1
|
Fu X, Xu M, Yu Z, Gu W, Zhang Z, Zhang B, Wang X, Su Z, Zhang C. Staphylococcal Enterotoxin C2 Mutant-Induced Antitumor Immune Response Is Controlled by CDC42/MLC2-Mediated Tumor Cell Stiffness. Int J Mol Sci 2023; 24:11796. [PMID: 37511553 PMCID: PMC10380429 DOI: 10.3390/ijms241411796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
As a biological macromolecule, the superantigen staphylococcal enterotoxin C2 (SEC2) is one of the most potent known T-cell activators, and it induces massive cytotoxic granule production. With this property, SEC2 and its mutants are widely regarded as immunomodulating agents for cancer therapy. In a previous study, we constructed an MHC-II-independent mutant of SEC2, named ST-4, which exhibits enhanced immunocyte stimulation and antitumor activity. However, tumor cells have different degrees of sensitivity to SEC2/ST-4. The mechanisms of immune resistance to SEs in cancer cells have not been investigated. Herein, we show that ST-4 could activate more powerful human lymphocyte granule-based cytotoxicity than SEC2. The results of RNA-seq and atomic force microscopy (AFM) analysis showed that, compared with SKOV3 cells, the softer ES-2 cells could escape from SEC2/ST-4-induced cytotoxic T-cell-mediated apoptosis by regulating cell softness through the CDC42/MLC2 pathway. Conversely, after enhancing the stiffness of cancer cells by a nonmuscle myosin-II-specific inhibitor, SEC2/ST-4 exhibited a significant antitumor effect against ES-2 cells by promoting perforin-dependent apoptosis and the S-phase arrest. Taken together, these data suggest that cell stiffness could be a key factor of resistance to SEs in ovarian cancer, and our findings may provide new insight for SE-based tumor immunotherapy.
Collapse
Affiliation(s)
- Xuanhe Fu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhixiong Yu
- Department of Immunology, Shenyang Medical College, No. 146 Huanghe North Street, Shenyang 110034, China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiujuan Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Zhencheng Su
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenyang 110016, China
- Key Laboratory of Superantigen Research of Liao Ning Province, Shenyang 110016, China
| |
Collapse
|
2
|
Zhang G, Zheng G, Jiang F, Wu T, Wu L. Granzyme B and perforin produced by SEC2 mutant-activated human CD4 + T cells and CD8 + T cells induce apoptosis of K562 leukemic cells by the mitochondrial apoptotic pathway. Int J Biol Macromol 2021; 190:284-290. [PMID: 34492245 DOI: 10.1016/j.ijbiomac.2021.08.225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Staphylococcal enterotoxin C2 (SEC2), a classical representative of superantigens, activates T cells that produce massive cytokines. This characteristic makes SEC2 a promising candidate drug for cancer immunotherapy. Previous study showed that ST-4, a SEC2 mutant, enhanced recognition of mouse T-cell receptor Vβ regions, and activated the increased number of T cells that produced more cytokines. However, the underlying molecular mechanism for stimulation of human peripheral blood mononuclear cells (PBMCs) and antitumor effect on human tumor cells remains unknown. Herein, we showed that ST-4 significantly activated TCR Vβ 12, 13A, 14, 15, 17, and 20 CD4+ and CD8+ T cells, which produced substantial amounts of granzyme B and perforin. These cytokines exhibited antitumor effect on K562 cells by promoting apoptosis and inducing S-phase cell cycle arrest. Conversely, the granzyme B inhibitor or perforin inhibitor significantly weakened antitumor effect of ST-4, accompanied by a decrease of cleaved proapoptotic BAX and cytochrome c, and an increase of antiapoptotic BCL2. Taken together, these data suggest that granzyme B and perforin produced by ST-4-activated CD4+ T cells and CD8+ T cells play a pivotal role in inducing K562 cell apoptosis by the mitochondrial apoptotic pathway, and support ST-4 as a potential candidate for cancer immunotherapy.
Collapse
Affiliation(s)
- Guojun Zhang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area District, 110122 Shenyang, Liaoning, People's Republic of China
| | - Guoliang Zheng
- Department of Gastric Surgery, Cancer Hospital of China Medical University (Liaoning Cancer Hospital and Institute), No. 44, Xiaoheyan Road, Shenhe District, 110042 Shenyang, Liaoning, People's Republic of China
| | - Fengli Jiang
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area District, 110122 Shenyang, Liaoning, People's Republic of China
| | - Tianyi Wu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area District, 110122 Shenyang, Liaoning, People's Republic of China
| | - Lizhao Wu
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, No. 77 Puhe Road, Shenyang North New Area District, 110122 Shenyang, Liaoning, People's Republic of China.
| |
Collapse
|
3
|
Li Y, Xu M, Li Y, Zhang Z, Gu W, Halimu G, Li Y, Zhang H, Zhang C. Induction of CD4 + regulatory T cells by stimulation with Staphylococcal Enterotoxin C2 through different signaling pathways. Biomed Pharmacother 2021; 143:112204. [PMID: 34560552 DOI: 10.1016/j.biopha.2021.112204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
As a member of superantigens, Staphylococcal Enterotoxin C2 (SEC2) can potently activate T cells expressing specific Vβ repertoires and has been applied in clinic for tumor immunotherapy in China for more than 20 years. However, excessive activation of T cells by over-stimulation with superantigen are always followed by eliciting regulatory T cells (Tregs) induction and functional immunosuppression, which brings uncertainties to SEC2 application in tumor immunotherapy. In this study, we found that SEC2 could induce CD4+CD25+Foxp3+ Tregs from the murine splenocytes in dose and time related manners. The induced Tregs with high expression of GITR and CTLA-4 and low expression of CD127 were TCR Vβ8.2-specific and have character of IL-10 production in a SEC2 dose-depended manner. Importantly, SEC2-induced CD4+ Tregs showed the potent capacity of suppressing proliferation of intact murine splenocytes response to SEC2. Furthermore, by using specific inhibitors or neutralizing antibody, we proved that the signaling pathways of TCR-NFAT/AP-1, IL-2-STAT5, and TGF-β-Smad3 play crucial roles in Tregs induction by SEC2. These findings will help us better understand the balance of immune stimulation and immunosuppression mediated by SEC2 and provide valuable guidance for SEC2 application in antitumor immunology.
Collapse
Affiliation(s)
- Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China.
| | - Yansheng Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Zhichun Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wu Gu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Gulinare Halimu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuqi Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, China
| |
Collapse
|
4
|
Zhang G, Xu M, Zhang X, Ma L, Zhang H. TRAIL produced by SAM-1-activated CD4 + and CD8 + subgroup T cells induces apoptosis in human tumor cells through upregulation of death receptors. Toxicol Appl Pharmacol 2021; 427:115656. [PMID: 34329641 DOI: 10.1016/j.taap.2021.115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
Bacterial superantigens potently activate conventional T-cells to induce massive cytokine production and mediate tumor cell death. To engineer superantigens for immunotherapy against tumors in clinic, we previously generated SAM-1, a staphylococcal enterotoxins C2 (SEC2) mutant, that exhibited significantly reduced toxicity but maintained the superantigen activity in animal models. This present study aimed to investigate whether SAM-1 activates T cells and induces apoptosis in human tumor cells. We found that SAM-1 induced the maturation of dendritic cells (DCs) with upregulating expression of the surface markers CD80, CD86 and HLA-DR, which secreted high levels of IL-12p70 by activating TLR2-NF-κB signaling pathways. SAM-1 could activate human CD4+ subgroup T cells and CD8+ subgroup T cells in the presence of mature dendritic cells (DCs), leading to the productions of cytokines TRAIL, IL-2, IFN-γ and TNF-α. We observed that TRAIL mediated the apoptosis and S-phase and G2/M-phase arrest in HGC-27 tumor cells via binding to upregulated death receptors DR4 and DR5. Using shRNA knockdown in HGC-27 cells or constitutive overexpression in ES2 cells for DR4 and DR5, we demonstrated the vital requirement of DR4 and DR5 in apoptosis of tumor cells in response to TRAIL secreted from SAM-1-activated T cells. Collectively, our results will facilitate better understanding of SAM-1-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Guojun Zhang
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China; Key Laboratory of Superantigen Research, Shenyang Bureau of Science and Technology, Shenyang, Liaoning, China.
| | - Xiaoqing Zhang
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Ling Ma
- College of Basic Medical Science, China Medical University, Shenyang, Liaoning, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, Liaoning, China
| |
Collapse
|
5
|
The T cell activating properties and antitumour activity of Staphylococcal Enterotoxin-like Q. Med Microbiol Immunol 2019; 208:781-792. [PMID: 31187242 DOI: 10.1007/s00430-019-00614-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/09/2019] [Indexed: 12/22/2022]
Abstract
Staphylococcal enterotoxins (SEs), as typical superantigens, exhibit promising antitumour activity in the clinic, but their unavoidable side effects related to fever and emesis seriously limit their application for the treatment of malignant tumours. Fortunately, the identification of Staphylococcal enterotoxin-like toxins (SEls), which possess amino acid sequences similar to those of classical SEs but exhibit no or low emetic activity, has provided a set of potential immunomodulatory candidates for cancer therapy. The aim of this study was to examine the effect of SElQ on lymphocyte activation and to further demonstrate its antitumour activity both in vitro and in vivo. High-purity SElQ was successfully harvested, and in vitro results confirmed that SElQ can significantly activate mouse- and human-derived lymphocytes in a dose-dependent manner, particularly CD4+ and CD8+ T cells, which showed significant increases in both percentage and absolute number. Further examination revealed that in addition to the originally recognized TCR Vβ5 and 21, TCR Vβ14, 17 and 18 were activated in SElQ-induced human PBMCs. Moreover, the expression of IL-2 and IFN-γ was significantly upregulated in vitro and in vivo after SElQ treatment. Based on the findings that SElQ induces lymphocyte activation and cytokine release, we then confirmed its antitumour activity both in vitro and in vivo. The data showed that treatment with a low concentration of SElQ (30 µg/mouse) could inhibit the growth of tumours by approximately 30% and no significant toxicity was observed. Taken together, our results demonstrated that SElQ can significantly induce T cell activation and cytokine release and further elicit substantial antitumour activity and thus provide support for the potential application of SElQ in cancer immunotherapy.
Collapse
|
6
|
Yao S, Li Y, Zhang Q, Zhang H, Zhou L, Liao H, Zhang C, Xu M. Staphylococcal enterotoxin C2 as an adjuvant for rabies vaccine induces specific immune responses in mice. Pathog Dis 2019; 76:5025657. [PMID: 29860490 DOI: 10.1093/femspd/fty049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/29/2018] [Indexed: 01/16/2023] Open
Abstract
Rabies vaccine administration is the most effective method to prevent the occurrence of rabies disease. However, administration of rabies vaccine without adjuvant always shows low efficiency. As a member of superantigen, staphylococcal enterotoxin C2 (SEC2) non-specifically activates T-cells at extremely low concentration. It enlightens us that SEC2 may be used as an adjuvant. We carried out the experiment that the mice received twice immunization with rabies vaccine in the presence or absence of SEC2 at 1-week interval. Serum and splenocytes from immunized mice were collected to measure the level of rabies-specific-IgG and the cell that secretes IFN-γ or IL-4. The promotion of antigen-specific splenocytes proliferation was also detected. Besides, a challenge test was performed to evaluate the protective efficiency of SEC2. It was shown that mice immunized with vaccine combined with SEC2 generated more specific anti-rabies-antibodies. The results for production of IFN-γ and IL-4, as well as the proliferation of splenocytes from immunized mice indicated SEC2 promoted the specific immune responses induced by rabies vaccine. Moreover, immunization of mice with vaccine combined with SEC2 provided efficient protection against the lethal rabies exposure. Taken together, our findings indicated that SEC2 can be served as an adjuvant for rabies vaccines.
Collapse
Affiliation(s)
- Songyuan Yao
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yongqiang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China.,University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Qianru Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Huiwen Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Libao Zhou
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Hui Liao
- Chengda Biotechnology Co. Ltd, 110179 Liaoning, China
| | - Chenggang Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| | - Mingkai Xu
- Institute of Applied Ecology, Chinese Academy of Sciences, 110016 Shenyang, China
| |
Collapse
|
7
|
Fu X, Xu M, Song Y, Li Y, Zhang H, Zhang J, Zhang C. Enhanced interaction between SEC2 mutant and TCR Vβ induces MHC II-independent activation of T cells via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. J Biol Chem 2018; 293:19771-19784. [PMID: 30352872 DOI: 10.1074/jbc.ra118.003668] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/23/2018] [Indexed: 11/06/2022] Open
Abstract
SEC2, a major histocompatibility complex class II (MHC II)-dependent T-cell mitogen, binds MHC II and T-cell receptor (TCR) Vβs to induce effective co-stimulating signals for clonal T-cell expansion. We previously characterized a SEC2 mutant with increased recognition of TCR Vβs, ST-4, which could intensify NF-κB signaling transduction, leading to IL-2 production and T-cell activation. In this study, we found that in contrast to SEC2, ST-4 could induce murine CD4+ T-cell proliferation in a Vβ8.2- and Vβ8.3-specific manner in the absence of MHC II+ antigen-presenting cells (APCs). Furthermore, although IL-2 secretion in response to either SEC2 or ST-4 stimulation was accompanied by up-regulation of protein kinase Cθ (PKCθ), inhibitor of κB (IκB), α and β IκB kinase (IKKα/β), IκBα, and NF-κB in mouse splenocytes, only ST-4 could activate CD4+ T cells in the absence of MHC II+ APCs through the PKCθ/NF-κB signaling pathway. The PKCθ inhibitor AEB071 significantly suppressed SEC2/ST-4-induced T-cell proliferation, CD69 and CD25 expression, and IL-2 secretion with or without MHC II+ APCs. Further, SEC2/ST-4-induced changes in PKCθ/NF-κB signaling were significantly relieved by AEB071 in a dose-dependent manner. Using Lck siRNA, we found that Lck controlled SEC2/ST-4-induced phosphorylation of PKCθ. We also demonstrated that the IL-2R/STAT5 pathway is essential for SEC2/ST-4-induced T-cell activation. Collectively, our data demonstrate that an enhanced ST-4-TCR interaction can compensate for lack of MHC II and stimulate MHC II-free CD4+ T-cell proliferation via PKCθ/NF-κB and IL-2R/STAT5 signaling pathways. Compared with SEC2, intensified PKCθ/NF-κB and IL-2R/STAT5 signals induced by ST-4 lead to enhanced T-cell activation. The results of this study will facilitate better understanding of TCR-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Xuanhe Fu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and.,the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Mingkai Xu
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yubo Song
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Yongqiang Li
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Huiwen Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| | - Jinghai Zhang
- the School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 WenHua Road, Shenyang 110016, China
| | - Chenggang Zhang
- From the Institute of Applied Ecology, Chinese Academy of Sciences, 72 WenHua Road, Shenyang 110016, China and
| |
Collapse
|
8
|
Yao S, Xu M, Li Y, Zhou L, Liao H, Zhang H, Zhang C. Staphylococcal enterotoxin C2 stimulated the maturation of bone marrow derived dendritic cells via TLR-NFκB signaling pathway. Exp Cell Res 2018; 370:237-244. [DOI: 10.1016/j.yexcr.2018.06.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 11/27/2022]
|
9
|
Zhang DF, Yang XY, Zhang J, Qin X, Huang X, Cui Y, Zhou M, Shi C, French NP, Shi X. Identification and characterization of two novel superantigens among Staphylococcus aureus complex. Int J Med Microbiol 2018; 308:438-446. [PMID: 29574061 DOI: 10.1016/j.ijmm.2018.03.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/19/2018] [Accepted: 03/05/2018] [Indexed: 01/13/2023] Open
Abstract
Staphylococcal enterotoxins (SEs), also known as superantigens, play a very important role in infections and food poisoning caused by Staphylococcus aureus. Recently, S. argenteus and S. schweitzeri were recognized as novel species closely related to S. aureus. In this study of these three species, it was found that two putative SE genes were located upstream of some vSaβ pathogenicity islands and the deduced amino acid sequences showed < 65.3% identity with those of known SEs. The related proteins, designated staphylococcal enterotoxin-like toxin 26 (SEl26) and 27 (SEl27), were identified and characterized among the three species. The mRNAs encoding SEl26 and SEl27 were expressed during all the growth phases. Recombinant SEl26 and SEl27 exhibited superantigenic activity in human peripheral blood mononuclear cells and mouse splenocytes by examining cell proliferation and cytokine production. Interestingly, these two genes were present universally in S. argenteus sequence type 2250 with clinical importance. Meanwhile, SEl27 variants from different species showed differential sensitivity to human peripheral blood mononuclear cells, which corresponded to the primary bacterial species hosts. It was demonstrated from these results that SEl26 and SEl27 were characterized to be two novel SE toxins and some SEs evolved along with the bacteria when the organisms adapted the hosts' immune systems.
Collapse
Affiliation(s)
- Dao-Feng Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin-Yi Yang
- Zhuhai Biori Biotechnology Co. Ltd, Zhuhai, 519015, China
| | - Jing Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaojie Qin
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaozhen Huang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Zhou
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, Hubei, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nigel P French
- Infectious Disease Research Centre, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology & State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
10
|
Xie Y, Wang M, Dong Z, Song H, Li L, Yang M, Li P, Tian J, Zhang K, Xia X, Zhang T, Tang A. In vitro effects of Staphylococcus aureus enterotoxin C3 on T cell activation, proliferation and cytokine production. Mol Med Rep 2017; 16:4744-4750. [PMID: 28849041 PMCID: PMC5647103 DOI: 10.3892/mmr.2017.7199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the effects of Staphylococcus aureus enterotoxin C3 (SEC3), including recombinant (r)SEC3 protein and lentivirus‑mediated SEC3, on the activation, proliferation and cytokine production of human T cells. HeLa cells were infected with SEC3 lentiviral vector (LV‑SEC3) and viability was determined using the Cell Counting Kit‑8 (CCK‑8) assay. Subsequently, infected cells or rSEC3 protein were co‑cultured with human peripheral blood mononuclear cells (PBMCs) for 10 days, after which the culture supernatant and T cells were incubated with untreated HeLa cells, which were subjected to a CCK‑8 assay to determine cytotoxicity. In addition, IL‑6 and IFN‑γ expression was detected by chemiluminescence and enzyme‑linked immunospot analyses, respectively. Subpopulations of activated T cells were sorted by flow cytometry. The results demonstrated that, following infection with LV‑SEC3 or negative control lentiviral vector (LV‑NC), >80% of HeLa cells presented green fluorescent protein‑positive signals. All five groups of co‑cultured T cells exhibited proliferation. Co‑culture of PBMCs with rSEC3 protein or LV‑SEC‑infected cells resulted in elevated IL‑6 and IFN‑γ secretion. In addition, rSEC3‑activated and monocultured T cells were predominantly cluster of differentiation (CD)4+ (62.7 and 59.6%, respectively) whereas phytohemagglutinin‑stimulated T cells were predominantly CD8+ (57.8%). Compared with the LV‑NC group, T cells and culture supernatants from the LV‑SEC3 group significantly attenuated proliferation of HeLa cells. These results suggest that rSEC3 protein, and LV‑SEC3‑infected HeLa cells, are able to potently activate T cells, increasing cytokine production and amplify the antitumor immune response.
Collapse
Affiliation(s)
- Yixin Xie
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Zhihui Dong
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Huan Song
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Lianping Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Min Yang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Pengling Li
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jingjing Tian
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Kan Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Xiaomeng Xia
- Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Tingting Zhang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Aiguo Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
11
|
Zhang G, Xu M, Zhang H, Song Y, Wang J, Zhang C. Up-regulation of granzyme B and perforin by staphylococcal enterotoxin C2 mutant induces enhanced cytotoxicity in Hepa1–6 cells. Toxicol Appl Pharmacol 2016; 313:1-9. [DOI: 10.1016/j.taap.2016.10.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/24/2016] [Accepted: 10/10/2016] [Indexed: 11/25/2022]
|
12
|
TNF-α produced by SEC2 mutant (SAM-3)-activated human T cells induces apoptosis of HepG2 cells. Appl Microbiol Biotechnol 2015; 100:2677-84. [DOI: 10.1007/s00253-015-7104-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
|