1
|
Aqueous Fraction from Hibiscus sabdariffa Relaxes Mesenteric Arteries of Normotensive and Hypertensive Rats through Calcium Current Reduction and Possibly Potassium Channels Modulation. Nutrients 2020; 12:nu12061782. [PMID: 32549326 PMCID: PMC7353181 DOI: 10.3390/nu12061782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND/OBJECTIVES Hibiscus sabdariffa L. (H. sabdariffa (HS)) extract has a vascular relaxant effect on isolated rat thoracic aorta, but data on small resistance arteries, which play an important role on the development of hypertension, are still missing. The purposes of this study were (1) to assess the effect on isolated mesenteric arteries (MA) from normotensive (Wistar and Wistar-Kyoto (WKY)) and spontaneous hypertensive rats (SHR); (2) to elucidate the mechanism(s) of action underling the relaxant effect in light of bioactive components. METHODS Vascular effects of HS aqueous fraction (AF) on isolated MA rings, as well as its mechanisms of action, were assessed using the contractility and intracellular microelectrode technique. The patch clamp technique was used to evaluate the effect of HS AF on the L-type calcium current. Extraction and enrichment of AF were carried out using liquid-liquid extraction, and the yield was analyzed using HPLC. RESULTS The HS AF induced a concentration-dependent relaxant effect on MA rings of SHR (EC50 = 0.83 ± 0.08 mg/mL), WKY (EC50 = 0.46 ± 0.04 mg/mL), and Wistar rats (EC50 = 0.44 ± 0.08 mg/mL) pre-contracted with phenylephrine (10 µM). In Wistar rats, the HS AF maximum relaxant effect was not modified after endothelium removal or when a guanylate cyclase inhibitor (ODQ, 10 µM) and a selective β2-adrenergic receptor antagonist (ICI-118551, 1 µM) were incubated with the preparation. Otherwise, it was reduced by 34.57 ± 10.66% when vascular rings were pre-contracted with an 80 mM [K+] solution (p < 0.001), which suggests an effect on ionic channels. HS AF 2 mg/mL significantly decreased the peak of the L-type calcium current observed in cardiac myocytes by 24.4%. Moreover, though the vasorelaxant effect of HS, AF was reduced by 27% when the nonselective potassium channels blocker (tetraethylammonium (TEA) 20 mM) was added to the bath (p < 0.01). The extract did not induce a membrane hyperpolarization of smooth muscle cells, which might suggest an absence of a direct effect on background potassium current. CONCLUSION These results highlight that the antihypertensive effect of HS probably involves a vasorelaxant effect on small resistance arteries, which is endothelium independent. L-type calcium current reduction contributes to this effect. The results could also provide a link between the vasorelaxant effect and the bioactive compounds, especially anthocyanins.
Collapse
|
2
|
Electrical and histological remodeling of the pulmonary vein in 2K1C hypertensive rats: Indication of initiation and maintenance of atrial fibrillation. Anatol J Cardiol 2018; 19:169-175. [PMID: 29339676 PMCID: PMC5864765 DOI: 10.14744/anatoljcardiol.2017.7844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Objective Hypertension is a significant risk factor for atrial fibrillation (AF). The role of pulmonary vein (PV) remodeling in the mechanistic association between hypertension and AF is not definitive. In this study, we aimed to identify changes in the electrophysiology and histology in PVs in two-kidney, one-clip (2K1C) hypertensive rats. Methods Fifty male Sprague-Dawley rats were classified into the 2K1C and sham-operated groups. The systolic blood pressure was measured every 2 weeks. The left atrial diameter was measured by transthoracic echocardiography. Left superior PV (LSPV) and left atrial (LA) fibrosis was evaluated by Masson’s trichrome staining. The expression of fibrosis markers [angiotensin II (Ang II), transforming growth factor-β1 (TGF-β1), matrix metalloproteinase-2 (MMP-2), and collagen I (Col I)] and ion channels [Kir2.1, Kir2.3, Cav1.2, and Nav1.5] in LSVP was quantified by western blot. Conventional microelectrodes were used to record the action potential duration at 90% repolarization (APD90) and effective refractory period (ERP) in isolated LA. Results At 4 months, the 2K1C hypertensive rats developed LA dilation. Col deposition in LSPV and left atrium and expression of TGF-β1, MMP-2, and Col I in LSPV were significantly increased in 2K1C hypertensive rats. In addition, hypertension reduced the expression of Nav1.5 and Kir2.1, although there were no significant differences in APD90; ERP; and expression of Ang II, Kir2.3, and Cav1.2 between the two groups. Conclusion Hypertension may lead to changes in the electrophysiology and histology of rats PVs, which is characterized by significant reduction in the expression of Nav1.5 and Kir2.1 and increase in interstitial fibrosis. These observations may clarify the role of PVs in the mechanistic association between hypertension and AF.
Collapse
|
3
|
Egorov YV, Kuz'min VS, Glukhov AV, Rosenshtraukh LV. Electrophysiological Characteristics, Rhythm, Disturbances and Conduction Discontinuities Under Autonomic Stimulation in the Rat Pulmonary Vein Myocardium. J Cardiovasc Electrophysiol 2015; 26:1130-9. [PMID: 26086390 DOI: 10.1111/jce.12738] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Despite the importance of neurogenic initiation of rapid firing from pulmonary veins (PVs), the mechanism of autonomic modulation of electrophysiological properties of the PV myocardium to form a substrate for atrial arrhythmia remains poorly understood. METHODS AND RESULTS A 2-microelectrode technique was used to characterize electrophysiological properties of rat PV myocardium and to explore PV arrhythmogenesis, at baseline, during electrical stimulation and/or under autonomic modulation. PV myocardium was characterized by prolonged action potential duration (APD), high degree of APD alternans, and spontaneous depolarizations. Autonomic stimulation resulted in significantly enhanced APD dispersion within the PV, which dynamically changed over time and was associated with intra-PV and atria-PV conduction blocks and could lead to spontaneous fibrillation-like high-frequency activity. In the distal part of the PV we found an unexcitable area that was characterized by depolarized resting potential (-50 ± 4 mV vs. -75 ± 2 mV vs. PV mouth, P < 0.01). This region could be activated during autonomic stimulation or fast pacing that led to multiple conduction discontinuities (uni- and bi-directional conduction blocks, Wenckebach periodicity, electrotonic modulation conduction block, echo phenomenon) in 17/23 preparations, including those occurring under norepinephrine superfusion (14/17) and during pacing frequency changes (3/17). PV echoes (unstable reentrant circuits) were found in 8/23 preparations. In some experiments, several types of conduction abnormalities were observed. CONCLUSION The PV myocardium demonstrates distinct electrophysiological characteristics, which could be considerably exaggerated by electrical stimulation and/or autonomic nervous system to dynamically form a functional substrate to support re-entry as well as focal activity.
Collapse
Affiliation(s)
- Yuriy V Egorov
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Vladislav S Kuz'min
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Pirogov Russian National Research Medical University (RNRMU), Moscow, Russian Federation.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Alexey V Glukhov
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| | - Leonid V Rosenshtraukh
- Laboratory of Heart Electrophysiology, Cardiology Research Centre, Moscow, Russian Federation, Russia.,Department of Cardiovascular Sciences, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
4
|
MALÉCOT CLAIREO, BREDELOUX PIERRE, FINDLAY IAN, MAUPOIL VÉRONIQUE. A TTX-Sensitive Resting Na+
Permeability Contributes to the Catecholaminergic Automatic Activity in Rat Pulmonary Vein. J Cardiovasc Electrophysiol 2014; 26:311-9. [DOI: 10.1111/jce.12572] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/20/2014] [Accepted: 10/16/2014] [Indexed: 11/30/2022]
Affiliation(s)
- CLAIRE O. MALÉCOT
- CNRS ERL 7368; Laboratoire Signalisation et Transports Ioniques Membranaires; Universités de Poitiers et François-Rabelais de Tours; France
- Groupe Physiologie des Cellules Cardiaques et Vasculaires; Université François-Rabelais; Tours France
| | - PIERRE BREDELOUX
- Groupe Physiologie des Cellules Cardiaques et Vasculaires; Université François-Rabelais; Tours France
| | - IAN FINDLAY
- CNRS ERL 7368; Laboratoire Signalisation et Transports Ioniques Membranaires; Universités de Poitiers et François-Rabelais de Tours; France
- Groupe Physiologie des Cellules Cardiaques et Vasculaires; Université François-Rabelais; Tours France
| | - VÉRONIQUE MAUPOIL
- CNRS ERL 7368; Laboratoire Signalisation et Transports Ioniques Membranaires; Universités de Poitiers et François-Rabelais de Tours; France
- Groupe Physiologie des Cellules Cardiaques et Vasculaires; Université François-Rabelais; Tours France
| |
Collapse
|
5
|
Arrhythmogenic coupling between the Na+–Ca2+ exchanger and inositol 1,4,5-triphosphate receptor in rat pulmonary vein cardiomyocytes. J Mol Cell Cardiol 2012; 52:988-97. [DOI: 10.1016/j.yjmcc.2012.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 12/30/2011] [Accepted: 01/05/2012] [Indexed: 11/18/2022]
|
6
|
Watson KE, Dovi WF, Conhaim RL. Evidence for active control of perfusion within lung microvessels. J Appl Physiol (1985) 2012; 112:48-53. [DOI: 10.1152/japplphysiol.00820.2011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vasoconstrictors cause contraction of pulmonary microvascular endothelial cells in culture. We wondered if this meant that contraction of these cells in situ caused active control of microvascular perfusion. If true, it would mean that pulmonary microvessels were not simply passive tubes and that control of pulmonary microvascular perfusion was not mainly due to the contraction and dilation of arterioles. To test this idea, we vasoconstricted isolated perfused rat lungs with angiotensin II, bradykinin, serotonin, or U46619 (a thromboxane analog) at concentrations that produced equal flows. We also perfused matched-flow controls. We then infused a bolus of 3 μm diameter particles into each lung and measured the rate of appearance of the particles in the venous effluent. We also measured microscopic trapping patterns of particles retained within each lung. Thirty seconds after particle infusion, venous particle concentrations were significantly lower ( P ≤ 0.05) for lungs perfused with angiotensin II or bradykinin than for those perfused with U46619, but not significantly different from serotonin perfused lungs or matched flow controls. Microscopic clustering of particles retained within the lungs was significantly greater ( P ≤ 0.05) for lungs perfused with angiotensin II, bradykinin, or serotonin, than for lungs perfused with U46619 or for matched flow controls. Our results suggest that these agents did not produce vasoconstriction by a common mechanism and support the idea that pulmonary microvessels possess a level of active control and are not simply passive exchange vessels.
Collapse
Affiliation(s)
- Kal E. Watson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | | | - Robert L. Conhaim
- The William S. Middleton Memorial Veterans Hospital; and
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
7
|
Rieg AD, Rossaint R, Uhlig S, Martin C. Cardiovascular agents affect the tone of pulmonary arteries and veins in precision-cut lung slices. PLoS One 2011; 6:e29698. [PMID: 22216346 PMCID: PMC3246495 DOI: 10.1371/journal.pone.0029698] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/01/2011] [Indexed: 11/18/2022] Open
Abstract
Introduction Cardiovascular agents are pivotal in the therapy of heart failure. Apart from their action on ventricular contractility and systemic afterload, they affect pulmonary arteries and veins. Although these effects are crucial in heart failure with coexisting pulmonary hypertension or lung oedema, they are poorly defined, especially in pulmonary veins. Therefore, we investigated the pulmonary vascular effects of adrenoceptor agonists, vasopressin and angiotensin II in the model of precision-cut lung slices that allows simultaneous studies of pulmonary arteries and veins. Materials and Methods Precision-cut lung slices were prepared from guinea pigs and imaged by videomicroscopy. Concentration-response curves of cardiovascular drugs were analysed in pulmonary arteries and veins. Results Pulmonary veins responded stronger than arteries to α1-agonists (contraction) and β2-agonists (relaxation). Notably, inhibition of β2-adrenoceptors unmasked the α1-mimetic effect of norepinephrine and epinephrine in pulmonary veins. Vasopressin and angiotensin II contracted pulmonary veins via V1a and AT1 receptors, respectively, without affecting pulmonary arteries. Discussion Vasopressin and (nor)epinephrine in combination with β2-inhibition caused pulmonary venoconstriction. If applicable in humans, these treatments would enhance capillary hydrostatic pressures and lung oedema, suggesting their cautious use in left heart failure. Vice versa, the prevention of pulmonary venoconstriction by AT1 receptor antagonists might contribute to their beneficial effects seen in left heart failure. Further, α1-mimetic agents might exacerbate pulmonary hypertension and right ventricular failure by contracting pulmonary arteries, whereas vasopressin might not.
Collapse
Affiliation(s)
- Annette D Rieg
- Department of Anaesthesiology, Institute of Pharmacology and Toxicology, Medical Faculty Aachen, RWTH-Aachen, Aachen, Germany.
| | | | | | | |
Collapse
|
8
|
Peng G, Lu W, Li X, Chen Y, Zhong N, Ran P, Wang J. Expression of store-operated Ca2+ entry and transient receptor potential canonical and vanilloid-related proteins in rat distal pulmonary venous smooth muscle. Am J Physiol Lung Cell Mol Physiol 2010; 299:L621-30. [PMID: 20693314 DOI: 10.1152/ajplung.00176.2009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia causes remodeling and alters contractile responses in both pulmonary arteries and pulmonary veins. Although pulmonary arteries have been studied extensively in these disorders, the mechanisms by which pulmonary veins respond to hypoxia and whether these responses contribute to chronic hypoxic pulmonary hypertension remain poorly understood. In pulmonary arterial smooth muscle, we have previously demonstrated that influx of Ca(2+) through store-operated calcium channels (SOCC) thought to be composed of transient receptor potential (TRP) proteins is likely to play an important role in development of chronic hypoxic pulmonary hypertension. To determine whether this mechanism could also be operative in pulmonary venous smooth muscle, we measured intracellular Ca(2+) concentration ([Ca(2+)](i)) by fura-2 fluorescence microscopy in primary cultures of pulmonary venous smooth muscle cells (PVSMC) isolated from rat distal pulmonary veins. In cells perfused with Ca(2+)-free media containing cyclopiazonic acid (10 μM) and nifedipine (5 μM) to deplete sarcoplasmic reticulum Ca(2+) stores and block voltage-dependent Ca(2+) channels, restoration of extracellular Ca(2+) (2.5 mM) caused marked increases in [Ca(2+)](i), whereas MnCl(2) (200 μM) quenched fura-2 fluorescence, indicating store-operated Ca(2+) entry (SOCE). SKF-96365 and NiCl(2), antagonists of SOCC, blocked SOCE at concentrations that did not alter Ca(2+) responses to 60 mM KCl. Of the seven known canonical TRP (TRPC1-7) and six vanilloid-related TRP channels (TRPV1-6), real-time PCR revealed mRNA expression of TRPC1 > TRPC6 > TRPC4 > TRPC2 ≈ TRPC5 > TRPC3, TRPV2 > TRPV4 > TRPV1 in distal PVSMC, and TRPC1 > TRPC6 > TRPC3 > TRPC4 ≈ TRPC5, TRPV2 ≈ TRPV4 > TRPV1 in rat distal pulmonary vein (PV) smooth muscle. Western blotting confirmed protein expression of TRPC1, TRPC6, TRPV2, and TRPV4 in both PVSMC and PV. Our results suggest that SOCE through Ca(2+) channels composed of TRP proteins may contribute to Ca(2+) signaling in rat distal PV smooth muscle.
Collapse
Affiliation(s)
- Gongyong Peng
- Guangzhou Institute of Respiratory Diseases, State Key Laboratory of Respiratory Diseases, Guangzhou Medical University, China
| | | | | | | | | | | | | |
Collapse
|
9
|
Doisne N, Maupoil V, Cosnay P, Findlay I. Catecholaminergic automatic activity in the rat pulmonary vein: electrophysiological differences between cardiac muscle in the left atrium and pulmonary vein. Am J Physiol Heart Circ Physiol 2009; 297:H102-8. [PMID: 19429824 DOI: 10.1152/ajpheart.00256.2009] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ectopic activity in cardiac muscle within pulmonary veins (PVs) is associated with the onset and the maintenance of atrial fibrillation in humans. The mechanism underlying this ectopic activity is unknown. Here we investigate automatic activity generated by catecholaminergic stimulation in the rat PV. Intracellular microelectrodes were used to record electrical activity in isolated strips of rat PV and left atrium (LA). The resting cardiac muscle membrane potential was lower in PV [-70 +/- 1 (SE) mV, n = 8] than in LA (-85 +/- 1 mV, n = 8). No spontaneous activity was recorded in PV or LA under basal conditions. Norepinephrine (10(-5) M) induced first a hyperpolarization (-8 +/- 1 mV in PV, -3 +/- 1 mV in LA, n = 8 for both) then a slowly developing depolarization (+21 +/- 2 mV after 15 min in PV, +1 +/- 2 mV in LA) of the resting membrane potential. Automatic activity occurred only in PV; it was triggered at approximately -50 mV, and it occurred as repetitive bursts of slow action potentials. The diastolic membrane potential increased during a burst and slowly depolarized between bursts. Automatic activity in the PV was blocked by either atenolol or prazosine, and it could be generated with a mixture of cirazoline and isoprenaline. In both tissues, cirazoline (10(-6) M) induced a depolarization (+37 +/- 2 mV in PV, n = 5; +5 +/- 1 mV in LA, n = 5), and isoprenaline (10(-7) M) evoked a hyperpolarization (-11 +/- 3 mV in PV, n = 7; -3 +/- 1 mV in LA, n = 6). The differences in membrane potential and reaction to adrenergic stimulation lead to automatic electrical activity occurring specifically in cardiac muscle in the PV.
Collapse
Affiliation(s)
- Nicolas Doisne
- Centre National de la Recherche Scientifique FRE 3092, Faculté des Sciences, Université François-Rabelais, Tours, France
| | | | | | | |
Collapse
|