spp. Pathogenicity. Front Mol Biosci 2021; 7:610932. [PMID: 33469548 PMCID: PMC7814305 DOI: 10.3389/fmolb.2020.610932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
The genus Burkholderia sensu lato is composed of a diverse and metabolically versatile group of bacterial species. One characteristic thought to be unique for the genus Burkholderia is the presence of two forms each (with and without 2-hydroxylation) of the membrane lipids phosphatidylethanolamine (PE) and ornithine lipids (OLs). Here, we show that only Burkholderia sensu stricto strains constitutively form OLs, whereas all other analyzed strains belonging to the Burkholderia sensu lato group constitutively form the two forms of PE, but no OLs. We selected two model bacteria to study the function of OL in Burkholderia sensu lato: (1) Burkholderia cenocepacia wild-type which constitutively forms OLs and its mutant deficient in the formation of OLs and (2) Robbsia andropogonis (formerly Burkholderia andropogonis) which does not form OL constitutively, and a derived strain constitutively forming OLs. Both were characterized under free-living conditions and during pathogenic interactions with their respective hosts. The absence of OLs in B. cenocepacia slightly affected bacterial growth under specific abiotic stress conditions such as high temperature and low pH. B. cenocepacia lacking OLs caused lower mortality in Galleria mellonella larvae while R. andropogonis constitutively forming OLs triggers an increased formation of reactive oxygen species immediately after infection of maize leaves, suggesting that OLs can have an important role during the activation of the innate immune response of eukaryotes.
Collapse
Affiliation(s)
- Luz América Córdoba-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Centro de Ciencias Genómicas, Cuernavaca, Mexico
| | - Rosalba Salgado-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Luis Lozano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, United States
| | - Edgar Dantán-González
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Gaucher F, Rabah H, Kponouglo K, Bonnassie S, Pottier S, Dolivet A, Marchand P, Jeantet R, Blanc P, Jan G. Intracellular osmoprotectant concentrations determine Propionibacterium freudenreichii survival during drying. Appl Microbiol Biotechnol 2020; 104:3145-3156. [PMID: 32076782 PMCID: PMC7062905 DOI: 10.1007/s00253-020-10425-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/22/2019] [Accepted: 01/31/2020] [Indexed: 02/06/2023]
Abstract
Propionibacterium freudenreichii is a beneficial bacterium widely used in food as a probiotic and as a cheese-ripening starter. In these different applications, it is produced, dried, and stored before being used. Both freeze-drying and spray-drying were considered for this purpose. Freeze-drying is a discontinuous process that is energy-consuming but that allows high cell survival. Spray-drying is a continuous process that is more energy-efficient but that can lead to massive bacterial death related to heat, osmotic, and oxidative stresses. We have shown that P. freudenreichii cultivated in hyperconcentrated rich media can be spray-dried with limited bacterial death. However, the general stress tolerance conferred by this hyperosmotic constraint remained a black box. In this study, we modulated P. freudenreichii growth conditions and monitored both osmoprotectant accumulation and stress tolerance acquisition. Changing the ratio between the carbohydrates provided and non-protein nitrogen during growth under osmotic constraint modulated osmoprotectant accumulation. This, in turn, was correlated with P. freudenreichii tolerance towards different stresses, on the one hand, and towards freeze-drying and spray-drying, on the other. Surprisingly, trehalose accumulation correlated with spray-drying survival and glycine betaine accumulation with freeze-drying. This first report showing the ability to modulate the trehalose/GB ratio in osmoprotectants accumulated by a probiotic bacterium opens new perspectives for the optimization of probiotics production.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Bioprox, 6 rue Barbès, 92532, Levallois-Perret, France
| | - Houem Rabah
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, 35042, Rennes, France
| | | | - Sylvie Bonnassie
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.,Université de Rennes I, Rennes, France
| | - Sandrine Pottier
- CNRS, ISCR - UMR 6226, University Rennes, PRISM, BIOSIT - UMS 3480, 35000, Rennes, France
| | - Anne Dolivet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Romain Jeantet
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France
| | | | - Gwénaël Jan
- UMR STLO, INRAE, Agrocampus Ouest, 35042, Rennes, France.
| |
Collapse
|
5
|
Gaucher F, Gagnaire V, Rabah H, Maillard MB, Bonnassie S, Pottier S, Marchand P, Jan G, Blanc P, Jeantet R. Taking Advantage of Bacterial Adaptation in Order to Optimize Industrial Production of Dry Propionibacterium freudenreichii. Microorganisms 2019; 7:microorganisms7100477. [PMID: 31652621 PMCID: PMC6843336 DOI: 10.3390/microorganisms7100477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/22/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium, used both as a probiotic and as a cheese starter. Large-scale production of P. freudenreichii is required to meet growing consumers’ demand. Production, drying and storage must be optimized, in order to guarantee high P.freudenreichii viability within powders. Compared to freeze-drying, spray drying constitutes the most productive and efficient, yet the most stressful process, imposing severe oxidative and thermal constraints. The aim of our study was to provide the tools in order to optimize the industrial production of dry P.freudenreichii. Bacterial adaptation is a well-known protective mechanism and may be used to improve bacterial tolerance towards technological stresses. However, the choice of bacterial adaptation type must consider industrial constraints. In this study, we combined (i) modulation of the growth medium composition, (ii) heat-adaptation, and (iii) osmoadaptation, in order to increase P.freudenreichii tolerance towards technological stresses, including thermal and oxidative constraints, using an experimental design. We further investigated optimal growth and adaptation conditions, by monitoring intracellular compatible solutes accumulation. Glucose addition, coupled to heat-adaptation, triggered accumulation of trehalose and of glycine betaine, which further provided high tolerance towards spray drying and storage. This work opens new perspectives for high quality and fast production of live propionibacteria at the industrial scale.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Bioprox, 6 rue Barbès, 92532 Levallois-Perret, France.
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, F-35042 Rennes, France.
| | | | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
- Université de Rennes I, University Rennes, 35000 Rennes, France.
| | - Sandrine Pottier
- University Rennes, CNRS, ISCR-UMR 6226, PRISM, BIOSIT-UMS 3480, F-35000 Rennes, France.
| | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| | | | - Romain Jeantet
- UMR STLO, Agrocampus Ouest, INRA, F-35042 Rennes, France.
| |
Collapse
|
6
|
Moody S, Bull J, Dudley E, Loveridge E. The impact of combinatorial stress on the growth dynamics and metabolome of
Burkholderia mesoacidophila
demonstrates the complexity of tolerance mechanisms. J Appl Microbiol 2019; 127:1521-1531. [DOI: 10.1111/jam.14404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/15/2022]
Affiliation(s)
- S.C. Moody
- College of Science Swansea University Swansea UK
- School of Sport, Health and Social Sciences Solent University Southampton UK
| | - J.C. Bull
- College of Science Swansea University Swansea UK
| | - E. Dudley
- College of Medicine Swansea University Swansea UK
| | | |
Collapse
|
7
|
Zeidler S, Hubloher J, Schabacker K, Lamosa P, Santos H, Müller V. Trehalose, a temperature- and salt-induced solute with implications in pathobiology of Acinetobacter baumannii. Environ Microbiol 2017; 19:5088-5099. [PMID: 29124876 DOI: 10.1111/1462-2920.13987] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/03/2017] [Indexed: 01/01/2023]
Abstract
Acinetobacter baumannii is an opportunistic human pathogen that has become a global threat to healthcare institutions worldwide. A major factor contributing to success of this bacterium is its outstanding ability to survive on dry surfaces. The molecular basis for desiccation resistance is not completely understood. This study focused on growth under osmotic stress and aimed to identify the pool of compatible solutes synthesized in response to these low water activity conditions. A. baumannii produced mannitol as compatible solute, but in contrast to Acinetobacter baylyi, also trehalose was accumulated in response to increasing NaCl concentrations. The genome of A. baumannii encodes a trehalose-6-phosphate phosphatase (OtsB) and a trehalose-6-phosphate synthase (OtsA). Deletion of otsB abolished trehalose formation, demonstrating that otsB is essential for trehalose biosynthesis. Growth of the mutant was neither impaired at low salt nor at 500 mM NaCl, but it did not grow at high temperatures, indicating a dual function of trehalose in osmo- and thermoprotection. This led us to analyse temperature dependence of trehalose formation. Indeed, expression of otsB was not only induced by high osmolarity but also by high temperature. Concurrently, trehalose was accumulated in cells grown at high temperature. Taken together, these data point to an important role of trehalose in A. baumannii beyond osmoprotection.
Collapse
Affiliation(s)
- Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Josephine Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Kim Schabacker
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
8
|
Moreira AS, Lourenço AB, Sá-Correia I. 1H-NMR-Based Endometabolome Profiles of Burkholderia cenocepacia Clonal Variants Retrieved from a Cystic Fibrosis Patient during Chronic Infection. Front Microbiol 2016; 7:2024. [PMID: 28066350 PMCID: PMC5167703 DOI: 10.3389/fmicb.2016.02024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/02/2016] [Indexed: 12/21/2022] Open
Abstract
During cystic fibrosis (CF) chronic lung infections, bacteria of the Burkholderia cepacia complex (Bcc) are exposed for several years to a stressful and changing environment. These environmental challenges results in genetic changes of the initial infecting strain with the consequent diversification of genotypes and phenotypes. The exploitation of functional and comparative genomic approaches has suggested that such diversification is associated with massive metabolic remodeling but these alterations are poorly understood. In the present work, we have explored a high resolution 1H-NMR-based metabolomic approach coupled to multivariate analysis to compare the endometabolome of three B. cenocepacia clonal variants retrieved from a CF patient from the onset of infection (IST439) until death with cepacia syndrome after 3.5 years (IST4113 and IST4134), to complement former proteomic and transcriptomic analyses. A fourth clonal variant (IST4129) retrieved from the same CF patient when the clinical condition worsened during the last months of life, was also examined since it was found to lack the third replicon. The metabolomic profiles obtained, based on the complete 1H-NMR spectra, highlight the separation of the four clonal variants examined, the most distinct profile corresponding to IST4129. Results indicate a variable content of several amino acids in the different isolates examined and suggest that glycolysis and the glyoxylate shunt are favored in late variants. Moreover, the concentration of two metabolites with demonstrated cellular protective functions against stress, glycine-betaine and trehalose, is different in the different isolates examined. However, no clear correlation could be established between their content and stress tolerance. For example, IST4113, previously found to be the most resistant variant to antimicrobials of different classes, exhibits low levels of trehalose and glycine-betaine but the highest resistance to heat and oxidative stress. Also, IST4129, with a high level of glycine-betaine but lacking the third replicon, previously associated with stress resistance and virulence, exhibits the highest susceptibility to all the stresses tested. Taken together, results from this study provide insights into the metabolic diversification of B. cenocepacia clonal variants during long-term infection of the CF airways.
Collapse
Affiliation(s)
- Ana S Moreira
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa (ULISBOA) Lisbon, Portugal
| | - Artur B Lourenço
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa (ULISBOA) Lisbon, Portugal
| | - Isabel Sá-Correia
- Department of Bioengineering, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa (ULISBOA) Lisbon, Portugal
| |
Collapse
|
9
|
Shommu NS, Vogel HJ, Storey DG. Potential of metabolomics to reveal Burkholderia cepacia complex pathogenesis and antibiotic resistance. Front Microbiol 2015. [PMID: 26217312 PMCID: PMC4499752 DOI: 10.3389/fmicb.2015.00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Burkholderia cepacia complex (Bcc) is a collection of closely related, genetically distinct, ecologically diverse species known to cause life-threatening infections in cystic fibrosis (CF) patients. By virtue of a flexible genomic structure and diverse metabolic activity, Bcc bacteria employ a wide array of virulence factors for pathogenesis in CF patients and have developed resistance to most of the commonly used antibiotics. However, the mechanism of pathogenesis and antibiotic resistance is still not fully understood. This mini review discusses the established and potential virulence determinants of Bcc and some of the contemporary strategies including transcriptomics and proteomics used to identify these traits. We also propose the application of metabolic profiling, a cost-effective modern-day approach to achieve new insights.
Collapse
Affiliation(s)
- Nusrat S Shommu
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| | - Douglas G Storey
- Microbiology Research Group, Department of Biological Sciences, University of Calgary , Calgary, AB, Canada
| |
Collapse
|
10
|
Isern NG, Xue J, Rao JV, Cort JR, Ahring BK. Novel monosaccharide fermentation products in Caldicellulosiruptor saccharolyticus identified using NMR spectroscopy. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:47. [PMID: 23552326 PMCID: PMC3637100 DOI: 10.1186/1754-6834-6-47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/07/2013] [Indexed: 05/30/2023]
Abstract
BACKGROUND Caldicellulosiruptor saccharolyticus is a thermophilic, Gram-positive, non-spore forming, strictly anaerobic bacterium of interest in potential industrial applications, including the production of biofuels such as hydrogen or ethanol from lignocellulosic biomass through fermentation. High-resolution, solution-state nuclear magnetic resonance (NMR) spectroscopy is a useful method for the identification and quantification of metabolites that result from growth on different substrates. NMR allows facile resolution of isomeric (identical mass) constituents and does not destroy the sample. RESULTS Profiles of metabolites produced by the thermophilic cellulose-degrading bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. One dimensional 1H NMR spectral analysis was performed by curve fitting against spectral libraries provided in the Chenomx software; 2-D homonuclear and heteronuclear NMR experiments were conducted to further reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose), acetoin and 2,3-butanediol (from growth on D-glucose, L-arabinose, and D-xylose), and hydroxyacetone (from growth on D-mannose, L-arabinose, and D-xylose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. CONCLUSIONS The present research shows that C. saccharolyticus, already of substantial interest due to its capability for biological ethanol and hydrogen production, has further metabolic potential for production of higher molecular weight compounds, such as acetoin and 2,3-butanediol, as well as hydroxyacetone and the uncommon fermentation product ethylene glycol. In addition, application of nuclear magnetic resonance (NMR) spectroscopy facilitates identification of novel metabolites, which is instrumental for production of desirable bioproducts from biomass through microbial fermentation.
Collapse
Affiliation(s)
- Nancy G Isern
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Junfeng Xue
- Center for Bioproducts and Bioenergy, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - Jaya V Rao
- Center for Bioproducts and Bioenergy, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| | - John R Cort
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, PO Box 999, MSIN: K8-98, Richland, WA, 99352, USA
| | - Birgitte K Ahring
- Center for Bioproducts and Bioenergy, Washington State University, 2710 Crimson Way, Richland, WA, 99354, USA
| |
Collapse
|
11
|
Behrends V, Williams KJ, Jenkins VA, Robertson BD, Bundy JG. Free Glucosylglycerate Is a Novel Marker of Nitrogen Stress in Mycobacterium smegmatis. J Proteome Res 2012; 11:3888-96. [DOI: 10.1021/pr300371b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Volker Behrends
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Kerstin J. Williams
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Victoria A. Jenkins
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Brian D. Robertson
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| | - Jacob G. Bundy
- Biomolecular Medicine, Department of Surgery and Cancer and ‡MRC Centre for
Molecular Bacteriology and Infection, Department of Medicine, Imperial College, London SW7 2AZ, U.K
| |
Collapse
|
12
|
Coutinho CP, dos Santos SC, Madeira A, Mira NP, Moreira AS, Sá-Correia I. Long-term colonization of the cystic fibrosis lung by Burkholderia cepacia complex bacteria: epidemiology, clonal variation, and genome-wide expression alterations. Front Cell Infect Microbiol 2011; 1:12. [PMID: 22919578 PMCID: PMC3417363 DOI: 10.3389/fcimb.2011.00012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 11/15/2011] [Indexed: 01/06/2023] Open
Abstract
Long-term respiratory infections with Burkholderia cepacia complex (Bcc) bacteria in cystic fibrosis (CF) patients generally lead to a more rapid decline in lung function and, in some cases, to a fatal necrotizing pneumonia known as the "cepacia syndrome." Bcc bacteria are ubiquitous in the environment and are recognized as serious opportunistic pathogens that are virtually impossible to eradicate from the CF lung, posing a serious clinical threat. The epidemiological survey of Bcc bacteria involved in respiratory infections at the major Portuguese CF Treatment Center at Santa Maria Hospital, in Lisbon, has been carried out by our research group for the past 16 years, covering over 500 clinical isolates where B. cepacia and B. cenocepacia are the predominant species, with B. stabilis, B. contaminans, B. dolosa, and B. multivorans also represented. The systematic and longitudinal study of this CF population during such an extended period of time represents a unique case-study, comprehending 41 Bcc-infected patients (29 pediatric and 12 adult) of whom around 70% have been persistently colonized between 7 months and 9 years. During chronic infection, the CF airways represent an evolving ecosystem, with multiple phenotypic variants emerging from the clonal population and becoming established in the patients' airways as the result of genetic adaptation. Understanding the evolutionary mechanisms involved is crucial for an improved therapeutic outcome of chronic infections in CF. This review focuses on our contribution to the understanding of these adaptive mechanisms based on extensive phenotypic, genotypic, and genome-wide expression approaches of selected Bcc clonal variants obtained during long-term colonization of the CF airways.
Collapse
Affiliation(s)
- Carla P. Coutinho
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Sandra C. dos Santos
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Andreia Madeira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Nuno P. Mira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Ana S. Moreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
- Department of Bioengineering, Instituto Superior Técnico, Technical University of LisbonLisbon, Portugal
| |
Collapse
|