1
|
Filho FC, Silva JDP, Petri C, Almendra JSL, de Sousa ÍA, Cavalcanti SMG, Silva BA, Formiga Melo MF, Cavalcanti PMDS. Pharmacological evidence that GABA-induced relaxation of rat proximal duodenum longitudinal muscle depends on NKCC cotransporter activity and Ca 2+ influx. Can J Physiol Pharmacol 2022; 100:728-740. [PMID: 35880679 DOI: 10.1139/cjpp-2021-0639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
γ-Aminobutyric acid (GABA) is the main inhibitory neurotransmitter in adult central nervous system (CNS) synapses, but it excites immature CNS neurons as well as neurons in the myenteric plexus. The present work aimed to determine whether GABA-induced nonadrenergic, noncholinergic (NANC) neuronal-mediated relaxation of the rat duodenum is dependent on the activity of Na+ K+ Cl- cotransporters (NKCC) and requires calcium influx. In the presence of guanethidine (3 µmol/L), atropine (3 µmol/L), and indomethacin (1 µmol/L), relaxations induced by GABA (100 µmol/L), KCl (5-10 mmol/L) and electrical field stimulation (1-8 Hz, 2 ms, 60 V), but not those induced by bradykinin (10-100 nmol/L) were abolished by lidocaine (300 µmol/L). However, only GABA-induced relaxations were reduced in a concentration-dependent manner by the NKCC1/2 inhibitors bumetanide (0.1-1 µmol/L) and furosemide (1-10 µmol/L). GABA-induced NANC neuronal relaxation was abolished by bicuculline (30 µmol/L) and inhibited by N-nitroarginine methyl ester (l-NAME, 300 µmol/L). The ω-conotoxin GVIA (1 µmol/L), which acts exclusively on neuronal CaV2 channels, but not on smooth muscle voltage-gated Ca2+ CaV1 channels, and nonselective blockers of these channels (verapamil 100 nmol/L and ruthenium red 10 µmol/L), reduced GABA-induced relaxations. These results showed that the activation of GABAA receptors induces NANC nitrergic neuronal relaxations in the rat duodenum, which depend on NKCC activity and CaV2 channel activation, suggesting that this phenomenon results from neuronal depolarization promoted by Cl- efflux through GABAA receptors, with subsequent Ca2+ influx and nitric oxide release.
Collapse
Affiliation(s)
- Francisco Chagas Filho
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Janyerson Dannys Pereira Silva
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Caio Petri
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - João Santos Lima Almendra
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Ícaro Araújo de Sousa
- Biophysics and Physiology Department, 64049-550, Health Sciences Center, Federal University of Piauí, Teresina, Piauí, Brazil
| | | | - Bagnólia A Silva
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Margareth Fátima Formiga Melo
- Pharmacological Sciences Department, 58051-900, Health Sciences Center, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | | |
Collapse
|
2
|
Broadley KJ, Buffat MGP, Burnell E, Davies RH, Moreau X, Snee S, Thomas EJ. Stereoselective synthesis of oxazolidinonyl-fused piperidines of interest as selective muscarinic (M1) receptor agonists: a novel M1 allosteric modulator. Org Biomol Chem 2016; 14:2057-89. [PMID: 26768599 DOI: 10.1039/c5ob02588e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Syntheses of (1RS,2SR,6SR)-2-alkoxymethyl-, 2-hetaryl-, and 2-(hetarylmethyl)-7-arylmethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-ones, of interest as potential muscarinic M1 receptor agonists, are described. A key step in the synthesis of (1RS,2SR,6SR)-7-benzyl-6-cyclobutyl-2-methoxymethyl-4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-one, was the addition of isopropenylmagnesium bromide to 2-benzyloxycarbonylamino-3-tert-butyldimethylsilyloxy-2-cyclobutylpropanal. This gave the 4-tert-butyldimethylsilyloxymethyl-4-cyclobutyl-5-isopropenyloxazolidinone with the 5-isopropenyl and 4-tert-butyldimethylsilyloxymethyl groups cis-disposed about the five-membered ring by chelation controlled addition and in situ cyclisation. This reaction was useful for a range of organometallic reagents. The hydroboration-oxidation of (4SR,5RS)-3-benzyl-4-(tert-butyldimethylsilyloxymethyl)-4-cyclobutyl-5-(1-methoxyprop-2-en-2-yl)-1,3-oxazolidin-2-one gave (4SR,5RS)-3-benzyl-4-(tert-butyldimethylsilyloxymethyl)-4-cyclobutyl-5-[(SR)-1-hydroxy-3-methoxyprop-2-yl]-1,3-oxazolidin-2-one stereoselectively. 4,7-Diaza-9-oxabicyclo[4.3.0]nonan-8-ones with substituents at C2 that could facilitate C2 deprotonation were unstable with respect to oxazolidinone ring-opening and this restricted both the synthetic approach and choice of 2-heteroaryl substituent. The bicyclic system with a 2-furyl substituent at C2 was therefore identified as an important target. The addition of 1-lithio-1-(2-furyl)ethene to 2-benzyloxycarbonylamino-3-tert-butyldimethylsilyloxy-2-cyclobutylpropanal gave (4SR,5RS)-4-tert-butyldimethylsilyloxymethyl-4-cyclobutyl-5-[1-(2-furyl)ethenyl]-1,3-oxazolidinone after chelation controlled addition and in situ cyclisation. Following oxazolidinone N-benzylation, hydroboration at 35 °C, since hydroboration at 0 °C was unexpectedly selective for the undesired isomer, followed by oxidation gave a mixture of side-chain epimeric alcohols that were separated after SEM-protection and selective desilylation. Conversion of the neopentylic alcohols into the corresponding primary amines by reductive amination, was followed by N-nosylation, removal of the SEM-groups and cyclisation using a Mitsunobu reaction. Denosylation then gave the 2-furyloxazolidinonyl-fused piperidines, the (1RS,2SR,6SR)-epimer showing an allosteric agonistic effect on M1 receptors. Further studies resulted in the synthesis of other 2-substituted 4,7-diaza-9-oxabicyclo[4.3.0]nonan-8-ones and an analogous tetrahydropyran.
Collapse
Affiliation(s)
- Kenneth J Broadley
- Cardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Maxime G P Buffat
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Erica Burnell
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | | | - Xavier Moreau
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Stephen Snee
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| | - Eric J Thomas
- The School of Chemistry, The University of Manchester, Manchester, M13 9PL, UK.
| |
Collapse
|
3
|
Juárez EH, Ochoa-Cortés F, Miranda-Morales M, Espinosa-Luna R, Montaño LM, Barajas-López C. Selectivity of antagonists for theCys-loop native receptors for ACh, 5-HT and GABA in guinea-pig myenteric neurons. ACTA ACUST UNITED AC 2013; 34:1-8. [DOI: 10.1111/aap.12016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/30/2013] [Accepted: 08/16/2013] [Indexed: 11/29/2022]
Affiliation(s)
- E. H. Juárez
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí SLP México
| | - F. Ochoa-Cortés
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí SLP México
| | - M. Miranda-Morales
- Departamento de Neurobiología Celular y Molecular; Instituto de Neurobiología; Universidad Nacional Autónoma de México; Campus Juriquilla Querétaro Querétaro México
| | - R. Espinosa-Luna
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí SLP México
| | - L. M. Montaño
- Departamento de Farmacología; Facultad de Medicina; Universidad Nacional Autónoma de México; México DF México
| | - C. Barajas-López
- División de Biología Molecular; Instituto Potosino de Investigación Científica y Tecnológica; San Luis Potosí SLP México
| |
Collapse
|
5
|
Pulido-Rios MT, Steinfeld T, Armstrong S, Watson N, Choppin A, Eglen R, Hegde SS. In vitro isolated tissue functional muscarinic receptor assays. ACTA ACUST UNITED AC 2012; Chapter 4:Unit 4.15. [PMID: 22294371 DOI: 10.1002/0471141755.ph0415s48] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Muscarinic receptor (mAChRs) subtypes are viable targets for the design of novel agents for use in a number of central and peripheral disorders. In vitro isolated tissue functional assays for muscarinic receptor subtypes have played an invaluable role in basic research and drug discovery. The availability of biological assays for generation of quantitative estimates of affinity and potency of ligands allows evaluation of the contribution of a given mAChR to the functional end organ response and also enables drug discovery by facilitating the iterative process of screening and optimization of chemical leads. This unit describes isolated tissue functional assays for the quantification of ligand affinity and efficacy at the M(1), M(2), M(3), M(4), and M(5) muscarinic receptor subtypes in tissues expressing the native receptor using organ bath techniques.
Collapse
|
6
|
Harrington AM, Hutson JM, Southwell BR. Immunohistochemical localisation of cholinergic muscarinic receptor subtype 1 (M1r) in the guinea pig and human enteric nervous system. J Chem Neuroanat 2007; 33:193-201. [PMID: 17462859 DOI: 10.1016/j.jchemneu.2007.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2006] [Revised: 03/13/2007] [Accepted: 03/14/2007] [Indexed: 11/26/2022]
Abstract
Little is known regarding the location of cholinergic muscarinic receptor 1 (M1r) in the ENS, even though physiological data suggest that M1rs are central to cholinergic neurotransmission. This study localised M1rs in the ENS of the guinea pig ileum and human colon using fluorescence immunohistochemistry and RT-PCR in human colon. Double labelling using antibodies against neurochemical markers was used to identify neuron subytpes bearing M1r. M1r immunoreactivity (IR) was present on neurons in the myenteric and submucosal ganglia. The two antibodies gave similar M1r-IR patterns and M1r-IR was abolished upon antibody preabsorption. M1r-IR was present on cholinergic and nNOS-IR nerve cell bodies in both guinea pig and human myenteric neurons. Presynaptic M1r-IR was present on NOS-IR and VAChT-IR nerve fibres in the circular muscle in the human colon. In the submucosal ganglia, M1r-IR was present on a population of neurons that contained cChAT-IR, but did not contain NPY-IR or calretinin-IR. M1r-IR was present on endothelial cells of blood vessels in the submucosal plexus. The localisation of M1r-IR in the guinea pig and human ENS shown in this study agrees with physiological studies. M1r-IR in cholinergic and nitrergic neurons and nerve fibres indicate that M1rs have a role in both cholinergic and nitrergic transmission. M1r-IR present in submucosal neurons suggests a role in mediating acetylcholine's effect on submucosal sensory and secretomotor/vasodilator neurons. M1r-IR present on blood vessel endothelial cells suggests that M1rs may also mediate acetylcholine's direct effect on vasoactivation.
Collapse
Affiliation(s)
- A M Harrington
- Surgical Research and Gut Motility Laboratory, Murdoch Children's Research Institute, Royal Children's Hospital, Parkville 3052, Australia
| | | | | |
Collapse
|