1
|
Jensen HH, Olsen A. Neurological consequences of human calmodulin mutations. Neural Regen Res 2024; 19:943-944. [PMID: 37862180 PMCID: PMC10749624 DOI: 10.4103/1673-5374.385299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/20/2023] [Accepted: 08/02/2023] [Indexed: 10/22/2023] Open
Affiliation(s)
- Helene H. Jensen
- Medical Biotechnology, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| | - Anders Olsen
- Medical Biotechnology, Department of Chemistry and Biosciences, Aalborg University, Aalborg, Denmark
| |
Collapse
|
2
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
3
|
Wang S, You M, Wang C, Zhang Y, Fan C, Yan S. Heat shock pretreatment induced cadmium resistance in the nematode Caenorhabditis elegans is depend on transcription factors DAF-16 and HSF-1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114081. [PMID: 32062098 DOI: 10.1016/j.envpol.2020.114081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/24/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) exposure poses a serious environmental problem due to the metal's bioaccumulation and difficult to eliminate from body. Understanding the mechanisms of Cd detoxification and resistance can provide insights into methods to protect against the damaging effects of the heavy metal. In the present study, we found that heat shock (HS) pretreatment increased Cd resistance of the nematode Caenorhabditis elegans by reducing the bagging phenotype and protecting the integrity of the intestinal barrier. HS pretreatment increased the expression of heat shock protein-16.2 (HSP-16.2) prior to Cd exposure, and HS-induced Cd resistance was absent in worms with hsp-16.2 loss-of-function mutation. Worm strain with daf-2(e1370) mutation presented enhanced HS-induced Cd resistance, which was eliminated in worm strains of daf-16(mu86) and hsf-1(sy441). HS pretreatment increased DAF-16 nuclear localization and HSF-1 granule formation prior to Cd exposure. DAF-16 and HSF-1 was essential in reducing bagging formation and protecting the integrity of intestinal barrier after HS pretreatment. In conclusion, the present study demonstrated that HS-induced Cd resistance in C. elegans is regulated by the DAF-16/FOXO and HSF-1 pathways through regulation of HSP-16.2 expression.
Collapse
Affiliation(s)
- Shunchang Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China.
| | - Mu You
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Chengrun Wang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| | - Yuecheng Zhang
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Caiqi Fan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China
| | - Shoubao Yan
- School of Bioengineering, Huainan Normal University, Huainan, 232038, China; Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, 232038, China
| |
Collapse
|
4
|
Maulik M, Mitra S, Bult-Ito A, Taylor BE, Vayndorf EM. Behavioral Phenotyping and Pathological Indicators of Parkinson's Disease in C. elegans Models. Front Genet 2017; 8:77. [PMID: 28659967 PMCID: PMC5468440 DOI: 10.3389/fgene.2017.00077] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/22/2017] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder with symptoms that progressively worsen with age. Pathologically, PD is characterized by the aggregation of α-synuclein in cells of the substantia nigra in the brain and loss of dopaminergic neurons. This pathology is associated with impaired movement and reduced cognitive function. The etiology of PD can be attributed to a combination of environmental and genetic factors. A popular animal model, the nematode roundworm Caenorhabditis elegans, has been frequently used to study the role of genetic and environmental factors in the molecular pathology and behavioral phenotypes associated with PD. The current review summarizes cellular markers and behavioral phenotypes in transgenic and toxin-induced PD models of C. elegans.
Collapse
Affiliation(s)
- Malabika Maulik
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, United States
| | - Barbara E Taylor
- Department of Biological Sciences, California State University, Long BeachLong Beach, CA, United States
| | - Elena M Vayndorf
- Institute of Arctic Biology, University of Alaska FairbanksFairbanks, AK, United States
| |
Collapse
|
5
|
Non-amyloidogenic effects of α2 adrenergic agonists: implications for brimonidine-mediated neuroprotection. Cell Death Dis 2016; 7:e2514. [PMID: 27929541 PMCID: PMC5260990 DOI: 10.1038/cddis.2016.397] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/18/2022]
Abstract
The amyloid beta (Aβ) pathway is strongly implicated in neurodegenerative conditions such as Alzheimer's disease and more recently, glaucoma. Here, we identify the α2 adrenergic receptor agonists (α2ARA) used to lower intraocular pressure can prevent retinal ganglion cell (RGC) death via the non-amyloidogenic Aβ-pathway. Neuroprotective effects were confirmed in vivo and in vitro in different glaucoma-related models using α2ARAs brimonidine (BMD), clonidine (Clo) and dexmedetomidine. α2ARA treatment significantly reduced RGC apoptosis in experimental-glaucoma models by 97.7% and 92.8% (BMD, P<0.01) and 98% and 92.3% (Clo, P<0.01)) at 3 and 8 weeks, respectively. A reduction was seen in an experimental Aβ-induced neurotoxicity model (67% BMD and 88.6% Clo, both P<0.01, respectively), and in vitro, where α2ARAs significantly (P<0.05) prevented cell death, under both hypoxic (CoCl2) and stress (UV) conditions. In experimental-glaucoma, BMD induced ninefold and 25-fold and 36-fold and fourfold reductions in Aβ and amyloid precursor protein (APP) levels at 3 and 8 weeks, respectively, in the RGC layer, with similar results with Clo, and in vitro with all three α2ARAs. BMD significantly increased soluble APPα (sAPPα) levels at 3 and 8 weeks (2.1 and 1.6-fold) in vivo and in vitro with the CoCl2 and UV-light insults. Furthermore, treatment of UV-insulted cells with an sAPPα antibody significantly reduced cell viability compared with BMD-treated control (52%), co-treatment (33%) and untreated control (27%). Finally, we show that α2ARAs modulate levels of laminin and MMP-9 in RGCs, potentially linked to changes in Aβ through APP processing. Together, these results provide new evidence that α2ARAs are neuroprotective through their effects on the Aβ pathway and sAPPα, which to our knowledge, is the first description. Studies have identified the need for α-secretase activators and sAPPα-mimetics in neurodegeneration; α2ARAs, already clinically available, present a promising therapy, with applications not only to reducing RGC death in glaucoma but also other neurodegenerative processes involving Aβ.
Collapse
|
6
|
Kalathur RKR, Giner-Lamia J, Machado S, Barata T, Ayasolla KRS, Futschik ME. The unfolded protein response and its potential role in Huntington's disease elucidated by a systems biology approach. F1000Res 2015; 4:103. [PMID: 26949515 PMCID: PMC4758378 DOI: 10.12688/f1000research.6358.2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 12/22/2022] Open
Abstract
Huntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, persistent ER stress and an activated UPR can also cause apoptotic cell death. Although different studies have indicated a role for the UPR in HD, the evidence remains inconclusive. Here, we present extensive bioinformatic analyses that revealed UPR activation in different experimental HD models based on transcriptomic data. Accordingly, we have identified 53 genes, including RAB5A, HMGB1, CTNNB1, DNM1, TUBB, TSG101, EEF2, DYNC1H1, SLC12A5, ATG5, AKT1, CASP7 and SYVN1 that provide a potential link between UPR and HD. To further elucidate the potential role of UPR as a disease-relevant process, we examined its connection to apoptosis based on molecular interaction data, and identified a set of 40 genes including ADD1, HSP90B1, IKBKB, IKBKG, RPS3A and LMNB1, which seem to be at the crossroads between these two important cellular processes. Remarkably, we also found strong correlation of UPR gene expression with the length of the polyglutamine tract of Huntingtin, which is a critical determinant of age of disease onset in human HD patients pointing to the UPR as a promising target for therapeutic intervention. The study is complemented by a newly developed web-portal called UPR-HD (http://uprhd.sysbiolab.eu) that enables visualization and interactive analysis of UPR-associated gene expression across various HD models.
Collapse
Affiliation(s)
| | - Joaquin Giner-Lamia
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Susana Machado
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Tania Barata
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | | | - Matthias E Futschik
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal; Centre of Marine Sciences, University of Algarve, Faro, 8005-139, Portugal
| |
Collapse
|
7
|
Kalathur RKR, Giner-Lamia J, Machado S, Barata T, Ayasolla KRS, Futschik ME. The unfolded protein response and its potential role in Huntington's disease elucidated by a systems biology approach. F1000Res 2015; 4:103. [PMID: 26949515 PMCID: PMC4758378 DOI: 10.12688/f1000research.6358.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2016] [Indexed: 09/26/2023] Open
Abstract
Huntington ´s disease (HD) is a progressive, neurodegenerative disease with a fatal outcome. Although the disease-causing gene (huntingtin) has been known for over 20 years, the exact mechanisms leading to neuronal cell death are still controversial. One potential mechanism contributing to the massive loss of neurons observed in the brain of HD patients could be the unfolded protein response (UPR) activated by accumulation of misfolded proteins in the endoplasmic reticulum (ER). As an adaptive response to counter-balance accumulation of un- or misfolded proteins, the UPR upregulates transcription of chaperones, temporarily attenuates new translation, and activates protein degradation via the proteasome. However, persistent ER stress and an activated UPR can also cause apoptotic cell death. Although different studies have indicated a role for the UPR in HD, the evidence remains inconclusive. Here, we present extensive bioinformatic analyses that revealed UPR activation in different experimental HD models based on transcriptomic data. Accordingly, we have identified 53 genes, including RAB5A, HMGB1, CTNNB1, DNM1, TUBB, TSG101, EEF2, DYNC1H1, SLC12A5, ATG5, AKT1, CASP7 and SYVN1 that provide a potential link between UPR and HD. To further elucidate the potential role of UPR as a disease-relevant process, we examined its connection to apoptosis based on molecular interaction data, and identified a set of 40 genes including ADD1, HSP90B1, IKBKB, IKBKG, RPS3A and LMNB1, which seem to be at the crossroads between these two important cellular processes. Remarkably, we also found strong correlation of UPR gene expression with the length of the polyglutamine tract of Huntingtin, which is a critical determinant of age of disease onset in human HD patients pointing to the UPR as a promising target for therapeutic intervention. The study is complemented by a newly developed web-portal called UPR-HD (http://uprhd.sysbiolab.eu) that enables visualization and interactive analysis of UPR-associated gene expression across various HD models.
Collapse
Affiliation(s)
| | - Joaquin Giner-Lamia
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Susana Machado
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | - Tania Barata
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
| | | | - Matthias E. Futschik
- Centre for Biomedical Research, University of Algarve, Faro, 8005-139, Portugal
- Centre of Marine Sciences, University of Algarve, Faro, 8005-139, Portugal
| |
Collapse
|
8
|
Kumsta C, Ching TT, Nishimura M, Davis AE, Gelino S, Catan HH, Yu X, Chu CC, Ong B, Panowski SH, Baird N, Bodmer R, Hsu AL, Hansen M. Integrin-linked kinase modulates longevity and thermotolerance in C. elegans through neuronal control of HSF-1. Aging Cell 2014; 13:419-30. [PMID: 24314125 PMCID: PMC4059541 DOI: 10.1111/acel.12189] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2013] [Indexed: 12/18/2022] Open
Abstract
Integrin-signaling complexes play important roles in cytoskeletal organization and cell adhesion in many species. Components of the integrin-signaling complex have been linked to aging in both Caenorhabditis elegans and Drosophila melanogaster, but the mechanism underlying this function is unknown. Here, we investigated the role of integrin-linked kinase (ILK), a key component of the integrin-signaling complex, in lifespan determination. We report that genetic reduction of ILK in both C. elegans and Drosophila increased resistance to heat stress, and led to lifespan extension in C. elegans without majorly affecting cytoskeletal integrity. In C. elegans, longevity and thermotolerance induced by ILK depletion was mediated by heat-shock factor-1 (HSF-1), a major transcriptional regulator of the heat-shock response (HSR). Reduction in ILK levels increased hsf-1 transcription and activation, and led to enhanced expression of a subset of genes with roles in the HSR. Moreover, induction of HSR-related genes, longevity and thermotolerance caused by ILK reduction required the thermosensory neurons AFD and interneurons AIY, which are known to play a critical role in the canonical HSR. Notably, ILK was expressed in neighboring neurons, but not in AFD or AIY, implying that ILK reduction initiates cell nonautonomous signaling through thermosensory neurons to elicit a noncanonical HSR. Our results thus identify HSF-1 as a novel effector of the organismal response to reduced ILK levels and show that ILK inhibition regulates HSF-1 in a cell nonautonomous fashion to enhance stress resistance and lifespan in C. elegans.
Collapse
Affiliation(s)
- Caroline Kumsta
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Tsui-Ting Ching
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Institute of Biopharmaceutical Sciences, National Yang-Ming UniversityTaipei, Taiwan
| | - Mayuko Nishimura
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Andrew E Davis
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Sara Gelino
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Hannah H Catan
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Xiaokun Yu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Chu-Chiao Chu
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Binnan Ong
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Siler H Panowski
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Nathan Baird
- The Glenn Center for Aging Research, The Salk Institute for Biological Studies, The Howard Hughes Medical InstituteLa Jolla, CA, USA
| | - Rolf Bodmer
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| | - Ao-Lin Hsu
- Department of Internal Medicine, Division of Geriatric and Palliative Medicine, University of Michigan Medical SchoolAnn Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical SchoolAnn Arbor, MI, USA
| | - Malene Hansen
- Development, Aging and Regeneration Program, Sanford-Burnham Medical Research InstituteLa Jolla, CA, USA
| |
Collapse
|
9
|
Lehmann S, Shephard F, Jacobson LA, Szewczyk NJ. Integrated control of protein degradation in C. elegans muscle. WORM 2012; 1:141-50. [PMID: 23457662 PMCID: PMC3583358 DOI: 10.4161/worm.20465] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Revised: 04/14/2012] [Accepted: 04/23/2012] [Indexed: 12/26/2022]
Abstract
Protein degradation is a fundamental cellular process, the genomic control of which is incompletely understood. The advent of transgene-coded reporter proteins has enabled the development of C. elegans into a model for studying this problem. The regulation of muscle protein degradation is surprisingly complex, integrating multiple signals from hypodermis, intestine, neurons and muscle itself. Within the muscle, degradation is executed by separately regulated autophagy-lysosomal, ubiquitin-proteasome and calpain-mediated systems. The signal-transduction mechanisms, in some instances, involve modules previously identified for their roles in developmental processes, repurposed in terminally differentiated muscle to regulate the activities of pre-formed proteins. Here we review the genes, and mechanisms, which appear to coordinately control protein degradation within C. elegans muscle. We also consider these mechanisms in the context of development, physiology, pathophysiology and disease models.
Collapse
Affiliation(s)
- Susann Lehmann
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Freya Shephard
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| | - Lewis A. Jacobson
- Department of Biological Sciences; University of Pittsburgh; Pittsburgh, PA USA
| | - Nathaniel J. Szewczyk
- Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research; University of Nottingham; Royal Derby Hospital; Derby, UK
| |
Collapse
|