1
|
Qin C, Li Y, Wang K. Functional Mechanism of Bone Marrow-Derived Mesenchymal Stem Cells in the Treatment of Animal Models with Alzheimer's Disease: Inhibition of Neuroinflammation. J Inflamm Res 2021; 14:4761-4775. [PMID: 34566422 PMCID: PMC8456430 DOI: 10.2147/jir.s327538] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/18/2021] [Indexed: 12/27/2022] Open
Abstract
The transplantation of bone marrow-derived mesenchymal stem cells (BMMSCs) alleviates neuropathology and improves cognitive deficits in animal models with Alzheimer’s disease. However, the underlying mechanisms remain to be determined. Available data demonstrate transplanted BMMSCs can inhibit neuroinflammation, which may be related to microglial M1/M2 polarization and is regulated by the secretion of autocrine and paracrine cytokines. BMMSCs also mitigate Aβ plaques and Tau tangles in the brain, which may be associated with the recruitment of peripheral blood monocytes and the subsequent comprehensive effects. The therapeutic effects of stem cells involve potential mechanisms such as immunomodulation, apoptosis, and proliferation. BMMSC-mediated functional reconstruction through dynamic remodeling develops a novel balance. Herein, present review recapitulates the molecular basis of BMMSC-assisted biological processes and summarizes the possible mechanisms related to the interaction between BMMSCs and microglia. The transplanted BMMSCs can suppress neuroinflammation that plays a key role in the pathogenesis of Alzheimer’s disease.
Collapse
Affiliation(s)
- Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Yongning Li
- Department of International Medical Service & Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Kewei Wang
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medical Center, Peking Union Medical College, Beijing, 100021, People's Republic of China
| |
Collapse
|
2
|
Turner AW, Wong D, Dreisbach CN, Miller CL. GWAS Reveal Targets in Vessel Wall Pathways to Treat Coronary Artery Disease. Front Cardiovasc Med 2018; 5:72. [PMID: 29988570 PMCID: PMC6026658 DOI: 10.3389/fcvm.2018.00072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of mortality worldwide and poses a considerable public health burden. Recent genome-wide association studies (GWAS) have revealed >100 genetic loci associated with CAD susceptibility in humans. While a number of these loci harbor gene targets of currently approved therapies, such as statins and PCSK9 inhibitors, the majority of the annotated genes at these loci encode for proteins involved in vessel wall function with no known drugs available. Importantly many of the associated genes linked to vascular (smooth muscle, endothelial, and macrophage) cell processes are now organized into distinct functional pathways, e.g., vasodilation, growth factor responses, extracellular matrix and plaque remodeling, and inflammation. In this mini-review, we highlight the most recently identified loci that have predicted roles in the vessel wall and provide genetic context for pre-existing therapies as well as new drug targets informed from GWAS. With the development of new modalities to target these pathways, (e.g., antisense oligonucleotides, CRISPR/Cas9, and RNA interference) as well as the computational frameworks to prioritize or reposition therapeutics, there is great opportunity to close the gap from initial genetic discovery to clinical translation for many patients affected by this common disease.
Collapse
Affiliation(s)
- Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States
| | - Caitlin N Dreisbach
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, United States.,Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, United States.,Data Science Institute, University of Virginia, Charlottesville, VA, United States.,Department of Public Health Sciences, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
3
|
Abstract
Purpose of Review Functional decline of hematopoiesis that occurs in the elderly, or in patients who receive therapies that trigger cellular senescence effects, results in a progressive reduction in the immune response and an increased incidence of myeloid malignancy. Intracellular signals in hematopoietic stem cells and progenitors (HSC/P) mediate systemic, microenvironment, and cell-intrinsic effector aging signals that induce their decline. This review intends to summarize and critically review our advances in the understanding of the intracellular signaling pathways responsible for HSC decline during aging and opportunities for intervention. Recent Findings For a long time, aging of HSC has been thought to be an irreversible process imprinted in stem cells due to the cell intrinsic nature of aging. However, recent murine models and human correlative studies provide evidence that aging is associated with molecular signaling pathways, including oxidative stress, metabolic dysfunction, loss of polarity and an altered epigenome. These signaling pathways provide potential targets for prevention or reversal of age-related changes. Summary Here we review our current understanding of the signalling pathways that are differentially activated or repressed during HSC/P aging, focusing on the oxidative, metabolic, biochemical and structural consequences downstream, and cell-intrinsic, systemic, and environmental influences.
Collapse
|
4
|
Elias HK, Bryder D, Park CY. Molecular mechanisms underlying lineage bias in aging hematopoiesis. Semin Hematol 2017; 54:4-11. [DOI: 10.1053/j.seminhematol.2016.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
5
|
Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and Murine Hematopoietic Stem Cell Aging Is Associated with Functional Impairments and Intrinsic Megakaryocytic/Erythroid Bias. PLoS One 2016; 11:e0158369. [PMID: 27368054 PMCID: PMC4930192 DOI: 10.1371/journal.pone.0158369] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 06/14/2016] [Indexed: 02/02/2023] Open
Abstract
Aging within the human hematopoietic system associates with various deficiencies and disease states, including anemia, myeloid neoplasms and reduced adaptive immune responses. Similar phenotypes are observed in mice and have been linked to alterations arising at the hematopoietic stem cell (HSC) level. Such an association is, however, less established in human hematopoiesis and prompted us here to detail characteristics of the most primitive human hematopoietic compartments throughout ontogeny. In addition, we also attempted to interrogate similarities between aging human and murine hematopoiesis. Coupled to the transition from human cord blood (CB) to young and aged bone marrow (BM), we observed a gradual increase in frequency of candidate HSCs. This was accompanied by functional impairments, including decreased lymphoid output and reduced proliferative potential. Downstream of human HSCs, we observed decreasing levels of common lymphoid progenitors (CLPs), and increasing frequencies of megakaryocyte/erythrocyte progenitors (MEPs) with age, which could be linked to changes in lineage-affiliated gene expression patterns in aged human HSCs. These findings were paralleled in mice. Therefore, our data support the notion that age-related changes also in human hematopoiesis involve the HSC pool, with a prominent skewing towards the megakaryocytic/erythroid lineages, and suggests conserved mechanisms underlying aging of the blood cell system.
Collapse
Affiliation(s)
- Alexandra Rundberg Nilsson
- Medical Faculty, Division of Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Shamit Soneji
- Medical Faculty, Division of Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sofia Adolfsson
- Medical Faculty, Division of Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - David Bryder
- Medical Faculty, Division of Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Cornelis Jan Pronk
- Medical Faculty, Division of Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
- Medical Faculty, Lund Stem Cell Center, Lund University, Lund, Sweden
- Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
- * E-mail:
| |
Collapse
|
6
|
Wahlestedt M, Pronk CJ, Bryder D. Concise review: hematopoietic stem cell aging and the prospects for rejuvenation. Stem Cells Transl Med 2014; 4:186-94. [PMID: 25548388 DOI: 10.5966/sctm.2014-0132] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Because of the continuous increases in lifetime expectancy, the incidence of age-related diseases will, unless counteracted, represent an increasing problem at both the individual and socioeconomic levels. Studies on the processes of blood cell formation have revealed several shortcomings as a consequence of chronological age. They include a reduced ability to mount adaptive immune responses and a blood cell composition skewed toward myeloid cells, with the latter coinciding with a dramatically increased incidence of myelogenous diseases, including cancer. Conversely, the dominant forms of acute leukemia affecting children associate with the lymphoid lineages. A growing body of evidence has suggested that aging of various organs and cellular systems, including the hematopoietic system, associates with a functional demise of tissue-resident stem cell populations. Mechanistically, DNA damage and/or altered transcriptional landscapes appear to be major drivers of the hematopoietic stem cell aging state, with recent data proposing that stem cell aging phenotypes are characterized by at least some degree of reversibility. These findings suggest the possibility of rejuvenating, or at least dampening, stem cell aging phenotypes in the elderly for therapeutic benefit.
Collapse
Affiliation(s)
- Martin Wahlestedt
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - Cornelis Jan Pronk
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| | - David Bryder
- Immunology Section, Institution for Experimental Medical Science, Lund University, Lund, Sweden; Department of Pediatric Oncology/Hematology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Hematopoietic stem cells (HSCs) continuously provide mature blood cells during the lifespan of a mammal. The functional decline in hematopoiesis in the elderly, which involves a progressive reduction in the immune response and an increased incidence of myeloid malignancy, is partly linked to HSC aging. Molecular mechanisms of HSC aging remain unclear, hindering rational approaches to slow or reverse the decline of HSC function with age. Identifying conditions under which aged HSCs become equivalent to young stem cells might result in treatments for age-associated imbalances in lymphopoiesis and myelopoiesis and in blood regeneration. RECENT FINDINGS Aging of HSCs has been for a long time thought to be an irreversible process imprinted in stem cells due to the intrinsic nature of HSC aging. Mouse model studies have found that aging is associated with elevated activity of the Rho GTPase Cdc42 in HSCs that is causative for loss of polarity, altered epigenetic modifications and functional deficits of aged HSCs. The work suggests that inhibition of Cdc42 activity in aged HSCs may reverse a number of phenotypes associated with HSC aging. SUMMARY Maintaining the regenerative capacity of organs or organ systems may be a useful way to ensure healthy aging. A defined set of features phenotypically separate young from aged HSCs. Aging of HSCs has been thought to be irreversible. Recent findings support the hypothesis that functional decline of aged HSCs may be reversible by pharmacological intervention of age altered signaling pathways and epigenetic modifications.
Collapse
|
8
|
Abstract
Stem cell ageing underlies the ageing of tissues, especially those with a high cellular turnover. There is growing evidence that the ageing of the immune system is initiated at the very top of the haematopoietic hierarchy and that the ageing of haematopoietic stem cells (HSCs) directly contributes to changes in the immune system, referred to as immunosenescence. In this Review, we summarize the phenotypes of ageing HSCs and discuss how the cell-intrinsic and cell-extrinsic mechanisms of HSC ageing might promote immunosenescence. Stem cell ageing has long been considered to be irreversible. However, recent findings indicate that several molecular pathways could be targeted to rejuvenate HSCs and thus to reverse some aspects of immunosenescence.
Collapse
|
9
|
An epigenetic component of hematopoietic stem cell aging amenable to reprogramming into a young state. Blood 2013; 121:4257-64. [PMID: 23476050 DOI: 10.1182/blood-2012-11-469080] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Aging of hematopoietic stem cells (HSCs) leads to several functional changes, including alterations affecting self-renewal and differentiation. Although it is well established that many of the age-induced changes are intrinsic to HSCs, less is known regarding the stability of this state. Here, we entertained the hypothesis that HSC aging is driven by the acquisition of permanent genetic mutations. To examine this issue at a functional level in vivo, we applied induced pluripotent stem (iPS) cell reprogramming of aged hematopoietic progenitors and allowed the resulting aged-derived iPS cells to reform hematopoiesis via blastocyst complementation. Next, we functionally characterized iPS-derived HSCs in primary chimeras and after the transplantation of re-differentiated HSCs into new hosts, the gold standard to assess HSC function. Our data demonstrate remarkably similar functional properties of iPS-derived and endogenous blastocyst-derived HSCs, despite the extensive chronological and proliferative age of the former. Our results, therefore, favor a model in which an underlying, but reversible, epigenetic component is a hallmark of HSC aging.
Collapse
|
10
|
Beerman I, Bock C, Garrison BS, Smith ZD, Gu H, Meissner A, Rossi DJ. Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 2013; 12:413-25. [PMID: 23415915 DOI: 10.1016/j.stem.2013.01.017] [Citation(s) in RCA: 346] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 12/17/2012] [Accepted: 01/25/2013] [Indexed: 12/15/2022]
Abstract
The functional potential of hematopoietic stem cells (HSCs) declines during aging, and in doing so, significantly contributes to hematopoietic pathophysiology in the elderly. To explore the relationship between age-associated HSC decline and the epigenome, we examined global DNA methylation of HSCs during ontogeny in combination with functional analysis. Although the DNA methylome is generally stable during aging, site-specific alterations of DNA methylation occur at genomic regions associated with hematopoietic lineage potential and selectively target genes expressed in downstream progenitor and effector cells. We found that age-associated HSC decline, replicative limits, and DNA methylation are largely dependent on the proliferative history of HSCs, yet appear to be telomere-length independent. Physiological aging and experimentally enforced proliferation of HSCs both led to DNA hypermethylation of genes regulated by Polycomb Repressive Complex 2. Our results provide evidence that epigenomic alterations of the DNA methylation landscape contribute to the functional decline of HSCs during aging.
Collapse
Affiliation(s)
- Isabel Beerman
- Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02116, USA
| | | | | | | | | | | | | |
Collapse
|