1
|
Bader SE, Brorsson C, Löfgren N, Löfgren F, Blind PJ, Sundström N, Öman M, Olivecrona M. Cerebral haemodynamics and intracranial pressure during haemorrhagic shock and resuscitation with total endovascular balloon occlusion of the aorta in an animal model. Eur J Trauma Emerg Surg 2024:10.1007/s00068-024-02646-0. [PMID: 39453469 DOI: 10.1007/s00068-024-02646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/13/2024] [Indexed: 10/26/2024]
Abstract
PURPOSE To assess changes of cerebral haemodynamic and intracranial pressure (ICP) in animals, with or without elevated ICP, during controlled haemorrhagic shock and resuscitation with Total REBOA (tREBOA). METHOD In 22 anaesthetized and normoventilated pigs, after placement of catheters for monitoring invasive proximal blood pressure (pMAP), ICP, and vital parameters, and 60 min stabilisation phase, a controlled haemorrhagic shock (HS), was conducted. In 11 pigs (EICPG), an elevated ICP of 25-30 mmHg at the end HS was achieved by simulating an epidural mass. In 11 pigs (NICPG), the ICP was normal. tREBOA was then applied for 120 min. The changes of pMAP and ICP were followed, and cerebral perfusion pressure (CPP) calculated. The integrity of the autoregulation was estimated using a calculated Modified-Long Pressure Reactivity Index (mL-PRx). RESULTS After stabilisation, hemodynamics and physiological parameters were similar and normal in both groups. At the end of the HS, ICP was 16 mmHg in NICPG vs. 32 in EICPG (p = 0.0010). CPP was 30 mmHg in NICPG vs. 6 mmHg in EICPG (p = 0.0254). After aorta occlusion CPP increased immediately in both groups reaching after 15 min up to104 mmHg in NICPG vs. 126 mmHg in EICPG. Cerebrovascular reactivity seems to be altered during bleeding and occlusion phases in both groups with positive mL-PRx. The alteration was more pronounced in EICPG, but reversible in both groups. CONCLUSION tREBOA is lifesaving by restoration the cerebral circulation defined as CPP in animals with HS with normal or elevated ICP. Despite the observation of short episodes of cerebral autoregulation impairment during the occlusion, mainly in EICPG, tREBOA seems to be an effective tool for improving cerebral perfusion in HS that extends the crucial early window sometimes known as the "golden hour" for resuscitation even after a traumatic brain injury.
Collapse
Affiliation(s)
- Sam Er Bader
- Department of Surgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| | - C Brorsson
- Department of Surgical and Perioperative Sciences, Anaesthesia and Intensive Care, Umeå University, Umeå, Sweden
| | - N Löfgren
- Department of Surgical and Perioperative Sciences; Surgery, Umeå University, Umeå, Sweden
| | - F Löfgren
- Department of Surgical and Perioperative Sciences, Anaesthesia and Intensive Care, Umeå University, Umeå, Sweden
| | - P-J Blind
- Department of Surgical and Perioperative Sciences; Surgery, Umeå University, Umeå, Sweden
| | - N Sundström
- Department of Radiation Sciences, Radiation Physics, Biomedical Engineering, Umeå University, Umeå, Sweden
| | - M Öman
- Department of Surgical and Perioperative Sciences; Surgery, Umeå University, Umeå, Sweden
| | - M Olivecrona
- Department of Neurosurgery, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
2
|
Gustafson Å, Elfsmark L, Karlsson T, Jonasson S. N-acetyl cysteine mitigates lung damage and inflammation after chlorine exposure in vivo and ex vivo. Toxicol Appl Pharmacol 2023; 479:116714. [PMID: 37820773 DOI: 10.1016/j.taap.2023.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/26/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
The objective of this study was to explore the effects of antioxidant treatments, specifically N-acetylcysteine (NAC) and N-acetylcysteine amide (NACA), in a mouse model of chlorine (Cl2)-induced lung injury. Additionally, the study aimed to investigate the utility of pig precision-cut lung slices (PCLS) as an ex vivo alternative for studying the short-term effects of Cl2 exposure and evaluating antioxidant treatments. The toxicological responses were analyzed in Cl2-exposed mice (inflammation, airway hyperresponsiveness (AHR)) and PCLS (viability, cytotoxicity, inflammatory mediators). Airways contractions were assessed using a small ventilator for mice and electric-field stimulation (EFS) for PCLS. Antioxidant treatments were administered to evaluate their effects. In Cl2-exposed mice, NAC treatment did not alleviate AHR, but it did reduce the number of neutrophils in bronchoalveolar lavage fluid and inflammatory mediators in lung tissue. In PCLS, exposure to Cl2 resulted in concentration-dependent toxicity, impairing the lung tissue's ability to respond to EFS-stimulation. NAC treatment increased viability, mitigated the toxic responses caused by Cl2 exposure, and maintained contractility comparable to unexposed controls. Interestingly, NACA did not provide any additional treatment effect beyond NAC in both models. In conclusion, the establishment of a pig model for Cl2-induced lung damage supports further investigation of NAC as a potential treatment. However, the lack of protective effects on AHR after NAC treatment in mice suggests that NAC alone may not be sufficient as a complete treatment for Cl2 injuries. Optimization of existing medications with a polypharmacy approach may be more successful in addressing the complex sequelae of Cl2-induced lung injury.
Collapse
Affiliation(s)
- Åsa Gustafson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Linda Elfsmark
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Terese Karlsson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - Sofia Jonasson
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
3
|
Murray DS, Stickel L, Boutelle M. Computational Modeling as a Tool to Drive the Development of a Novel, Chemical Device for Monitoring the Injured Brain and Body. ACS Chem Neurosci 2023; 14:3599-3608. [PMID: 37737666 PMCID: PMC10557062 DOI: 10.1021/acschemneuro.3c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023] Open
Abstract
Real-time measurement of dynamic changes, occurring in the brain and other parts of the body, is useful for the detection and tracked progression of disease and injury. Chemical monitoring of such phenomena exists but is not commonplace, due to the penetrative nature of devices, the lack of continuous measurement, and the inflammatory responses that require pharmacological treatment to alleviate. Soft, flexible devices that more closely match the moduli and shape of monitored tissue and allow for surface microdialysis provide a viable alternative. Here, we show that computational modeling can be used to aid the development of such devices and highlight the considerations when developing a chemical monitoring probe in this way. These models pave the way for the development of a new class of chemical monitoring devices for monitoring neurotrauma, organs, and skin.
Collapse
Affiliation(s)
- De-Shaine Murray
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
- School
of Engineering and Applied Sciences, Yale
University, 06520, New Haven, Connecticut United States
| | - Laure Stickel
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
- Laboratoire
Physico-Chimie Curie, Institut Curie, 26 rue d’Ulm, 75005, Paris, France
| | - Martyn Boutelle
- Department
of Bioengineering, Imperial College London SW7 2AZ, London, U.K.
| |
Collapse
|
4
|
Åkesson O, Abrahamsson P, Johansson G, Haney M, Falkenback D, Hermansson M, Jeremiasen M, Johansson J. Surface microdialysis measures local tissue metabolism after Ivor Lewis esophagectomy; an attempt to predict anastomotic defect. Dis Esophagus 2023; 36:doac111. [PMID: 36572400 DOI: 10.1093/dote/doac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 11/23/2022] [Accepted: 11/26/2022] [Indexed: 07/28/2023]
Abstract
Anastomotic defect (AD) after esophagectomy can lead to severe complications with need for surgical or endoscopic intervention. Early detection enables early treatment and can limit the consequences of the AD. As of today, there are limited methods to predict AD. In this study, we have used microdialysis (MD) to measure local metabolism at the intrathoracic anastomosis. Feasibility and possible diagnostic use were investigated. Sixty patients planned for Ivor Lewis esophagectomy were enrolled. After construction of the anastomosis, surface MD (S-MD) probes were attached to the outer surface of the esophageal remnant and the gastric conduit in close vicinity of the anastomosis and left in place for 7 postoperative days (PODs). Continuous sampling of local tissue concentrations of metabolic substances (glucose, lactate, and pyruvate) was performed postoperatively. Outcome, defined as AD or not according to Esophagectomy Complications Consensus Group definitions, was recorded at discharge or at first postoperative follow up. Difference in concentrations of metabolic substances was analyzed retrospectively between the two groups by means of artificial neural network technique. S-MD probes can be attached and removed from the gastric tube reconstruction without any adverse events. Deviating metabolite concentrations on POD 1 were associated with later development of AD. In subjects who developed AD, no difference in metabolic concentrations between the esophageal and the gastric probe was recorded. The technical failure rate of the MD probes/procedure was high. S-MD can be used in a clinical setting after Ivor Lewis esophagectomy. Deviation in local tissue metabolism on POD 1 seems to be associated with development of AD. Further development of MD probes and procedure is required to reduce technical failure.
Collapse
Affiliation(s)
- Oscar Åkesson
- Department of Surgery, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Pernilla Abrahamsson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Göran Johansson
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Michael Haney
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Dan Falkenback
- Department of Surgery, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Michael Hermansson
- Department of Surgery, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Martin Jeremiasen
- Department of Surgery, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jan Johansson
- Department of Surgery, Skåne University Hospital and Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Rydenfelt K, Strand-Amundsen R, Horneland R, Hødnebø S, Kjøsen G, Pischke SE, Tønnessen TI, Haugaa H. Microdialysis and CO2 sensors detect pancreatic ischemia in a porcine model. PLoS One 2022; 17:e0262848. [PMID: 35143517 PMCID: PMC8830677 DOI: 10.1371/journal.pone.0262848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/06/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Pancreatic transplantation is associated with a high rate of early postoperative graft thrombosis. If a thrombosis is detected in time, a potentially graft-saving intervention can be initiated. Current postoperative monitoring lacks tools for early detection of ischemia. The aim of this study was to investigate if microdialysis and tissue pCO2 sensors detect pancreatic ischemia and whether intraparenchymal and organ surface measurements are comparable. METHODS In 8 anaesthetized pigs, pairs of lactate monitoring microdialysis catheters and tissue pCO2 sensors were simultaneously inserted into the parenchyma and attached to the surface of the pancreas. Ischemia was induced by sequential arterial and venous occlusions of 45-minute duration, with two-hour reperfusion after each occlusion. Microdialysate was analyzed every 15 minutes. Tissue pCO2 was measured continuously. We investigated how surface and parenchymal measurements correlated and the capability of lactate and pCO2 to discriminate ischemic from non-ischemic periods. RESULTS Ischemia was successfully induced by arterial occlusion in 8 animals and by venous occlusion in 5. During all ischemic episodes, lactate increased with a fold change of 3.2-9.5 (range) in the parenchyma and 1.7-7.6 on the surface. Tissue pCO2 increased with a fold change of 1.6-3.5 in the parenchyma and 1.3-3.0 on the surface. Systemic lactate and pCO2 remained unchanged. The area under curve (AUC) for lactate was 0.97 (95% confidence interval (CI) 0.93-1.00) for parenchymal and 0.90 (0.83-0.97) for surface (p<0.001 for both). For pCO2 the AUC was 0.93 (0.89-0.96) for parenchymal and 0.85 (0.81-0.90) for surface (p<0.001 for both). The median correlation coefficients between parenchyma and surface were 0.90 (interquartile range (IQR) 0.77-0.95) for lactate and 0.93 (0.89-0.97) for pCO2. CONCLUSIONS Local organ monitoring with microdialysis and tissue pCO2 sensors detect pancreatic ischemia with adequate correlation between surface and parenchymal measurements. Both techniques and locations seem feasible for further development of clinical pancreas monitoring.
Collapse
Affiliation(s)
- Kristina Rydenfelt
- Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
- * E-mail:
| | - Runar Strand-Amundsen
- Department of Clinical and Biomedical Engineering, Oslo University Hospital, Oslo, Norway
| | - Rune Horneland
- Department of Transplantation Medicine, Section of Transplantation Surgery, Oslo University Hospital, Oslo, Norway
| | - Stina Hødnebø
- Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Gisle Kjøsen
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
- Division of Emergencies and Critical Care, Department of Research & Development, Oslo University Hospital, Oslo, Norway
| | - Søren Erik Pischke
- Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, Oslo, Norway
| | - Tor Inge Tønnessen
- Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical medicine, University of Oslo, Oslo, Norway
| | - Håkon Haugaa
- Division of Emergencies and Critical Care, Department of Anesthesiology, Oslo University Hospital, Oslo, Norway
- Lovisenberg Diaconal University College, Oslo, Norway
| |
Collapse
|
6
|
Saadoun S, Papadopoulos MC. Acute, Severe Traumatic Spinal Cord Injury: Monitoring from the Injury Site and Expansion Duraplasty. Neurosurg Clin N Am 2021; 32:365-376. [PMID: 34053724 DOI: 10.1016/j.nec.2021.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We discuss 2 evolving management options for acute spinal cord injury that hold promise to further improve outcome: pressure monitoring from the injured cord and expansion duraplasty. Probes surgically implanted at the injury site can transduce intraspinal pressure, spinal cord perfusion pressure, and cord metabolism. Intraspinal pressure is not adequately reduced by bony decompression alone because the swollen, injured cord is compressed against the dura. Expansion duraplasty may be necessary to effectively decompress the injured cord. A randomized controlled trial called DISCUS is investigating expansion duraplasty as a novel treatment for acute, severe traumatic cervical spinal cord injury.
Collapse
Affiliation(s)
- Samira Saadoun
- Academic Neurosurgery Unit, St. George's, University of London, Cranmer Terrace, London SW17 0RE, UK.
| | - Marios C Papadopoulos
- Department of Neurosurgery, Atkinson Morley Wing, St. George's Hospital NHS Foundation Trust, Blackshaw Road, London SW17 0QT, UK
| |
Collapse
|
7
|
Surface Microdialysis Detects Ischemia After Esophageal Resection—An Experimental Animal Study. J Surg Res 2020; 245:537-543. [DOI: 10.1016/j.jss.2019.07.060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/11/2019] [Accepted: 07/18/2019] [Indexed: 01/16/2023]
|
8
|
Markedly Deranged Injury Site Metabolism and Impaired Functional Recovery in Acute Spinal Cord Injury Patients With Fever. Crit Care Med 2018; 46:1150-1157. [DOI: 10.1097/ccm.0000000000003134] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Langeland H, Lyng O, Aadahl P, Skjærvold NK. The coherence of macrocirculation, microcirculation, and tissue metabolic response during nontraumatic hemorrhagic shock in swine. Physiol Rep 2017; 5:5/7/e13216. [PMID: 28400499 PMCID: PMC5392510 DOI: 10.14814/phy2.13216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 11/28/2022] Open
Abstract
Hemorrhagic shock is clinically observed as changes in macrocirculatory indices, while its main pathological constituent is cellular asphyxia due to microcirculatory alterations. The coherence between macro‐ and microcirculatory changes in different shock states has been questioned. This also applies to the hemorrhagic shock. Most studies, as well as clinical situations, of hemorrhagic shock include a “second hit” by tissue trauma. It is therefore unclear to what extent the hemorrhage itself contributes to this lack of circulatory coherence. Nine pigs in general anesthesia were exposed to a controlled withdrawal of 50% of their blood volume over 30 min, and then retransfusion over 20 min after 70 min of hypovolemia. We collected macrocirculatory variables, microcirculatory blood flow measurement by the fluorescent microspheres technique, as well as global microcirculatory patency by calculation of Pv‐aCO2, and tissue metabolism measurement by the use of microdialysis. The hemorrhage led to anticipated changes in macrocirculatory variables with a coherent change in microcirculatory and metabolic variables. In the late hemorrhagic phase, the animals' variables generally improved, probably through recruitment of venous blood reservoirs. After retransfusion, all variables were normalized and remained same throughout the study period. We find in our nontraumatic model consistent coherence between changes in macrocirculatory indices, microcirculatory blood flow, and tissue metabolic response during hemorrhagic shock and retransfusion. This indicates that severe, but brief, hemorrhage with minimal tissue injury is in itself not sufficient to cause lack of coherence between macro‐ and microcirculation.
Collapse
Affiliation(s)
- Halvor Langeland
- Department of Anesthesiology and Intensive Care Medicine, Trondheim University Hospital, Trondheim, Norway .,Department of Circulation and Medical Imaging, Faculty of Medicine Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Oddveig Lyng
- Unit of Comparative Medicine, Faculty of Medicine Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Petter Aadahl
- Department of Anesthesiology and Intensive Care Medicine, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Nils-Kristian Skjærvold
- Department of Anesthesiology and Intensive Care Medicine, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
10
|
Surface microdialysis on small bowel serosa in monitoring of ischemia. J Surg Res 2016; 204:39-46. [DOI: 10.1016/j.jss.2016.04.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 03/03/2016] [Accepted: 04/04/2016] [Indexed: 11/23/2022]
|
11
|
Abrahamsson P, Johansson G, Åberg AM, Winsö O, Blind PJ. Outcome of microdialysis sampling on liver surface and parenchyma. J Surg Res 2015; 200:480-7. [PMID: 26505659 DOI: 10.1016/j.jss.2015.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/20/2015] [Accepted: 09/03/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND To investigate whether surface microdialysis (μD) sampling in probes covered by a plastic film, as compared to noncovered and to intraparenchymatous probes, would increase the technique's sensitivity for pathophysiologic events occurring in a liver ischemia-reperfusion model. Placement of μD probes in the parenchyma of an organ, as is conventionally done, may cause adverse effects, e.g., bleeding, possibly influencing outcome. METHODS A transient ischemia-reperfusion model of the liver was used in six anesthetized normoventilated pigs. μD probes were placed in the parenchyma and on the liver surface. Surface probes were either left uncovered or were covered by plastic film. RESULTS Lactate and glucose levels were significantly higher in plastic film covered probes than in uncovered surface probes throughout the ischemic period. Glycerol levels were significantly higher in plastic film covered probes than in uncovered surface probes at 30 and 45 min into ischemia. CONCLUSIONS Covering the μD probe increases the sensibility of the μD-technique in monitoring an ischemic insult and reperfusion in the liver. These findings confirm that the principle of surface μD works, possibly replacing need of intraparenchymatous placement of μD probes. Surface μD seemingly allows, noninvasively from an organ's surface, via the extracellular compartment, assessment of intracellular metabolic events. The finding that covered surface μD probes allows detection of local metabolic changes earlier than do intraparenchymatous probes, merit further investigation focusing on μD probe design.
Collapse
Affiliation(s)
- Pernilla Abrahamsson
- Department of Surgical and Perioperative Sciences, Anaesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden.
| | - Göran Johansson
- Department of Surgical and Perioperative Sciences, Anaesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Anna-Maja Åberg
- Department of Surgical and Perioperative Sciences, Anaesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Ola Winsö
- Department of Surgical and Perioperative Sciences, Anaesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| | - Per-Jonas Blind
- Department of Surgical and Perioperative Sciences, Anaesthesiology and Intensive Care Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
12
|
Blind PJ, Kral J, Wang W, Kralova I, Abrahamsson P, Johansson G, Winsö O. Microdialysis in Early Detection of Temporary Pancreatic Ischemia in a Porcine Model. Eur Surg Res 2012; 49:113-20. [DOI: 10.1159/000343806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/30/2012] [Indexed: 01/21/2023]
|