1
|
Vargas-Luna C, Godoy L, Benavides S, Ceppi de Lecco C, Urtubia A, Franco W. Screening and Selection of Native Lactic Acid Bacteria Isolated from Chilean Grapes. Foods 2025; 14:143. [PMID: 39796433 PMCID: PMC11720079 DOI: 10.3390/foods14010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/24/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025] Open
Abstract
The aim of this study was investigating the biological diversity of lactic acid bacteria isolated from Chilean grapes and identifying potential candidates for use as malolactic fermentation starter cultures. The isolated bacteria underwent a comprehensive six-stage screening process, which was mutually exclusive except for the evaluation of tyramine production and citric acid intake. This process included morphological, metabolic, fermentation yield, and resistance tests to identify promising malolactic strains. Morphological assessments led to the selection of 23 isolates, which were genetically identified as Levilactobacillus brevis (65% abundance) and Leuconostoc mesenteroides (35% abundance). Among these, eight strains exhibited low sugar metabolism rates, while three demonstrated competitive growth and malolactic activity in a synthetic medium containing 10% ethanol, outperforming a commercial strain. Low consumption was observed in the qualitative citric acid intake test, whereas a positive response was noted for tyramine production. At the conclusion of the sequential selection criteria, Levilactobacillus brevis BCV-46 exhibited the most favorable characteristics for potential use as a malolactic starter culture, successfully withstanding the combined stress factors of ethanol, pH, and SO2.
Collapse
Affiliation(s)
- Carla Vargas-Luna
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile;
| | - Liliana Godoy
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (L.G.); (C.C.d.L.)
| | - Sergio Benavides
- Carrera de Nutrición y Dietética, Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastina, Campus Las Tres Pascualas, Lientur 1457, Concepción 4080871, Chile;
| | - Consuelo Ceppi de Lecco
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile; (L.G.); (C.C.d.L.)
| | - Alejandra Urtubia
- Departamento de Ingeniería Química Medio Ambiental, Universidad Técnico Federico Santa María, Av. 12 España 1680, Valparaíso 2390123, Chile;
| | - Wendy Franco
- Departamento de Ingeniería Química y Bioprocesos, Pontificia Universidad Católica de Chile, Santiago 6904411, Chile;
| |
Collapse
|
2
|
Zamanian MY, Nazifi M, Khachatryan LG, Taheri N, Ivraghi MS, Menon SV, Husseen B, Prasad KDV, Petkov I, Nikbakht N. The Neuroprotective Effects of Agmatine on Parkinson's Disease: Focus on Oxidative Stress, Inflammation and Molecular Mechanisms. Inflammation 2024:10.1007/s10753-024-02139-7. [PMID: 39225914 DOI: 10.1007/s10753-024-02139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Agmatine (AGM), a naturally occurring polyamine derived from L-arginine, has shown significant potential for neuroprotection in Parkinson's Disease (PD) due to its multifaceted biological activities, including antioxidant, anti-inflammatory, and anti-apoptotic effects. This review explores the therapeutic potential of AGM in treating PD, focusing on its neuroprotective mechanisms and evidence from preclinical studies. AGM has been demonstrated to mitigate the neurotoxic effects of rotenone (ROT) by improving motor function, reducing oxidative stress markers, and decreasing levels of pro-inflammatory cytokines in animal models. Additionally, AGM protects against the loss of TH + neurons, crucial for dopamine synthesis. The neuroprotective properties of AGM are attributed to its ability to modulate several key pathways implicated in PD pathogenesis, such as inhibition of NMDA receptors, activation of Nrf2, and suppression of the HMGB1/ RAGE/ TLR4/ MyD88/ NF-κB signaling cascade. Furthermore, the potential of agmatine to promote neurorestoration is highlighted by its role in enhancing neuroplasticity elements such as CREB, BDNF, and ERK1/2. This review highlights agmatine's promising therapeutic potential in PD management, suggesting that it could offer both symptomatic relief and neuroprotective benefits, thereby modifying the disease course and improving the quality of life for patients. Further research is warranted to translate these preclinical findings into clinical applications.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, 6718773654, Iran.
| | - Mozhgan Nazifi
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Lusine G Khachatryan
- Department of Pediatric Diseases, Filatov Clinical Institute of Children's Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), N.F, Moscow, Russia
| | - Niloofar Taheri
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Soumya V Menon
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| | - K D V Prasad
- Symbiosis Institute of Business Management, Hyderabad, India
- Symbiosis International (Deemed University), Pune, India
| | - Iliya Petkov
- Department of Neurology, Medical University - Sofia, Sofia, Bulgaria
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Lee JH, Jin YH, Lee JH, Park YK, Mah JH. Determination of biogenic amine-producing lactic acid bacteria in kimchi varieties through in vitro analysis and low temperature fermentation. Food Sci Biotechnol 2024; 33:2301-2312. [PMID: 39145125 PMCID: PMC11319551 DOI: 10.1007/s10068-024-01627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/31/2024] [Indexed: 08/16/2024] Open
Abstract
This study analyzed biogenic amine (BA) content in three varieties (types) of kimchi (Baechu kimchi, Baek kimchi, and Yeolmu kimchi), identified the causative bacteria, and evaluated the gene expression associated with the BA formation during kimchi fermentation at 4 °C. Histamine content exceeding the toxicity limit was detected in a single Baechu kimchi product. Tyramine content in most Baechu kimchi products was approximately half of the toxicity limit. Other varieties had relatively lower BA content. Most BA producers isolated from all kimchi varieties were identified as Levilactobacillus brevis, which prominently produced tyramine. To clarify the role of L. brevis in tyramine formation in Baechu kimchi, fermentation experiments were performed using L. brevis BC1M20. The results showed that tyramine content and tyrosine decarboxylase gene (tdc) expression were higher in the inoculated kimchi than in the control. In addition, in the inoculated kimchi, the content decreased while the expression level was almost constant. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01627-8.
Collapse
Affiliation(s)
- Jae Hoan Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
| | - Young Hun Jin
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
| | - Jun-Hee Lee
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
| | - Young Kyoung Park
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
| | - Jae-Hyung Mah
- Department of Food and Biotechnology, Korea University, 2511 Sejong-ro, Sejong, 30019 Republic of Korea
| |
Collapse
|
4
|
Zeng J, Sheng F, Hu X, Huang Z, Tian X, Wu Z. Nutrition promotion of brewer's spent grain by symbiotic fermentation adding Bacillus velezensis and Levilactobacillus brevis. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
5
|
Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China. Foods 2022; 11:foods11152353. [PMID: 35954119 PMCID: PMC9367719 DOI: 10.3390/foods11152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Eighteen strains of lactic acid bacteria were isolated from spontaneously fermented sour porridge with broomcorn millet in Northwestern Shanxi Province of China, and their probiotic characteristics were investigated in vitro. Survival rates under gastrointestinal conditions, cholesterol reduction, antibacterial capabilities, antioxidant activities, and safety assessments were examined. Results showed that five strains were selected as probiotics and identified as Levilactobacillusbrevis. Strain L10 exhibited excellent probiotic characteristics, with an 86% survival rate under pH 2.0 for 2 h, 80% survival rate in 0.3% bile salt for 6 h, the highest survival rate (78%) in simulated gastrointestinal juice for 3 h, the highest hydrophobicity (42% to xylene and 39% to hexadecane), the highest aggregation (39% auto-aggregation and 10.4–18.13% co-aggregation), relative higher cholesterol reduction rate (80%), the highest antibacterial activities, the highest antioxidant activity, sensitive to most antibiotics tested, without hemolytic and hydrolyze gelatinase activity and could not produce biogenic amine. Therefore, strain L10 could be applied to functional foods.
Collapse
|
6
|
Biodiversity of Oenological Lactic Acid Bacteria: Species- and Strain-Dependent Plus/Minus Effects on Wine Quality and Safety. FERMENTATION 2021. [DOI: 10.3390/fermentation7010024] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Winemaking depends on several elaborate biochemical processes that see as protagonist either yeasts or lactic acid bacteria (LAB) of oenological interest. In particular, LAB have a fundamental role in determining the quality chemical and aromatic properties of wine. They are essential not only for malic acid conversion, but also for producing several desired by-products due to their important enzymatic activities that can release volatile aromatic compounds during malolactic fermentation (e.g., esters, carbonyl compounds, thiols, monoterpenes). In addition, LAB in oenology can act as bioprotectors and reduce the content of undesired compounds. On the other hand, LAB can affect wine consumers’ health, as they can produce harmful compounds such as biogenic amines and ethyl carbamate under certain conditions during fermentation. Several of these positive and negative properties are species- and strain-dependent characteristics. This review focuses on these aspects, summarising the current state of knowledge on LAB’s oenological diversity, and highlighting their influence on the final product’s quality and safety. All our reported information is of high interest in searching new candidate strains to design starter cultures, microbial resources for traditional/typical products, and green solutions in winemaking. Due to the continuous interest in LAB as oenological bioresources, we also underline the importance of inoculation timing. The considerable variability among LAB species/strains associated with spontaneous consortia and the continuous advances in the characterisation of new species/strains of interest for applications in the wine sector suggest that the exploitation of biodiversity belonging to this heterogeneous group of bacteria is still rising.
Collapse
|
7
|
Arena MP, Capozzi V, Longo A, Russo P, Weidmann S, Rieu A, Guzzo J, Spano G, Fiocco D. The Phenotypic Analysis of Lactobacillus plantarum shsp Mutants Reveals a Potential Role for hsp1 in Cryotolerance. Front Microbiol 2019; 10:838. [PMID: 31114549 PMCID: PMC6503756 DOI: 10.3389/fmicb.2019.00838] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/01/2019] [Indexed: 11/23/2022] Open
Abstract
Small heat shock proteins (sHSPs) are ubiquitous, low molecular weight (MW) proteins that share a conserved alpha-crystallin domain. sHSPs oligomers exhibit chaperon-like activities by interacting with unfolded substrates, thereby preventing their aggregation and precipitation. Unlike most lactobacilli, which have single shsp genes, three different sHSP-encoding genes, i.e., hsp1, hsp2, and hsp3, were previously identified in the probiotic Lactobacillus plantarum WCFS1. Early studies, including the characterization of the knock out (KO) mutant for hsp2, indicated a different organization and transcriptional regulation of these genes and suggested that the three L. plantarum sHSPs might accomplish different tasks in stress response. To unravel the role of sHSPs, KO mutants of hsp1 and hsp3 were generated using a Cre-lox based system. Mutation of either genes resulted in impaired growth capacity under normal conditions, heat-stress and stresses typically found during host interactions and food technological process. However, survival to heat shock and the level of thermal stabilization of cytoplasmic proteins were similar between mutants and parental strain. Transcriptional analysis revealed that in the mutant genetic backgrounds there is an upregulated basal expression of the un-mutated mate hsps and other stress-related genes, which may compensate for the loss of HSP function, hence possibly accounting for the lack of a remarkable susceptibility to heat challenge. HSP3 seemed relevant for the induction of thermotolerance, while HSP1 was required for improved cryotolerance. Cell surface properties and plasma membrane fluidity were investigated to ascertain the possible membrane association of sHSP. Intriguingly, the loss of hsp1 was associated to a lower level of maximal membrane fluidity upon heat stress. A role for HSP1 in controlling and improving membrane fluidity is suggested which may pertains its cryoprotective function.
Collapse
Affiliation(s)
- Mattia Pia Arena
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Angela Longo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Stephanie Weidmann
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Aurélie Rieu
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Jean Guzzo
- Univ. Bourgogne Franche-comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Giuseppe Spano
- Department of Agriculture, Food and Environment Sciences, University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| |
Collapse
|
8
|
Barbieri F, Montanari C, Gardini F, Tabanelli G. Biogenic Amine Production by Lactic Acid Bacteria: A Review. Foods 2019; 8:E17. [PMID: 30621071 PMCID: PMC6351943 DOI: 10.3390/foods8010017] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 01/02/2019] [Indexed: 12/12/2022] Open
Abstract
Lactic acid bacteria (LAB) are considered as the main biogenic amine (BA) producers in fermented foods. These compounds derive from amino acid decarboxylation through microbial activities and can cause toxic effects on humans, with symptoms (headache, heart palpitations, vomiting, diarrhea) depending also on individual sensitivity. Many studies have focused on the aminobiogenic potential of LAB associated with fermented foods, taking into consideration the conditions affecting BA accumulation and enzymes/genes involved in the biosynthetic mechanisms. This review describes in detail the different LAB (used as starter cultures to improve technological and sensorial properties, as well as those naturally occurring during ripening or in spontaneous fermentations) able to produce BAs in model or in real systems. The groups considered were enterococci, lactobacilli, streptococci, lactococci, pediococci, oenococci and, as minor producers, LAB belonging to Leuconostoc and Weissella genus. A deeper knowledge of this issue is important because decarboxylase activities are often related to strains rather than to species or genera. Moreover, this information can help to improve the selection of strains for further applications as starter or bioprotective cultures, in order to obtain high quality foods with reduced BA content.
Collapse
Affiliation(s)
- Federica Barbieri
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
| | - Fausto Gardini
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena 47521, Italy.
- Department of Agricultural and Food Sciences, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
9
|
Bargossi E, Tabanelli G, Montanari C, Gatto V, Chinnici F, Gardini F, Torriani S. Growth, biogenic amine production and tyrDC transcription of Enterococcus faecalis in synthetic medium containing defined amino acid concentrations. J Appl Microbiol 2017; 122:1078-1091. [PMID: 28117533 DOI: 10.1111/jam.13406] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/22/2016] [Accepted: 01/18/2017] [Indexed: 11/30/2022]
Abstract
AIMS The tyraminogenic potential of the strains Enterococcus faecalis EF37 and ATCC 29212 was investigated in a synthetic medium containing defined amounts of tyrosine and phenylalanine at different temperatures. METHODS AND RESULTS Enterococci growth and the production of biogenic amines (BA) were evaluated in relation to their pre-growth in medium containing tyrosine. Significant differences between the two strains were evidenced at metabolic level. Both the pre-adapted strains grew faster in all the tested conditions, independently of the presence of the precursor. Temperatures of 30 and 40°C positively affected the growth parameters. The tyrosine decarboxylase (tyrDC) activity of the strain EF37 was positively affected by pre-adaptation, while ATCC 29212 showed a faster and higher tyramine accumulation with not-adapted cells. The expression analysis of the gene tyrDC confirmed the influence of the growth conditions on gene transcription. CONCLUSIONS The small differences found between the two strains in the maximum transcript level reached rapidly after the inoculum and the different behaviour in the tyramine accumulation suggested the possible involvement of complex regulation mechanisms on the tyrDC or on the membrane transport systems, which could affect the different BA accumulation trend. SIGNIFICANCE AND IMPACT OF THE STUDY This study gives deeper insight into the metabolic regulation of tyrDC activity of enterococci.
Collapse
Affiliation(s)
- E Bargossi
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - G Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - C Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - V Gatto
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| | - F Chinnici
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy
| | - F Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Cesena (FC), Italy.,Interdepartmental Center for Industrial Agri-Food Research, University of Bologna, Cesena (FC), Italy
| | - S Torriani
- Department of Biotechnology, University of Verona, Verona (VR), Italy
| |
Collapse
|
10
|
Redruello B, Ladero V, del Rio B, Fernández M, Martin M, Alvarez MA. A UHPLC method for the simultaneous analysis of biogenic amines, amino acids and ammonium ions in beer. Food Chem 2017; 217:117-124. [DOI: 10.1016/j.foodchem.2016.08.040] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 07/08/2016] [Accepted: 08/13/2016] [Indexed: 10/21/2022]
|
11
|
Ladero V, Martín MC, Redruello B, Mayo B, Flórez AB, Fernández M, Alvarez MA. Genetic and functional analysis of biogenic amine production capacity among starter and non-starter lactic acid bacteria isolated from artisanal cheeses. Eur Food Res Technol 2015. [DOI: 10.1007/s00217-015-2469-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Bargossi E, Tabanelli G, Montanari C, Lanciotti R, Gatto V, Gardini F, Torriani S. Tyrosine decarboxylase activity of enterococci grown in media with different nutritional potential: tyramine and 2-phenylethylamine accumulation and tyrDC gene expression. Front Microbiol 2015; 6:259. [PMID: 25914676 PMCID: PMC4392317 DOI: 10.3389/fmicb.2015.00259] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 03/16/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.
Collapse
Affiliation(s)
- Eleonora Bargossi
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy
| | - Giulia Tabanelli
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Chiara Montanari
- Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy
| | - Veronica Gatto
- Department of Biotechnology, University of Verona Verona, Italy
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna Cesena, Italy ; Interdepartmental Center for Industrial Agri-Food Research, University of Bologna Cesena, Italy
| | - Sandra Torriani
- Department of Biotechnology, University of Verona Verona, Italy
| |
Collapse
|
13
|
Garofalo C, El Khoury M, Lucas P, Bely M, Russo P, Spano G, Capozzi V. Autochthonous starter cultures and indigenous grape variety for regional wine production. J Appl Microbiol 2015; 118:1395-408. [DOI: 10.1111/jam.12789] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 02/24/2015] [Accepted: 03/02/2015] [Indexed: 11/30/2022]
Affiliation(s)
- C. Garofalo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - M. El Khoury
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Lucas
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - M. Bely
- University of Bordeaux; ISVV; Villenave d'Ornon France
| | - P. Russo
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - G. Spano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| | - V. Capozzi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente; Università di Foggia; Foggia Italy
| |
Collapse
|
14
|
Zhang F, Xue J, Wang D, Wang Y, Zou H, Zhu B. Dynamic changes of the content of biogenic amines in Chinese rice wine during the brewing process. JOURNAL OF THE INSTITUTE OF BREWING 2013. [DOI: 10.1002/jib.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fengjie Zhang
- China National Research Institute of Food and Fermentation Industries; Beijing 100027 China
| | - Jie Xue
- China National Research Institute of Food and Fermentation Industries; Beijing 100027 China
| | - Deliang Wang
- China National Research Institute of Food and Fermentation Industries; Beijing 100027 China
| | - Yijing Wang
- China National Research Institute of Food and Fermentation Industries; Beijing 100027 China
| | - Huijun Zou
- Key Laboratory of Technology and Equipment for Chinese Rice Wine, Zhejiang Province; China Shaoxing Rice Wine Group Co. Ltd; Shaoxing 312000 China
| | - Baoqing Zhu
- Department of Food Science and Engineering; College of Biological Sciences and Technology; Beijing Forestry University; Beijing 100083 China
| |
Collapse
|
15
|
Sciancalepore AG, Mele E, Arcadio V, Reddavide F, Grieco F, Spano G, Lucas P, Mita G, Pisignano D. Microdroplet-based multiplex PCR on chip to detect foodborne bacteria producing biogenic amines. Food Microbiol 2013; 35:10-4. [DOI: 10.1016/j.fm.2013.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 02/06/2013] [Accepted: 02/14/2013] [Indexed: 11/24/2022]
|
16
|
Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. Food Microbiol 2013; 36:335-42. [PMID: 24010615 DOI: 10.1016/j.fm.2013.07.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 06/04/2013] [Accepted: 07/02/2013] [Indexed: 11/20/2022]
Abstract
This work is the first large-scale study on vineyard-associated yeast strains from Apulia (Southern Italy). Yeasts were identified by Internal Transcribed Spacer (ITS) ribotyping and bioinformatic analysis. The polymorphism of interdelta elements was used to differentiate Saccharomyces cerevisiae strains. Twenty different species belonging to 9 genera were identified. Predominant on the grape surface were Metschnikowia pulcherrima, Hanseniaspora uvarum and Aureobasidium pullulans, whereas M. pulcherrima and H. uvarum were dominant in the early fermentation stage. A total of 692 S. cerevisiae isolates were identified and a number of S. cerevisiae strains, ranging from 26 to 55, was detected in each of the eight fermentations. The strains were tested for biogenic amines (BAs) production, either in synthetic media or grape must. Two Pichia manshurica, an Issatchenkia terricola and a M. pulcherrima strains were able to produce histamine and cadaverine, during must fermentation. The production of BAs in wine must was different than that observed in the synthetic medium. This feature indicate the importance of an "in grape must" assessment of BAs producing yeast. Overall, our results suggest the importance of microbiological control during wine-making to reduce the potential health risk for consumer represented by these spoilage yeasts.
Collapse
|
17
|
|
18
|
Bokulich NA, Mills DA. Next-generation approaches to the microbial ecology of food fermentations. BMB Rep 2012; 45:377-89. [PMID: 22831972 DOI: 10.5483/bmbrep.2012.45.7.148] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Food fermentations have enhanced human health since the dawn of time and remain a prevalent means of food processing and preservation. Due to their cultural and nutritional importance, many of these foods have been studied in detail using molecular tools, leading to enhancements in quality and safety. Furthermore, recent advances in high-throughput sequencing technology are revolutionizing the study of food microbial ecology, deepening insight into complex fermentation systems. This review provides insight into novel applications of select molecular techniques, particularly next-generation sequencing technology, for analysis of microbial communities in fermented foods. We present a guideline for integrated molecular analysis of food microbial ecology and a starting point for implementing next-generation analysis of food systems.
Collapse
Affiliation(s)
- Nicholas A Bokulich
- Department of Viticulture and Enology, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
19
|
Russo P, Fernández de Palencia P, Romano A, Fernández M, Lucas P, Spano G, López P. Biogenic amine production by the wine Lactobacillus brevis IOEB 9809 in systems that partially mimic the gastrointestinal tract stress. BMC Microbiol 2012; 12:247. [PMID: 23113922 PMCID: PMC3499163 DOI: 10.1186/1471-2180-12-247] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/18/2012] [Indexed: 11/21/2022] Open
Abstract
Background Ingestion of fermented foods containing high levels of biogenic amines (BA) can be deleterious to human health. Less obvious is the threat posed by BA producing organisms contained within the food which, in principle, could form BA after ingestion even if the food product itself does not initially contain high BA levels. In this work we have investigated the production of tyramine and putrescine by Lactobacillus brevis IOEB 9809, of wine origin, under simulated gastrointestinal tract (GIT) conditions. Results An in vitro model that simulates the normal physiological conditions in the human digestive tract, as well as Caco-2 epithelial human cell lines, was used to challenge L. brevis IOEB 9809, which produced both tyramine and putrescine under all conditions tested. In the presence of BA precursors and under mild gastric stress, a correlation between enhancement of bacterial survival and a synchronous transcriptional activation of the tyramine and putrescine biosynthetic pathways was detected. High levels of both BA were observed after exposure of the bacterium to Caco-2 cells. Conclusions L. brevis IOEB 9809 can produce tyramine and putrescine under simulated human digestive tract conditions. The results indicate that BA production may be a mechanism that increases bacterial survival under gastric stress.
Collapse
Affiliation(s)
- Pasquale Russo
- Department of Molecular Microbiology and Infection Biology, Centro de Investigaciones Biológicas, C.S.I.C., Ramiro de Maeztu 9, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
20
|
Capozzi V, Russo P, Ladero V, Fernández M, Fiocco D, Alvarez MA, Grieco F, Spano G. Biogenic Amines Degradation by Lactobacillus plantarum: Toward a Potential Application in Wine. Front Microbiol 2012; 3:122. [PMID: 22485114 PMCID: PMC3316997 DOI: 10.3389/fmicb.2012.00122] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 03/14/2012] [Indexed: 11/13/2022] Open
Abstract
Biogenic amines (BA) in wine represent a toxicological risk for the health of the consumer, with several trade implications. In this study 26 strains of Lactobacillus plantarum were analyzed for their ability to degrade BA commonly found during wine fermentation. Two strains of L. plantarum were selected in reason of their ability to degrade putrescine and tyramine. The degradation was assessed in vitro, both in presence of the BA and in presence of the specific chemical precursor and of producer bacteria. The two L. plantarum biotypes were found capable to work synergically. In addition, the survival in wine-like medium and the aptitude to degrade malic acid after alcoholic fermentation of the selected L. plantarum strains was analyzed. Our results suggest the potential application of wine L. plantarum strains to design malolactic starter cultures able to degrade BA in wine.
Collapse
|
21
|
Barata A, Malfeito-Ferreira M, Loureiro V. The microbial ecology of wine grape berries. Int J Food Microbiol 2011; 153:243-59. [PMID: 22189021 DOI: 10.1016/j.ijfoodmicro.2011.11.025] [Citation(s) in RCA: 383] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 10/28/2011] [Accepted: 11/27/2011] [Indexed: 11/29/2022]
Abstract
Grapes have a complex microbial ecology including filamentous fungi, yeasts and bacteria with different physiological characteristics and effects upon wine production. Some species are only found in grapes, such as parasitic fungi and environmental bacteria, while others have the ability to survive and grow in wines, constituting the wine microbial consortium. This consortium covers yeast species, lactic acid bacteria and acetic acid bacteria. The proportion of these microorganisms depends on the grape ripening stage and on the availability of nutrients. Grape berries are susceptible to fungal parasites until véraison after which the microbiota of truly intact berries is similar to that of plant leaves, which is dominated by basidiomycetous yeasts (e.g. Cryptococcus spp., Rhodotorula spp. Sporobolomyces spp.) and the yeast-like fungus Aureobasidium pullulans. The cuticle of visually intact berries may bear microfissures and softens with ripening, increasing nutrient availability and explaining the possible dominance by the oxidative or weakly fermentative ascomycetous populations (e.g. Candida spp., Hanseniaspora spp., Metschnikowia spp., Pichia spp.) approaching harvest time. When grape skin is clearly damaged, the availability of high sugar concentrations on the berry surface favours the increase of ascomycetes with higher fermentative activity like Pichia spp. and Zygoascus hellenicus, including dangerous wine spoilage yeasts (e.g. Zygosaccharomyces spp., Torulaspora spp.), and of acetic acid bacteria (e.g. Gluconobacter spp., Acetobacter spp.). The sugar fermenting species Saccharomyces cerevisiae is rarely found on unblemished berries, being favoured by grape damage. Lactic acid bacteria are minor partners of grape microbiota and while being the typical agent of malolactic fermentation, Oenococcus oeni has been seldom isolated from grapes in the vineyard. Environmental ubiquitous bacteria of the genus Enterobacter spp., Enterococcus spp., Bacillus spp., Burkholderia spp., Serratia spp., Staphylococcus spp., among others, have been isolated from grapes but do not have the ability to grow in wines. Saprophytic moulds, like Botrytis cinerea, causing grey rot, or Aspergillus spp., possibly producing ochratoxin, are only active in the vineyard, although their metabolites may affect wine quality during grape processing. The impact of damaged grapes in yeast ecology has been underestimated mostly because of inaccurate grape sampling. Injured berries hidden in apparently sound bunches explain the recovery of a higher number of species when whole bunches are picked. Grape health status is the main factor affecting the microbial ecology of grapes, increasing both microbial numbers and species diversity. Therefore, the influence of abiotic (e.g. climate, rain, hail), biotic (e.g. insects, birds, phytopathogenic and saprophytic moulds) and viticultural (e.g. fungicides) factors is dependent on their primary damaging effect.
Collapse
Affiliation(s)
- A Barata
- Laboratório de Microbiologia, Centro de Botânica Aplicada à Agricultura, Technical University of Lisbon, 1349-017 Lisbon, Portugal.
| | | | | |
Collapse
|