1
|
Yang B, Lin Y, Huang Y, Shen YQ, Chen Q. Thioredoxin (Trx): A redox target and modulator of cellular senescence and aging-related diseases. Redox Biol 2024; 70:103032. [PMID: 38232457 PMCID: PMC10827563 DOI: 10.1016/j.redox.2024.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/03/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024] Open
Abstract
Thioredoxin (Trx) is a compact redox-regulatory protein that modulates cellular redox state by reducing oxidized proteins. Trx exhibits dual functionality as an antioxidant and a cofactor for diverse enzymes and transcription factors, thereby exerting influence over their activity and function. Trx has emerged as a pivotal biomarker for various diseases, particularly those associated with oxidative stress, inflammation, and aging. Recent clinical investigations have underscored the significance of Trx in disease diagnosis, treatment, and mechanistic elucidation. Despite its paramount importance, the intricate interplay between Trx and cellular senescence-a condition characterized by irreversible growth arrest induced by multiple aging stimuli-remains inadequately understood. In this review, our objective is to present a comprehensive and up-to-date overview of the structure and function of Trx, its involvement in redox signaling pathways and cellular senescence, its association with aging and age-related diseases, as well as its potential as a therapeutic target. Our review aims to elucidate the novel and extensive role of Trx in senescence while highlighting its implications for aging and age-related diseases.
Collapse
Affiliation(s)
- Bowen Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yumeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Yibo Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Ying-Qiang Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
2
|
Oezer K, Kolibabka M, Gassenhuber J, Dietrich N, Fleming T, Schlotterer A, Morcos M, Wohlfart P, Hammes HP. The effect of GLP-1 receptor agonist lixisenatide on experimental diabetic retinopathy. Acta Diabetol 2023; 60:1551-1565. [PMID: 37423944 PMCID: PMC10520173 DOI: 10.1007/s00592-023-02135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/10/2023] [Indexed: 07/11/2023]
Abstract
AIMS Glucagon-like peptide-1 receptor agonists are effective treatments for type 2 diabetes, effectively lowering glucose without weight gain and with low risk for hypoglycemia. However, their influence on the retinal neurovascular unit remains unclear. In this study, we analyzed the effects of the GLP-1 RA lixisenatide on diabetic retinopathy. METHODS Vasculo- and neuroprotective effects were assessed in experimental diabetic retinopathy and high glucose-cultivated C. elegans, respectively. In STZ-diabetic Wistar rats, acellular capillaries and pericytes (quantitative retinal morphometry), neuroretinal function (mfERG), macroglia (GFAP western blot) and microglia (immunohistochemistry) quantification, methylglyoxal (LC-MS/MS) and retinal gene expressions (RNA-sequencing) were determined. The antioxidant properties of lixisenatide were tested in C. elegans. RESULTS Lixisenatide had no effect on glucose metabolism. Lixisenatide preserved the retinal vasculature and neuroretinal function. The macro- and microglial activation was mitigated. Lixisenatide normalized some gene expression changes in diabetic animals to control levels. Ets2 was identified as a regulator of inflammatory genes. In C. elegans, lixisenatide showed the antioxidative property. CONCLUSIONS Our data suggest that lixisenatide has a protective effect on the diabetic retina, most likely due to a combination of neuroprotective, anti-inflammatory and antioxidative effects of lixisenatide on the neurovascular unit.
Collapse
Affiliation(s)
- Kuebra Oezer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Matthias Kolibabka
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Nadine Dietrich
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, Heidelberg University, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andrea Schlotterer
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Michael Morcos
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Stoffwechselzentrum Rhein-Pfalz, Belchenstraße 1-5, 68163, Mannheim, Germany
| | - Paulus Wohlfart
- Sanofi, MSAT M&I Bioassays and Compliance, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
3
|
Identification of a Hydroxygallic Acid Derivative, Zingibroside R1 and a Sterol Lipid as Potential Active Ingredients of Cuscuta chinensis Extract That Has Neuroprotective and Antioxidant Effects in Aged Caenorhabditis elegans. Nutrients 2022; 14:nu14194199. [PMID: 36235851 PMCID: PMC9570774 DOI: 10.3390/nu14194199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 11/25/2022] Open
Abstract
We examined the effects of the extracts from two traditional Chinese medicine plants, Cuscuta chinensis and Eucommia ulmoides, on the healthspan of the model organism Caenorhabditis elegans. C. chinensis increased the short-term memory and the mechanosensory response of aged C. elegans. Furthermore, both extracts improved the resistance towards oxidative stress, and decreased the intracellular level of reactive oxygen species. Chemical analyses of the extracts revealed the presence of several bioactive compounds such as chlorogenic acid, cinnamic acid, and quercetin. A fraction from the C. chinensis extract enriched in zingibroside R1 improved the lifespan, the survival after heat stress, and the locomotion in a manner similar to the full C. chinensis extract. Thus, zingibroside R1 could be (partly) responsible for the observed health benefits of C. chinensis. Furthermore, a hydroxygallic acid derivative and the sterol lipid 4-alpha-formyl-stigmasta-7,24(241)-dien-3-beta-ol are abundantly present in the C. chinensis extract and its most bioactive fraction, but hardly in E. ulmoides, making them good candidates to explain the overall healthspan benefits of C. chinensis compared to the specific positive effects on stress resistance by E. ulmoides. Our findings highlight the overall anti-aging effects of C. chinensis in C. elegans and provide first hints about the components responsible for these effects.
Collapse
|
4
|
Elsakrmy N, Aouida M, Hindi N, Moovarkumudalvan B, Mohanty A, Ali R, Ramotar D. C. elegans ribosomal protein S3 protects against H2O2-induced DNA damage and suppresses spontaneous mutations in yeast. DNA Repair (Amst) 2022; 117:103359. [DOI: 10.1016/j.dnarep.2022.103359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022]
|
5
|
Elsakrmy N, Zhang-Akiyama QM, Ramotar D. The Base Excision Repair Pathway in the Nematode Caenorhabditis elegans. Front Cell Dev Biol 2020; 8:598860. [PMID: 33344454 PMCID: PMC7744777 DOI: 10.3389/fcell.2020.598860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
Exogenous and endogenous damage to the DNA is inevitable. Several DNA repair pathways including base excision, nucleotide excision, mismatch, homologous and non-homologous recombinations are conserved across all organisms to faithfully maintain the integrity of the genome. The base excision repair (BER) pathway functions to repair single-base DNA lesions and during the process creates the premutagenic apurinic/apyrimidinic (AP) sites. In this review, we discuss the components of the BER pathway in the nematode Caenorhabditis elegans and delineate the different phenotypes caused by the deletion or the knockdown of the respective DNA repair gene, as well as the implications. To date, two DNA glycosylases have been identified in C. elegans, the monofunctional uracil DNA glycosylase-1 (UNG-1) and the bifunctional endonuclease III-1 (NTH-1) with associated AP lyase activity. In addition, the animal possesses two AP endonucleases belonging to the exonuclease-3 and endonuclease IV families and in C. elegans these enzymes are called EXO-3 and APN-1, respectively. In mammalian cells, the DNA polymerase, Pol beta, that is required to reinsert the correct bases for DNA repair synthesis is not found in the genome of C. elegans and the evidence indicates that this role could be substituted by DNA polymerase theta (POLQ), which is known to perform a function in the microhomology-mediated end-joining pathway in human cells. The phenotypes observed by the C. elegans mutant strains of the BER pathway raised many challenging questions including the possibility that the DNA glycosylases may have broader functional roles, as discuss in this review.
Collapse
Affiliation(s)
- Noha Elsakrmy
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dindial Ramotar
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar
| |
Collapse
|
6
|
Schlotterer A, Masri B, Humpert M, Krämer BK, Hammes HP, Morcos M. Sulforaphane and Vitamin E Protect From Glucotoxic Neurodegeneration and Lifespan Reduction In C. Elegans. Exp Clin Endocrinol Diabetes 2020; 129:887-894. [PMID: 32503075 DOI: 10.1055/a-1158-9248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Caenorhabditis elegans is an established model organism in neurodegeneration and aging research. Oxidative stress and formation of advanced glycation endproducts (AGEs), as they occur under hyperglycemic conditions in diabetes mellitus, contribute to neuronal damage and lifespan reduction. Sulforaphane (SFN) is an indirect antioxidant, alpha-tocopherol (vitamin E) is a direct antioxidant that acts as a free radical scavenger. Aim of this study is to investigate the protective effects of SFN and vitamin E against glucotoxic damages to the neuronal system and lifespan in C. elegans. Culture conditions that mimic clinical hyperglycemia increased the formation of reactive oxygen species (ROS) (p<0.001) and the accumulation of methylglyoxal-derived advanced glycation endproducts (MG-derived AGEs) (p<0.01) with subsequent neuronal damage and neuronal dysfunction, ultimately leading to a significant shortening of lifespan (p<0.01). Treatment with both, 20 µmol/l SFN and 200 µg/ml vitamin E, completely prevented the increase in ROS and MG-derived AGEs, abolished the glucotoxic effects on neuronal structure and function, and preserved lifespan, resulting in a life expectancy similar to untreated controls. These data emphasize the relevance of indirect and direct antioxidants as potential therapeutic options for the prevention of glucotoxic pathologies.
Collapse
Affiliation(s)
- Andrea Schlotterer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Benan Masri
- Department of Medicine I, Endocrinology and Clinical Chemistry, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Bernhard Karl Krämer
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Hans-Peter Hammes
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| | - Michael Morcos
- Fifth Department of Medicine, Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany.,European Center for Angioscience (ECAS), Heidelberg University, Medical Faculty Mannheim, Mannheim, Germany
| |
Collapse
|
7
|
AP endonuclease EXO-3 deficiency causes developmental delay and abnormal vulval organogenesis, Pvl, through DNA glycosylase-initiated checkpoint activation in Caenorhabditis elegans. Sci Rep 2018; 8:16736. [PMID: 30425296 PMCID: PMC6233223 DOI: 10.1038/s41598-018-35063-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 10/25/2018] [Indexed: 12/27/2022] Open
Abstract
AP endonuclease deficiency causes cell death and embryonic lethality in mammals. However, the physiological roles of AP endonucleases in multicellular organisms remain unclear, especially after embryogenesis. Here, we report novel physiological roles of the AP endonuclease EXO-3 from larval to adult stages in Caenorhabditis elegans, and elucidated the mechanism of the observed phenotypes due to EXO-3 deficiency. The exo-3 mutants exhibited developmental delay, whereas the apn-1 mutants did not. The delay depended on the DNA glycosylase NTH-1 and checkpoint kinase CHK-2. The exo-3 mutants had further developmental delay when treated with AP site-generating agents such as methyl methane sulfonate and sodium bisulfite. The further delay due to sodium bisulfite was dependent on the DNA glycosylase UNG-1. The exo-3 mutants also demonstrated an increase in dut-1 (RNAi)-induced abnormal vulval organogenesis protruding vulva (Pvl), whereas the apn-1 mutants did not. The increase in Pvl was dependent on UNG-1 and CHK-2. Methyl viologen, ndx-1 (RNAi) and ndx-2 (RNAi) enhanced the incidence of Pvl among exo-3 mutants only when combined with dut-1 (RNAi). This further increase in Pvl incidence was independent of NTH-1. These results indicate that EXO-3 prevents developmental delay and Pvl in C. elegans, which are induced via DNA glycosylase-initiated checkpoint activation.
Collapse
|
8
|
Riedinger C, Mendler M, Schlotterer A, Fleming T, Okun J, Hammes HP, Herzig S, Nawroth PP. High-glucose toxicity is mediated by AICAR-transformylase/IMP cyclohydrolase and mitigated by AMP-activated protein kinase in Caenorhabditis elegans. J Biol Chem 2018; 293:4845-4859. [PMID: 29414769 DOI: 10.1074/jbc.m117.805879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 01/29/2018] [Indexed: 11/06/2022] Open
Abstract
The enzyme AICAR-transformylase/IMP cyclohydrolase (ATIC) catalyzes the last two steps of purine de novo synthesis. It metabolizes 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR), which is an AMP analogue, leading to activation of AMP-activated kinase (AMPK). We investigated whether the AICAR-ATIC pathway plays a role in the high glucose (HG)-mediated DNA damage response and AICAR-mediated AMPK activation, explaining the detrimental effects of glucose on neuronal damage and shortening of the lifespan. HG up-regulated the expression and activity of the Caenorhabditis elegans homologue of ATIC, C55F2.1 (atic-1), and increased the levels of reactive oxygen species and methylglyoxal-derived advanced glycation end products. Overexpression of atic-1 decreased the lifespan and head motility and increased neuronal damage under both standard and HG conditions. Inhibition of atic-1 expression, by RNAi, under HG was associated with increased lifespan and head motility and reduced neuronal damage, reactive oxygen species, and methylglyoxal-derived advanced glycation end product accumulation. This effect was independent of an effect on DNA damage or antioxidant defense pathways, such as superoxide dismutase (sod-3) or glyoxalase-1 (glod-4), but was dependent on AMPK and accumulation of AICAR. Through AMPK, AICAR treatment also reduced the negative effects of HG. The mitochondrial inhibitor rotenone abolished the AICAR/AMPK-induced amelioration of HG effects, pointing to mitochondria as a prime target of the glucotoxic effects in C. elegans We conclude that atic-1 is involved in glucotoxic effects under HG conditions, either by blocked atic-1 expression or via AICAR and AMPK induction.
Collapse
Affiliation(s)
- Christin Riedinger
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Michael Mendler
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Andrea Schlotterer
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Thomas Fleming
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Jürgen Okun
- Department of Pediatrics, Dietmar Hopp Metabolism Centre, 69120 Heidelberg, Germany
| | - Hans-Peter Hammes
- V. Medical Hospital, University Hospital Mannheim, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Stephan Herzig
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Peter P Nawroth
- Department of Medicine I and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; Joint Heidelberg Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; German Center for Diabetes Research, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| |
Collapse
|
9
|
Cesselli D, Aleksova A, Sponga S, Cervellin C, Di Loreto C, Tell G, Beltrami AP. Cardiac Cell Senescence and Redox Signaling. Front Cardiovasc Med 2017; 4:38. [PMID: 28612009 PMCID: PMC5447053 DOI: 10.3389/fcvm.2017.00038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of the ability of the organism to cope with stressors and to repair tissue damage. As a result, chronic diseases, including cardiovascular disease, increase their prevalence with aging, underlining the existence of common mechanisms that lead to frailty and age-related diseases. In this frame, the progressive decline of the homeostatic and reparative function of primitive cells has been hypothesized to play a major role in the evolution of cardiac pathology to heart failure. Although initially it was believed that reactive oxygen species (ROS) were produced in an unregulated manner as a byproduct of cellular metabolism, causing macromolecular damage and aging, accumulating evidence indicate the major role played by redox signaling in physiology. Aim of this review is to critically revise evidence linking ROS to cell senescence and aging and to provide evidence of the primary role played by redox signaling, with a particular emphasis on the multifunctional protein APE1/Ref in stem cell biology. Finally, we will discuss evidence supporting the role of redox signaling in cardiovascular cells.
Collapse
Affiliation(s)
| | - Aneta Aleksova
- Cardiovascular Department, Azienda Sanitaria Universitaria Integrata di Trieste, University of Trieste, Trieste, Italy
| | - Sandro Sponga
- Cardiothoracic Surgery, Azienda Sanitaria Universitaria Integrata di Udine, Udine, Italy
| | | | | | - Gianluca Tell
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
10
|
Kato Y, Miyaji M, Zhang-Akiyama QM. FUdR extends the lifespan of the short-lived AP endonuclease mutant in Caenorhabditis elegans in a fertility-dependent manner. Genes Genet Syst 2016; 91:201-207. [PMID: 27582048 DOI: 10.1266/ggs.15-00064] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The anticancer drug 5-fluorouracil (5-FU) and its metabolite 5-fluoro-2'-deoxyuridine (FUdR) inhibit thymidylate synthase and induce uracil bases in DNA. FUdR is commonly used for inhibiting fertility when measuring the lifespan of the nematode Caenorhabditis elegans. However, it is not known whether DNA damage induced by FUdR affects lifespan. EXO-3 is an apurinic/apyrimidinic endonuclease in C. elegans, and we reported previously that deletion of the exo-3 gene causes reproductive abnormalities and decreased lifespan. In this study, we found that FUdR extended the lifespan of exo-3 mutants. We measured the lifespan of multiple germline mutants to examine whether this lifespan extension effect was dependent on fertility. In the presence of a fem-1 mutation, which causes a deficiency in sperm production, FUdR did not extend the lifespan of the exo-3 mutant. In glp-1 mutants, which do not develop gonads, the exo-3 mutant was not short-lived, and FUdR did not extend its lifespan. These results suggest that the lifespan extension effect of FUdR depends on fertility and the presence of gonads. fem-3 mutants, which do not produce oocytes, had increased lifespan in the presence of FUdR, independent of the exo-3 mutation. It is possible that the fem-3 mutant was susceptible to the lifespan extension effect of FUdR. From these results, we suggest that FUdR affects the lifespan of C. elegans in two ways: by interfering with fertility, which extends lifespan, and by inducing DNA base damage, which reduces lifespan.
Collapse
Affiliation(s)
- Yuichi Kato
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University
| | | | | |
Collapse
|
11
|
Schlotterer A, Greten HJ, Remppis BA, Kukudov G, Efferth T, Machado J, Humpert P, Hammes HP, Morcos M. Neuroprotection and antioxidative effects of Sijunzi Tang Decoction in the nematode Caenorhabditis elegans. Eur J Integr Med 2016. [DOI: 10.1016/j.eujim.2016.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Feleciano DR, Arnsburg K, Kirstein J. Interplay between redox and protein homeostasis. WORM 2016; 5:e1170273. [PMID: 27386166 DOI: 10.1080/21624054.2016.1170273] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 02/20/2016] [Accepted: 03/15/2016] [Indexed: 10/22/2022]
Abstract
The subcellular compartments of eukaryotic cells are characterized by different redox environments. Whereas the cytosol, nucleus and mitochondria are more reducing, the endoplasmic reticulum represents a more oxidizing environment. As the redox level controls the formation of intra- and inter-molecular disulfide bonds, the folding of proteins is tightly linked to its environment. The proteostasis network of each compartment needs to be adapted to the compartmental redox properties. In addition to chaperones, also members of the thioredoxin superfamily can influence the folding of proteins by regulation of cysteine reduction/oxidation. This review will focus on thioredoxin superfamily members and chaperones of C. elegans, which play an important role at the interface between redox and protein homeostasis. Additionally, this review will highlight recent methodological developments on in vivo and in vitro assessment of the redox state and their application to provide insights into the high complexity of redox and proteostasis networks of C. elegans.
Collapse
Affiliation(s)
- Diogo R Feleciano
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Kristin Arnsburg
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| | - Janine Kirstein
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. , Berlin, Germany
| |
Collapse
|
13
|
Gu L, Gao W, Yang HM, Wang BB, Wang XN, Xu J, Zhang H. Control of Trx1 redox state modulates protection against methyl methanesulfonate-induced DNA damage via stabilization of p21. J Biochem 2015; 159:101-10. [PMID: 26276860 DOI: 10.1093/jb/mvv080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 07/02/2015] [Indexed: 12/13/2022] Open
Abstract
Thioredoxin 1 (Trx1) is known to play an important role in protecting against cell death. However, the mechanism for control of Trx1 in cell death resulting from DNA damage has not been fully investigated. In this study, we used the DNA-damaging agent methyl methanesulfonate (MMS) to investigate the protective effects of Trx1 against DNA damage and cell death in HEK293 cells. We found that MMS application caused dose-dependent changes in the Trx1 redox state determined by redox western blotting. At lower concentrations, both reduced and oxidized Trx1 were observed, whereas the reduced band was fully oxidized at the higher concentration. Trx1 overexpression and small interfering RNA knockdown in cells revealed that reduced Trx1 after exposure to lower doses of MMS attenuated DNA damage, assessed by comet assay, and level of the DNA-damage marker histone γ-H2AX, possibly through scavenging intracellular ROS and an increase in p21 protein level via enhancing its stability. However, oxidized Trx1 lost its protective ability to DNA damage in response to higher concentration of MMS. Corresponding to the redox state control of Trx1, cell death induced by different dose of MMS was also found, by inhibiting phosphorylations of p38 and 4E-BP1. These results indicate that reduced Trx1 plays important protective roles against MMS-induced DNA damage and cell death, suggesting that cell protection is regulated by the intracellular redox state. Control of the redox state of Trx1 and its regulating proteins may offer a novel therapeutic strategy for the control of cancer.
Collapse
Affiliation(s)
- Li Gu
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education
| | - Wei Gao
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education
| | - Hui Min Yang
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education
| | - Bei Bei Wang
- School of Basic Medical Science, Capital Medical University, Beijing 100069 and
| | - Xiao Na Wang
- School of Basic Medical Science, Capital Medical University, Beijing 100069 and
| | - Jianguo Xu
- Department of Internal Medicine, Shaoxing Second Hospital, Zhejiang 312000, China
| | - Hong Zhang
- Department of Neurobiology, Capital Medical University, Beijing Institute for Brain Disorders and Key Laboratory for Neurodegenerative Disorder, Ministry of Education,
| |
Collapse
|
14
|
Kato Y, Moriwaki T, Funakoshi M, Zhang-Akiyama QM. Caenorhabditis elegans EXO-3 contributes to longevity and reproduction: differential roles in somatic cells and germ cells. Mutat Res 2015; 772:46-54. [PMID: 25772110 DOI: 10.1016/j.mrfmmm.2015.01.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 11/05/2014] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
Apurinic/apyrimidinic (AP) sites are the major DNA damage generated continuously even under normal conditions, and inhibit DNA replication/transcription. AP endonucleases are ubiquitous enzymes required for the repair of AP sites and 3' blocking ends, but their physiological roles in multicellular organisms are not fully understood. In this study, we investigated how an AP endonuclease functions in a multicellular organism (Caenorhabditis elegans (C. elegans)). EXO-3 is one of the AP endonucleases in C. elegans. Using an exo-3 mutant worm, we found that deletion of the exo-3 gene caused shortened lifespan in an ung-1-dependent manner. UNG-1 is a uracil DNA glycosylase in C. elegans, and the present finding suggested that UNG-1 is the major producer of AP sites that affects lifespan, and EXO-3 contributes to longevity by completing the repair of uracil. Next we found that the exo-3 gene was abundantly expressed in the gonads, and AP sites in the gonad were efficiently repaired, suggesting that EXO-3 functioned particularly in the gonad. Deletion of the exo-3 gene resulted in a significant decrease in self-brood size. This was rescued by deficiency of NTH-1, which is a bifunctional DNA glycosylase in C. elegans that recognizes oxidative base damage. This result suggested that the major substrate of EXO-3 in the gonad was 3' blocking end generated by NTH-1, and that EXO-3 played an important role in reproduction. A contribution of EXO-3 to reproduction was also suggested by our finding here that the decrease of self-brood size of the exo-3 mutant became more marked when worms were treated with methyl methanesulfonate (MMS) and sodium bisulfite (NaHSO3). This study demonstrated differential roles of EXO-3 in somatic cells and germ cells.
Collapse
Affiliation(s)
- Yuichi Kato
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takahito Moriwaki
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masafumi Funakoshi
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Qiu-Mei Zhang-Akiyama
- Laboratory of Stress Response Biology, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
15
|
Mendler M, Schlotterer A, Ibrahim Y, Kukudov G, Fleming T, Bierhaus A, Riedinger C, Schwenger V, Herzig S, Hecker M, Tyedmers J, Nawroth PP, Morcos M. daf-16/FOXO and glod-4/glyoxalase-1 are required for the life-prolonging effect of human insulin under high glucose conditions in Caenorhabditis elegans. Diabetologia 2015; 58:393-401. [PMID: 25322843 DOI: 10.1007/s00125-014-3415-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
Abstract
AIMS/HYPOTHESIS The aim of this study was to determine the protective effects of human insulin and its analogues, B28Asp human insulin (insulin aspart) and B29Lys(ε-tetradecanoyl),desB30 human insulin (insulin detemir), against glucose-induced lifespan reduction and neuronal damage in the model organism Caenorhabditis elegans and to elucidate the underlying mechanisms. METHODS Nematodes were cultivated under high glucose (HG) conditions comparable with the situation in diabetic patients and treated with human insulin and its analogues. Lifespan was assessed and neuronal damage was evaluated with regard to structural and functional impairment. Additionally, the activity of glyoxalase-1 and superoxide dismutase (SOD) and the formation of reactive oxygen species (ROS) and AGEs were determined. RESULTS Insulin and its analogues reversed the life-shortening effect of HG conditions and prevented the glucose-induced neuronal impairment. Insulin treatment under HG conditions was associated with reduced concentration of glucose, as well as a reduced formation of ROS and AGEs, and increased SOD activity. These effects were dependent on the Forkhead box O (FOXO) homologue abnormal dauer formation (DAF)-16. Furthermore, glyoxalase-1 activity, which was impaired under HG conditions, was restored by human insulin. This was essential for the insulin-induced lifespan extension under HG conditions, as no change in lifespan was observed following either suppression or overexpression of glyoxalase-1. CONCLUSIONS/INTERPRETATION Human insulin and its analogues prevent the reduction in lifespan and neuronal damage caused by HG conditions. The effect of human insulin is mediated by a daf-2/insulin receptor and daf-16/FOXO-dependent pathway and is mediated by upregulation of detoxifying mechanisms.
Collapse
Affiliation(s)
- Michael Mendler
- Department of Medicine 1 and Clinical Chemistry, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Meira LB, Calvo JA, Shah D, Klapacz J, Moroski-Erkul CA, Bronson RT, Samson LD. Repair of endogenous DNA base lesions modulate lifespan in mice. DNA Repair (Amst) 2014; 21:78-86. [PMID: 24994062 PMCID: PMC4125484 DOI: 10.1016/j.dnarep.2014.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 12/21/2022]
Abstract
The accumulation of DNA damage is thought to contribute to the physiological decay associated with the aging process. Here, we report the results of a large-scale study examining longevity in various mouse models defective in the repair of DNA alkylation damage, or defective in the DNA damage response. We find that the repair of spontaneous DNA damage by alkyladenine DNA glycosylase (Aag/Mpg)-initiated base excision repair and O(6)-methylguanine DNA methyltransferase (Mgmt)-mediated direct reversal contributes to maximum life span in the laboratory mouse. We also uncovered important genetic interactions between Aag, which excises a wide variety of damaged DNA bases, and the DNA damage sensor and signaling protein, Atm. We show that Atm plays a role in mediating survival in the face of both spontaneous and induced DNA damage, and that Aag deficiency not only promotes overall survival, but also alters the tumor spectrum in Atm(-/-) mice. Further, the reversal of spontaneous alkylation damage by Mgmt interacts with the DNA mismatch repair pathway to modulate survival and tumor spectrum. Since these aging studies were performed without treatment with DNA damaging agents, our results indicate that the DNA damage that is generated endogenously accumulates with age, and that DNA alkylation repair proteins play a role in influencing longevity.
Collapse
Affiliation(s)
- Lisiane B Meira
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Jennifer A Calvo
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Dharini Shah
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Joanna Klapacz
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Catherine A Moroski-Erkul
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States
| | - Roderick T Bronson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States
| | - Leona D Samson
- Biological Engineering Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Biology Department, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Center for Environmental Health Sciences, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, United States; Rodent Histopathology Core, Harvard Medical School, 126 Goldenson Building, Boston, MA 02115, United States.
| |
Collapse
|
17
|
Jiménez-Hidalgo M, Kurz CL, Pedrajas JR, Naranjo-Galindo FJ, González-Barrios M, Cabello J, Sáez AG, Lozano E, Button EL, Veal EA, Fierro-González JC, Swoboda P, Miranda-Vizuete A. Functional characterization of thioredoxin 3 (TRX-3), a Caenorhabditis elegans intestine-specific thioredoxin. Free Radic Biol Med 2014; 68:205-19. [PMID: 24316195 PMCID: PMC4018987 DOI: 10.1016/j.freeradbiomed.2013.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/13/2013] [Accepted: 11/22/2013] [Indexed: 01/15/2023]
Abstract
Thioredoxins are a class of evolutionarily conserved proteins that have been demonstrated to play a key role in many cellular processes involving redox reactions. We report here the genetic and biochemical characterization of Caenorhabditis elegans TRX-3, the first metazoan thioredoxin with an intestine-specific expression pattern. By using green fluorescent protein reporters we have found that TRX-3 is expressed in both the cytoplasm and the nucleus of intestinal cells, with a prominent localization at the apical membrane. Although intestinal function, reproductive capacity, longevity, and resistance of trx-3 loss-of-function mutants to many stresses are indistinguishable from those of wild-type animals, we have observed a slight reduction in size and a minor reduction in the defecation cycle timing of trx-3 mutants. Interestingly, trx-3 is induced upon infection by Photorhabdus luminescens and Candida albicans, and TRX-3 overexpression provides a modest protection against these pathogens. Together, our data indicate that TRX-3 function in the intestine is dispensable for C. elegans development but may be important to fight specific bacterial and fungal infections.
Collapse
Affiliation(s)
- María Jiménez-Hidalgo
- Centro Andaluz de Biología del Desarrollo, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Cyril Léopold Kurz
- Centre d'Immunologie de Marseille-Luminy, UM2 Aix-Marseille Université, Case 906, 13288 Marseille cedex 9, France
| | - José Rafael Pedrajas
- Grupo de Bioquímica y Señalización Celular, Departamento de Biología Experimental, Universidad de Jaén, 23071 Jaén, Spain
| | - Francisco José Naranjo-Galindo
- Centro Andaluz de Biología del Desarrollo, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - María González-Barrios
- Centro Andaluz de Biología del Desarrollo, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan Cabello
- Center for Biomedical Research of La Rioja, 26006 Logroño, Spain
| | - Alberto G Sáez
- Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Encarnación Lozano
- Unidad Funcional de Investigación en Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| | - Emma L Button
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Elizabeth A Veal
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Juan Carlos Fierro-González
- Center for Biosciences at Novum, Department of Biosciences and Nutrition, Karolinska Institute, S-14183 Huddinge, Sweden
| | - Peter Swoboda
- Center for Biosciences at Novum, Department of Biosciences and Nutrition, Karolinska Institute, S-14183 Huddinge, Sweden
| | - Antonio Miranda-Vizuete
- Centro Andaluz de Biología del Desarrollo, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain; Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain.
| |
Collapse
|
18
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
19
|
Palgunow D, Klapper M, Döring F. Dietary restriction during development enlarges intestinal and hypodermal lipid droplets in Caenorhabditis elegans. PLoS One 2012. [PMID: 23185233 PMCID: PMC3502458 DOI: 10.1371/journal.pone.0046198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dietary restriction (DR) extends lifespan in man species and modulates evolutionary conserved signalling and metabolic pathways. Most of these studies were done in adult animals. Here we investigated fat phenotypes of C. elegans larvae and adults which were exposed to DR during development. This approach was named "developmental-DR" (dDR). Moderate as well as stringent dDR increased the triglyceride to protein ratio in L4 larvae and adult worms. This alteration was accompanied by a marked expansion of intestinal and hypodermal lipid droplets. In comparison to ad libitum condition, the relative proportion of fat stored in large lipid droplets (>50 µm(3)) was increased by a factor of about 5 to 6 in larvae exposed to dDR. Microarray-based expression profiling identified several dDR-regulated genes of lipolysis and lipogenesis which may contribute to the observed fat phenotypes. In conclusion, dDR increases the triglyceride to protein ratio, enlarges lipid droplets and alters the expression of genes functioning in lipid metabolism in C. elegans. These changes might be an effective adaptation to conserve fat stores in animals subjected to limiting food supply during development.
Collapse
Affiliation(s)
| | | | - Frank Döring
- Department of Molecular Prevention, Institute of Human Nutrition and Food Science, Christian-Albrechts-University of Kiel, Kiel, Germany
- * E-mail:
| |
Collapse
|
20
|
Mitochondria-targeted antioxidants and metabolic modulators as pharmacological interventions to slow ageing. Biotechnol Adv 2012; 31:563-92. [PMID: 23022622 DOI: 10.1016/j.biotechadv.2012.09.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/07/2023]
Abstract
Populations in many nations today are rapidly ageing. This unprecedented demographic change represents one of the main challenges of our time. A defining property of the ageing process is a marked increase in the risk of mortality and morbidity with age. The incidence of cancer, cardiovascular and neurodegenerative diseases increases non-linearly, sometimes exponentially with age. One of the most important tasks in biogerontology is to develop interventions leading to an increase in healthy lifespan (health span), and a better understanding of basic mechanisms underlying the ageing process itself may lead to interventions able to delay or prevent many or even all age-dependent conditions. One of the putative basic mechanisms of ageing is age-dependent mitochondrial deterioration, closely associated with damage mediated by reactive oxygen species (ROS). Given the central role that mitochondria and mitochondrial dysfunction play not only in ageing but also in apoptosis, cancer, neurodegeneration and other age-related diseases there is great interest in approaches to protect mitochondria from ROS-mediated damage. In this review, we explore strategies of targeting mitochondria to reduce mitochondrial oxidative damage with the aim of preventing or delaying age-dependent decline in mitochondrial function and some of the resulting pathologies. We discuss mitochondria-targeted and -localized antioxidants (e.g.: MitoQ, SkQ, ergothioneine), mitochondrial metabolic modulators (e.g. dichloroacetic acid), and uncouplers (e.g.: uncoupling proteins, dinitrophenol) as well as some alternative future approaches for targeting compounds to the mitochondria, including advances from nanotechnology.
Collapse
|
21
|
The Redox System in C. elegans, a Phylogenetic Approach. J Toxicol 2012; 2012:546915. [PMID: 22899914 PMCID: PMC3415087 DOI: 10.1155/2012/546915] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 12/14/2022] Open
Abstract
Oxidative stress is a toxic state caused by an imbalance between the production and elimination of reactive oxygen species (ROS). ROS cause oxidative damage to cellular components such as proteins, lipids, and nucleic acids. While the role of ROS in cellular damage is frequently all that is noted, ROS are also important in redox signalling. The "Redox Hypothesis" has been proposed to emphasize a dual role of ROS. This hypothesis suggests that the primary effect of changes to the redox state is modified cellular signalling rather than simply oxidative damage. In extreme cases, alteration of redox signalling can contribute to the toxicity of ROS, as well as to ageing and age-related diseases. The nematode species Caenorhabditis elegans provides an excellent model for the study of oxidative stress and redox signalling in animals. We use protein sequences from central redox systems in Homo sapiens, Drosophila melanogaster, and Saccharomyces cerevisiae to query Genbank for homologous proteins in C. elegans. We then use maximum likelihood phylogenetic analysis to compare protein families between C. elegans and the other organisms to facilitate future research into the genetics of redox biology.
Collapse
|
22
|
Van Raamsdonk JM, Hekimi S. Reactive Oxygen Species and Aging in Caenorhabditis elegans: Causal or Casual Relationship? Antioxid Redox Signal 2010; 13:1911-53. [PMID: 20568954 DOI: 10.1089/ars.2010.3215] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The free radical theory of aging proposes a causal relationship between reactive oxygen species (ROS) and aging. While it is clear that oxidative damage increases with age, its role in the aging process is uncertain. Testing the free radical theory of aging requires experimentally manipulating ROS production or detoxification and examining the resulting effects on lifespan. In this review, we examine the relationship between ROS and aging in the genetic model organism Caenorhabditis elegans, summarizing experiments using long-lived mutants, mutants with altered mitochondrial function, mutants with decreased antioxidant defenses, worms treated with antioxidant compounds, and worms exposed to different environmental conditions. While there is frequently a negative correlation between oxidative damage and lifespan, there are many examples in which they are uncoupled. Neither is resistance to oxidative stress sufficient for a long life nor are all long-lived mutants more resistant to oxidative stress. Similarly, sensitivity to oxidative stress does not necessarily shorten lifespan and is in fact compatible with long life. Overall, the data in C. elegans indicate that oxidative damage can be dissociated from aging in experimental situations.
Collapse
|