1
|
Barroso de Queiroz Davoli G, Bartels B, Mattiello-Sverzut AC, Takken T. Cardiopulmonary exercise testing in neuromuscular disease: a systematic review. Expert Rev Cardiovasc Ther 2021; 19:975-991. [PMID: 34826261 DOI: 10.1080/14779072.2021.2009802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cardiopulmonary exercise testing (CPET) is increasingly used to determine aerobic fitness in health and disability conditions. Patients with neuromuscular diseases (NMDs) often present with symptoms of cardiac and/or skeletal muscle dysfunction and fatigue that might impede the ability to deliver maximal cardiopulmonary effort. Although an increasing number of studies report on NMDs' physical fitness, the applicability of CPET remains largely unknown. AREAS COVERED This systematic review synthesized evidence about the quality and feasibility of CPET in NMDs and patient's aerobic fitness. The review followed the PRISMA guidelines (PROSPERO number CRD42020211068). Between September and October 2020 one independent reviewer searched the PubMed/MEDLINE, EMBASE, SCOPUS, and Web of Science databases. Excluding reviews and protocol description articles without baseline data, all study designs using CPET to assess adult or pediatric patients with NMDs were included. The methodological quality was assessed according to the American Thoracic Society/American College of Chest Physicians (ATS/ACCP) recommendations. EXPERT OPINION CPET is feasible for ambulatory patients with NMDs when their functional level and the exercise modality are taken into account. However, there is still a vast potential for standardizing and designing disease-specific CPET protocols for patients with NMDs. Moreover, future studies are urged to follow the ATS/ACCP recommendations.
Collapse
Affiliation(s)
| | - Bart Bartels
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Tim Takken
- Child Development & Exercise Center, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
2
|
Terburgh K, Lindeque JZ, van der Westhuizen FH, Louw R. Cross-comparison of systemic and tissue-specific metabolomes in a mouse model of Leigh syndrome. Metabolomics 2021; 17:101. [PMID: 34792662 DOI: 10.1007/s11306-021-01854-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/03/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION The value of metabolomics in multi-systemic mitochondrial disease research has been increasingly recognized, with the ability to investigate a variety of biofluids and tissues considered a particular advantage. Although minimally invasive biofluids are the generally favored sample type, it remains unknown whether systemic metabolomes provide a clear reflection of tissue-specific metabolic alterations. OBJECTIVES Here we cross-compare urine and tissue-specific metabolomes in the Ndufs4 knockout mouse model of Leigh syndrome-a complex neurometabolic MD defined by progressive focal lesions in specific brain regions-to identify and evaluate the extent of common and unique metabolic alterations on a systemic and brain regional level. METHODS Untargeted and semi-targeted multi-platform metabolomics were performed on urine, four brain regions, and two muscle types of Ndufs4 KO (n≥19) vs wildtype (n≥20) mice. RESULTS Widespread alterations were evident in alanine, aspartate, glutamate, and arginine metabolism in Ndufs4 KO mice; while brain-region specific metabolic signatures include the accumulation of branched-chain amino acids, proline, and glycolytic intermediates. Furthermore, we describe a systemic dysregulation in one-carbon metabolism and the tricarboxylic acid cycle, which was not clearly reflected in the Ndufs4 KO brain. CONCLUSION Our results confirm the value of urinary metabolomics when evaluating MD-associated metabolites, while cautioning against mechanistic studies relying solely on systemic biofluids.
Collapse
Affiliation(s)
- Karin Terburgh
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Jeremie Z Lindeque
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Francois H van der Westhuizen
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa
| | - Roan Louw
- Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University (Potchefstroom Campus), Private Bag X6001, Potchefstroom, South Africa.
| |
Collapse
|
3
|
Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021; 10:jcm10081796. [PMID: 33924201 PMCID: PMC8074604 DOI: 10.3390/jcm10081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.
Collapse
|
4
|
Inherited Neuromuscular Disorders: Which Role for Serum Biomarkers? Brain Sci 2021; 11:brainsci11030398. [PMID: 33801069 PMCID: PMC8004068 DOI: 10.3390/brainsci11030398] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/08/2021] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
Inherited neuromuscular disorders (INMD) are a heterogeneous group of rare diseases that involve muscles, motor neurons, peripheral nerves or the neuromuscular junction. Several different lab abnormalities have been linked to INMD: sometimes they are typical of the disorder, but they usually appear to be less specific. Sometimes serum biomarkers can point out abnormalities in presymtomatic or otherwise asymptomatic patients (e.g., carriers). More often a biomarker of INMD is evaluated by multiple clinicians other than expert in NMD before the diagnosis, because of the multisystemic involvement in INMD. The authors performed a literature search on biomarkers in inherited neuromuscular disorders to provide a practical approach to the diagnosis and the correct management of INMD. A considerable number of biomarkers have been reported that support the diagnosis of INMD, but the role of an expert clinician is crucial. Hence, the complete knowledge of such abnormalities can accelerate the diagnostic workup supporting the referral to specialists in neuromuscular disorders.
Collapse
|
5
|
Unexplained exertional intolerance associated with impaired systemic oxygen extraction. Eur J Appl Physiol 2019; 119:2375-2389. [PMID: 31493035 DOI: 10.1007/s00421-019-04222-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 08/28/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE The clinical investigation of exertional intolerance generally focuses on cardiopulmonary diseases, while peripheral factors are often overlooked. We hypothesize that a subset of patients exists whose predominant exercise limitation is due to abnormal systemic oxygen extraction (SOE). METHODS We reviewed invasive cardiopulmonary exercise test (iCPET) results of 313 consecutive patients presenting with unexplained exertional intolerance. An exercise limit due to poor SOE was defined as peak exercise (Ca-vO2)/[Hb] ≤ 0.8 and VO2max < 80% predicted in the absence of a cardiac or pulmonary mechanical limit. Those with peak (Ca-vO2)/[Hb] > 0.8, VO2max ≥ 80%, and no cardiac or pulmonary limit were considered otherwise normal. The otherwise normal group was divided into hyperventilators (HV) and normals (NL). Hyperventilation was defined as peak PaCO2 < [1.5 × HCO3 + 6]. RESULTS Prevalence of impaired SOE as the sole cause of exertional intolerance was 12.5% (32/257). At peak exercise, poor SOE and HV had less acidemic arterial blood compared to NL (pHa = 7.39 ± 0.05 vs. 7.38 ± 0.05 vs. 7.32 ± 0.02, p < 0.001), which was explained by relative hypocapnia (PaCO2 = 29.9 ± 5.4 mmHg vs. 31.6 ± 5.4 vs. 37.5 ± 3.4, p < 0.001). For a subset of poor SOE, this relative alkalemia, also seen in mixed venous blood, was associated with a normal PvO2 nadir (28 ± 2 mmHg vs. 26 ± 4, p = 0.627) but increased SvO2 at peak exercise (44.1 ± 5.2% vs. 31.4 ± 7.0, p < 0.001). CONCLUSIONS We identified a cohort of patients whose exercise limitation is due only to systemic oxygen extraction, due to either an intrinsic abnormality of skeletal muscle mitochondrion, limb muscle microcirculatory dysregulation, or hyperventilation and left shift the oxyhemoglobin dissociation curve.
Collapse
|
6
|
Cooper CB, Dolezal BA, Neufeld EV, Shieh P, Jenner JR, Riley M. Exercise responses in patients with chronically high creatine kinase levels. Muscle Nerve 2016; 56:264-270. [PMID: 27935086 DOI: 10.1002/mus.25508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 11/08/2022]
Abstract
INTRODUCTION Elevated serum creatine kinase (CK) is often taken to reflect muscle disease, but many individuals have elevated CK without a specific diagnosis. How elevated CK reflects muscle metabolism during exercise is not known. METHODS Participants (46 men, 48 women) underwent incremental exercise testing to assess aerobic performance, cardiovascular response, and ventilatory response. Serum lactate, ammonia, and CK were measured at rest, 4 minutes into exercise, and 2 minutes into recovery. RESULTS High-CK and control subjects demonstrated similar aerobic capacities and cardiovascular responses to incremental exercise. Those with CK ≥ 300 U/L exhibited significantly higher lactate and ammonia levels after maximal exercise, together with increased ventilatory responses, whereas those with CK ≥200 U/L but ≤ 300 U/L did not. CONCLUSIONS We recommend measurement of lactate and ammonia profiles during a maximal incremental exercise protocol to help identify patients who warrant muscle biopsy to rule out myopathy. Muscle Nerve 56: 264-270, 2017.
Collapse
Affiliation(s)
- Christopher B Cooper
- UCLA Exercise Physiology Research Laboratory, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, 37-131 CHS, Los Angeles, 90095, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Brett A Dolezal
- UCLA Exercise Physiology Research Laboratory, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, 37-131 CHS, Los Angeles, 90095, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Eric V Neufeld
- UCLA Exercise Physiology Research Laboratory, Department of Medicine, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, 37-131 CHS, Los Angeles, 90095, USA.,Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Perry Shieh
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, USA
| | - John R Jenner
- Cambridge University Sports & Exercise Medicine Unit, Addenbrooke's Hospital, Cambridge, England
| | | |
Collapse
|
7
|
Rannou F, Uguen A, Scotet V, Le Maréchal C, Rigal O, Marcorelles P, Gobin E, Carré JL, Zagnoli F, Giroux-Metges MA. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study. PLoS One 2015. [PMID: 26207760 PMCID: PMC4514803 DOI: 10.1371/journal.pone.0132972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Our aim was to evaluate the accuracy of aerobic exercise testing to diagnose metabolic myopathies. Methods From December 2008 to September 2012, all the consecutive patients that underwent both metabolic exercise testing and a muscle biopsy were prospectively enrolled. Subjects performed an incremental and maximal exercise testing on a cycle ergometer. Lactate, pyruvate, and ammonia concentrations were determined from venous blood samples drawn at rest, during exercise (50% predicted maximal power, peak exercise), and recovery (2, 5, 10, and 15 min). Biopsies from vastus lateralis or deltoid muscles were analysed using standard techniques (reference test). Myoadenylate deaminase (MAD) activity was determined using p-nitro blue tetrazolium staining in muscle cryostat sections. Glycogen storage was assessed using periodic acid-Schiff staining. The diagnostic accuracy of plasma metabolite levels to identify absent and decreased MAD activity was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The study involved 51 patients. Omitting patients with glycogenoses (n = 3), MAD staining was absent in 5, decreased in 6, and normal in 37 subjects. Lactate/pyruvate at the 10th minute of recovery provided the greatest area under the ROC curves (AUC, 0.893 ± 0.067) to differentiate Abnormal from Normal MAD activity. The lactate/rest ratio at the 10th minute of recovery from exercise displayed the best AUC (1.0) for discriminating between Decreased and Absent MAD activities. The resulting decision tree achieved a diagnostic accuracy of 86.3%. Conclusion The present algorithm provides a non-invasive test to accurately predict absent and decreased MAD activity, facilitating the selection of patients for muscle biopsy and target appropriate histochemical analysis.
Collapse
Affiliation(s)
- Fabrice Rannou
- Physiology Department-EA 1274, CHRU Cavale Blanche, Brest, France
- * E-mail:
| | - Arnaud Uguen
- Pathology Department, CHRU Morvan, Brest, France
| | - Virginie Scotet
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Odile Rigal
- Biochemistry Department, Robert Debré Hospital-APHP, Paris, France
| | | | - Eric Gobin
- Pathology Department, CHRU Morvan, Brest, France
| | - Jean-Luc Carré
- Biochemistry Department, CHRU Cavale Blanche, Brest, France
| | - Fabien Zagnoli
- Neurology Department-EA 4685 LNB, Clermont-Tonnerre Armed Forces Hospital, Brest, France
| | | |
Collapse
|
8
|
Abstract
This paper describes the interactions between ventilation and acid-base balance under a variety of conditions including rest, exercise, altitude, pregnancy, and various muscle, respiratory, cardiac, and renal pathologies. We introduce the physicochemical approach to assessing acid-base status and demonstrate how this approach can be used to quantify the origins of acid-base disorders using examples from the literature. The relationships between chemoreceptor and metaboreceptor control of ventilation and acid-base balance summarized here for adults, youth, and in various pathological conditions. There is a dynamic interplay between disturbances in acid-base balance, that is, exercise, that affect ventilation as well as imposed or pathological disturbances of ventilation that affect acid-base balance. Interactions between ventilation and acid-base balance are highlighted for moderate- to high-intensity exercise, altitude, induced acidosis and alkalosis, pregnancy, obesity, and some pathological conditions. In many situations, complete acid-base data are lacking, indicating a need for further research aimed at elucidating mechanistic bases for relationships between alterations in acid-base state and the ventilatory responses.
Collapse
Affiliation(s)
- Michael I Lindinger
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada.
| | | |
Collapse
|
9
|
Abstract
In this review, we present an overview of the role of exercise in neuromuscular disease (NMD). We demonstrate that despite the different pathologies in NMDs, exercise is beneficial, whether aerobic/endurance or strength/resistive training, and we explore whether this benefit has a similar mechanism to that of healthy subjects. We discuss further areas for study, incorporating imaginative and novel approaches to training and its assessment in NMD. We conclude by suggesting ways to improve future trials by avoiding previous methodological flaws and drawbacks in this field.
Collapse
Affiliation(s)
- Yaacov Anziska
- Department of Neurology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Box 1213, Brooklyn, New York, 11203, USA.
| | | |
Collapse
|
10
|
Mouadil A, Debout C, Read MH, Morello R, Allouche S, Chapon F. Blood metabolite data in response to maximal exercise in healthy subjects. Clin Physiol Funct Imaging 2012; 32:274-81. [PMID: 22681604 DOI: 10.1111/j.1475-097x.2012.01122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022]
Abstract
Maximal exercise test with gas exchange measurement evaluates exercise capacities with maximal oxygen uptake (VO(2) max) measurement. Measurements of lactate (L), lactate/pyruvate ratio (L/P) and ammonium (A) during rest, exercise and recovery enhance interpretative power of maximal exercise by incorporating muscular metabolism exploration. Maximal exercise test with gas exchange measurement is standardized in cardiopulmonary evaluations but, no reference data of blood muscular metabolites are available to evaluate the muscular metabolism. We determined normal values of L, L/P and A during a standardized maximal exercise and recovery in 48 healthy sedentary volunteers and compared with results obtained in four patients with exercise intolerance and a mitochondrial disease. In healthy subjects, L, L/P and A rose during exercise. In 98% of them L, L/P or A decreased between the fifth and the fifteenth minutes of recovery. In mitochondrial patients, VO(2) max was normal or low, and L, L/P and A had the same evolution as normal subjects or showed no decrease during recovery. We gave normal L, L/P and A values, which establish references for a maximal exercise test with muscular metabolism exploration. This test is helpful for clinicians in functional evaluation, management and treatment of metabolic myopathy and would be a useful tool in diagnosis of metabolic myopathy.
Collapse
Affiliation(s)
- Amèle Mouadil
- Department of Physiology, CHU de Caen, Caen, France.
| | | | | | | | | | | |
Collapse
|
11
|
Methodological approach to the first and second lactate threshold in incremental cardiopulmonary exercise testing. ACTA ACUST UNITED AC 2008; 15:726-34. [DOI: 10.1097/hjr.0b013e328304fed4] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
SCHUMACHER YORCKOLAF, MUSER KLAUS, HIRSCHBERGER BARBARA, ROECKER KAI, DICKHUTH HANSHERRMANN, POTTGIESSER TORBEN. Hodgkin's Lymphoma in an Elite Endurance Athlete. Med Sci Sports Exerc 2008; 40:401-4. [DOI: 10.1249/mss.0b013e31815d8e8a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Trenell MI, Sue CM, Thompson CH, Kemp GJ. Supplemental oxygen and muscle metabolism in mitochondrial myopathy patients. Eur J Appl Physiol 2007; 99:541-7. [PMID: 17219172 DOI: 10.1007/s00421-006-0372-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2006] [Indexed: 11/29/2022]
Abstract
Patients with mitochondrial myopathy (MM) have a reduced capacity to perform exercise due to a reduced oxidative capacity. We undertook this study to determine whether skeletal muscle metabolism could be improved with oxygen therapy in patients with MM. Six patients with MM and six controls, matched for age, gender and physical activity, underwent (31)P-magnetic resonance spectroscopy ((31)P-MRS) examination. (31)P-MR spectra were collected at rest and in series during exercise and recovery whilst breathing normoxic (0.21 O(2)) or hyperoxic (1.0 O(2)) air. At rest, MM showed an elevated [ADP] (18 +/- 3 micromol/l) and pH (7.03 +/- 0.01) in comparison to the control group (12 +/- 1 micromol/l, 7.01 +/- 0.01) (P < 0.05) consistent with mitochondrial dysfunction. Oxygen supplementation did not change resting metabolites in either MM or the control group (P > 0.05). Inferred maximal ATP synthesis rate improved by 33% with oxygen in MM (21 +/- 3 vs. 28 +/- 5 mmol/(l min), P < 0.05) but only improved by 5% in controls (40 +/- 3 vs. 42 +/- 3 mmol/(l min), P > 0.05). We conclude that oxygen therapy is associated with significant improvements in muscle metabolism in patients with MM. These data suggest that patients with MM could benefit from therapies which improve the provision of oxygen.
Collapse
Affiliation(s)
- Michael I Trenell
- Department of Neurogenetics, Kolling Institute for Medical Research, Sydney, Australia.
| | | | | | | |
Collapse
|
14
|
Kingsley JD, Varman M, Chatterjee A, Kingsley RA, Roth KS. Immunizations for patients with metabolic disorders. Pediatrics 2006; 118:e460-70. [PMID: 16816003 DOI: 10.1542/peds.2005-1257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Individuals with underlying metabolic disorders are a potential high-risk group for vaccine-preventable diseases. Newborn metabolic screening has provided a means of early identification and treatment for many of these disorders, whereas childhood immunization is one of the most effective means of decreasing the morbidity and mortality resulting from communicable diseases worldwide. There are very few contraindications to the routine administration of vaccines to the healthy, immunocompetent individual. In certain high-risk groups, such as immunocompromised patients, gravid females, and those with a history of previous anaphylactic reaction to a vaccine or its components, selective withholding of immunizations must be considered to decrease potential adverse events. A detailed analysis of the medical literature revealed few specific recommendations regarding appropriate immunization techniques for patients with metabolic disorders. In this review we detail the major metabolic disorder subtypes, elaborate on the available literature on immunizations for patients with these disorders, and provide suggested vaccine recommendations.
Collapse
MESH Headings
- Adolescent
- Amino Acid Metabolism, Inborn Errors/immunology
- Amino Acid Metabolism, Inborn Errors/therapy
- Carbohydrate Metabolism, Inborn Errors/immunology
- Carbohydrate Metabolism, Inborn Errors/therapy
- Child
- Child, Preschool
- Contraindications
- Genetic Predisposition to Disease
- Humans
- Immunization/methods
- Immunization Schedule
- Immunologic Deficiency Syndromes/etiology
- Immunologic Deficiency Syndromes/genetics
- Immunologic Deficiency Syndromes/immunology
- Infant
- Influenza Vaccines
- Intellectual Disability/etiology
- Intellectual Disability/genetics
- Intellectual Disability/immunology
- Lipid Metabolism, Inborn Errors/immunology
- Lipid Metabolism, Inborn Errors/therapy
- Metabolism, Inborn Errors/classification
- Metabolism, Inborn Errors/immunology
- Metabolism, Inborn Errors/physiopathology
- Metabolism, Inborn Errors/therapy
- Purine-Pyrimidine Metabolism, Inborn Errors/immunology
- Purine-Pyrimidine Metabolism, Inborn Errors/therapy
- Vaccines, Inactivated
Collapse
Affiliation(s)
- Jeffrey D Kingsley
- Division of Pediatric Infectious Diseases, Creighton University Medical Center, Omaha, Nebraska 68131, USA
| | | | | | | | | |
Collapse
|