1
|
Matus CE, Ehrenfeld P, Figueroa CD. The family of kallikrein-related peptidases and kinin peptides as modulators of epidermal homeostasis. Am J Physiol Cell Physiol 2022; 323:C1070-C1087. [PMID: 35993513 DOI: 10.1152/ajpcell.00012.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The epidermis is the outermost skin layer and is part of one of the largest organs in the body; it is supported by the dermis, a network of fibrils, blood vessels, pilosebaceous units, sweat glands, nerves, and cells. The skin as a whole is a protective shield against numerous noxious agents, including microorganisms and chemical and physical factors. These functions rely on the activity of multiple growth factors, peptide hormones, proteases, and specific signaling pathways that are triggered by the activation of distinct types of receptors sited in the cell membranes of the various cell types present in the skin. The human kallikrein family comprises a large group of 15 serine proteases synthesized and secreted by different types of epithelial cells throughout the body, including the skin. At this site, they initiate a proteolytic cascade that generates the active forms of the proteases, some of which regulate skin desquamation, activation of cytokines, and antimicrobial peptides. Kinin peptides are formed by the action of plasma and tissue kallikreins on kininogens, two plasma proteins produced in the liver and other organs. Although kinins are well known for their proinflammatory abilities, in the skin they are also considered important modulators of keratinocyte differentiation. In this review, we summarize the contributions of the kallikreins and kallikrein-related peptidases family and those of kinins and their receptors in skin homeostasis, with special emphasis on their pathophysiological role.
Collapse
Affiliation(s)
- Carola E Matus
- Departament of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile.,Center of Molecular Biology and Pharmacogenetics, Universidad de La Frontera, Temuco, Chile.,Center of Biomedical and Morphofunctional Sciences, Universidad de La Frontera, Temuco, Chile
| | - Pamela Ehrenfeld
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| | - Carlos D Figueroa
- Laboratory of Cellular Pathology, Institute of Anatomy, Histology and Pathology, Faculty of Medicine, Universidad Austral de Chile, Valdivia, Chile.,Center for Interdisciplinary Studies on Nervous System (CISNe), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
2
|
Wilson TE, Narra S, Metzler-Wilson K, Schneider A, Bullens KA, Holt IS. Role of Bradykinin Type 2 Receptors in Human Sweat Secretion: Translational Evidence Does Not Support a Functional Relationship. Skin Pharmacol Physiol 2021; 34:162-166. [PMID: 33794540 DOI: 10.1159/000514497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/14/2021] [Indexed: 11/19/2022]
Abstract
Bradykinin increases skin blood flow via a cGMP mechanism but its role in sweating in vivo is unclear. There is a current need to translate cell culture and nonhuman paw pad studies into in vivo human preparations to test for therapeutic viability for disorders affecting sweat glands. Protocol 1: physiological sweating was induced in 10 healthy subjects via perfusing warm (46-48°C) water through a tube-lined suit while bradykinin type 2 receptor (B2R) antagonist (HOE-140; 40 μM) and only the vehicle (lactated Ringer's) were perfused intradermally via microdialysis. Heat stress increased sweat rate (HOE-140 = +0.79 ± 0.12 and vehicle = +0.64 ± 0.10 mg/cm2/min), but no differences were noted with B2R antagonism. Protocol 2: pharmacological sweating was induced in 6 healthy subjects via intradermally perfusing pilocarpine (1.67 mg/mL) followed by the same B2R antagonist approach. Pilocarpine increased sweating (HOE-140 = +0.38 ± 0.16 and vehicle = +0.32 ± 0.12 mg/cm2/min); again no differences were observed with B2R antagonism. Last, 5 additional subjects were recruited for various control experiments which identified that a functional dose of HOE-140 was utilized and it was not sudorific during normothermic conditions. These data indicate B2R antagonists do not modulate physiologically or pharmacologically induced eccrine secretion volumes. Thus, B2R agonist/antagonist development as a potential therapeutic target for hypo- and hyperhidrosis appears unwarranted.
Collapse
Affiliation(s)
- Thad E Wilson
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA.,Department of Physiology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Seetharam Narra
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Kristen Metzler-Wilson
- Department of Physical Therapy, Indiana University, Indianapolis, Indiana, USA.,Department of Anatomy, Cell Biology, & Physiology, Indiana University, Indianapolis, Indiana, USA.,Department of Dermatology, Indiana University, Indianapolis, Indiana, USA
| | - Artur Schneider
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Kelsey A Bullens
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| | - Ian S Holt
- Division of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Akyol M, Berksoy Hayta S, Yasak R, Özçelİk S. Supression of sweating in palmar hyperhydrosis with 5% strontium chloride hexahydrate. Dermatol Ther 2015; 28:267-8. [DOI: 10.1111/dth.12239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Melİh Akyol
- Dermatology Department, Cumhuriyet University School of Medicine; Sivas Turkey
| | - Sibel Berksoy Hayta
- Dermatology Department, Cumhuriyet University School of Medicine; Sivas Turkey
| | - Rukİye Yasak
- Dermatology Department, Cumhuriyet University School of Medicine; Sivas Turkey
| | - Sedat Özçelİk
- Dermatology Department, Cumhuriyet University School of Medicine; Sivas Turkey
| |
Collapse
|
4
|
Ma W, Qi Z, Smigel A, Walker RK, Verma R, Berkowitz GA. Ca2+, cAMP, and transduction of non-self perception during plant immune responses. Proc Natl Acad Sci U S A 2009; 106:20995-1000. [PMID: 19933332 PMCID: PMC2780315 DOI: 10.1073/pnas.0905831106] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Indexed: 01/20/2023] Open
Abstract
Ca(2+) influx is an early signal initiating cytosolic immune responses to pathogen perception in plant cells; molecular components linking pathogen recognition to Ca(2+) influx are not delineated. Work presented here provides insights into this biological system of non-self recognition and response activation. We have recently identified a cyclic nucleotide-activated ion channel as facilitating the Ca(2+) flux that initiates immune signaling in the plant cell cytosol. Work in this report shows that elevation of cAMP is a key player in this signaling cascade. We show that cytosolic Ca(2+) elevation, nitric oxide (NO) and reactive oxygen species generation, as well as immune signaling, lead to a hypersensitive response upon application of pathogens and/or conserved molecules that are components of microbes and are all dependent on cAMP generation. Exogenous cAMP leads to Ca(2+) channel-dependent cytosolic Ca(2+) elevation, NO generation, and defense response gene expression in the absence of the non-self pathogen signal. Inoculation of leaves with a bacterial pathogen leads to cAMP elevation coordinated with Ca(2+) rise. cAMP acts as a secondary messenger in plants; however, no specific protein has been heretofore identified as activated by cAMP in a manner associated with a signaling cascade in plants, as we report here. Our linkage of cAMP elevation in pathogen-inoculated plant leaves to Ca(2+) channels and immune signaling downstream from cytosolic Ca(2+) elevation provides a model for how non-self detection can be transduced to initiate the cascade of events in the cell cytosol that orchestrate pathogen defense responses.
Collapse
Affiliation(s)
- Wei Ma
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| | - Zhi Qi
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| | - Andries Smigel
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| | - Robin K. Walker
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| | - Rajeev Verma
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| | - Gerald A. Berkowitz
- Agricultural Biotechnology Laboratory, Department of Plant Science, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269-4163
| |
Collapse
|
5
|
Bovell DL, Santic R, Kofler B, Hermann A, Wilson D, Corbett A, Lang R. Activation of chloride secretion via proteinase-activated receptor 2 in a human eccrine sweat gland cell line – NCL-SG3. Exp Dermatol 2008; 17:505-11. [DOI: 10.1111/j.1600-0625.2007.00659.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Abstract
The adrenal cortex elaborates two major groups of steroids that have been arbitrarily classified as glucocorticoids and mineralocorticoids, despite the fact that carbohydrate metabolism is intimately linked to mineral balance in mammals. In fact, glucocorticoids assured both of these functions in all living cells, animal and photosynthetic, prior to the appearance of aldosterone in teleosts at the dawn of terrestrial colonization. The evolutionary drive for a hormone specifically designed for hydromineral regulation led to zonation for the conversion of 18-hydroxycorticosterone into aldosterone through the catalytic action of a synthase in the secluded compartment of the adrenal zona glomerulosa. Corticoid hormones exert their physiological action by binding to receptors that belong to a transcription factor superfamily, which also includes some of the proteins regulating steroid synthesis. Steroids stimulate sodium absorption by the activation and/or de novo synthesis of the ion-gated, amiloride-sensitive sodium channel in the apical membrane and that of the Na+/K+-ATPase in the basolateral membrane. Receptors, channels, and pumps apparently are linked to the cytoskeleton and are further regulated variously by methylation, phosphorylation, ubiquination, and glycosylation, suggesting a complex system of control at multiple checkpoints. Mutations in genes for many of these different proteins have been described and are known to cause clinical disease.
Collapse
Affiliation(s)
- M K Agarwal
- Centre National de la Recherche Scientifique, Paris, France.
| | | |
Collapse
|
7
|
Bell CL, Quinton PM. An immortal cell line to study the role of endogenous CFTR in electrolyte absorption. In Vitro Cell Dev Biol Anim 1995; 31:30-6. [PMID: 7535636 DOI: 10.1007/bf02631335] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The intact human reabsorptive sweat duct (RD) has been a reliable model for investigations of the functional role of "endogenous" CFTR (cystic fibrosis transmembrane conductance regulator) in normal and abnormal electrolyte absorptive function. But to overcome the limitations imposed by the use of fresh, intact tissue, we transformed cultured RD cells using the chimeric virus Ad5/SV40 1613 ori-. The resultant cell line, RD2(NL), has remained differentiated forming a polarized epithelium that expressed two fundamental components of absorption, a cAMP activated Cl- conductance (GCl) and an amiloride-sensitive Na+ conductance (GNa). In the unstimulated state, there was a low level of transport activity; however, addition of forskolin (10(-5) M) significantly increased the Cl- diffusion potential (Vt) generated by a luminally directed Cl- gradient from -15.3 +/- 0.7 mV to -23.9 +/- 1.1 mV, n = 39; and decreased the transepithelial resistance (Rt) from 814.8 +/- 56.3 omega.cm2 to 750.5 +/- 47.5 omega.cm2, n = 39, (n = number of cultures). cAMP activation, anion selectivity (Cl- > I- > gluconate), and a dependence upon metabolic energy (metabolic poisoning inhibited GCl), all indicate that the GCl expressed in RD2(NL) is in fact CFTR-GCl. The presence of an apical amiloride-sensitive GNa was shown by the amiloride (10(-5) M) inhibition of GNa as indicated by a reduction of Vt and equivalent short circuit current by 78.0 +/- 3.1% and 77.9 +/- 2.6%, respectively, and an increase in Rt by 7.2 +/- 0.8%, n = 36. In conclusion, the RD2(NL) cell line presents the first model system in which CFTR-GCl is expressed in a purely absorptive tissue.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- C L Bell
- Division of Biomedical Sciences, University of California, Riverside 92521, USA
| | | |
Collapse
|
8
|
Pickles R, Cuthbert A. Failure of thapsigargin to alter ion transport in human sweat gland epithelia while intracellular Ca2+ concentration is raised. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)42113-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Henderson RM, Cuthbert AW. An outward-rectifying potassium channel in primary cultures of sweat glands from cystic fibrosis subjects. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1097:219-23. [PMID: 1932146 DOI: 10.1016/0925-4439(91)90038-b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have previously described a high conductance calcium-activated 'maxi K' channel in primary cultures of human eccrine sweat gland cells both from normal subjects and those with cystic fibrosis. In further studies we have now identified a potassium-selective channel of much lower conductance which shows outward-rectification and which is present in sweat glands isolated from cystic fibrosis subjects. In experiments with inside-out patches using symmetrical pipette and bath solutions containing 140 mM K+ the channel showed an outward slope conductance (at +50 mV) of approximately 26 pS and an inward conductance (at -50 mV) of approximately 11 pS. When K+ in the bath was replaced by Na+ the reversal potential shifts to reveal a permeability ratio PK/PNa approximately 40 Unlike the maxi-K+ channel, the outward-rectifying channel does not show sensitivity to Ca2+. Channels were found in cells cultured from the glands of four out of five cystic fibrosis subjects. In cells cultured from 30 subjects who did not have cystic fibrosis, an outward-rectifying potassium channel was seen in only one out of approximately 3000 patches.
Collapse
Affiliation(s)
- R M Henderson
- Department of Pharmacology, University of Cambridge, U.K
| | | |
Collapse
|
10
|
Pickles RJ, Brayden DJ, Cuthbert AW. Synchronous transporting activity in epithelial cells in relation to intracellular calcium concentration. Proc Biol Sci 1991; 245:53-8. [PMID: 1682929 DOI: 10.1098/rspb.1991.0087] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured monolayers of human sweat-gland epithelia have been used to measure electrogenic sodium transport, as short-circuit current, and intracellular Ca2+ concentration ([Ca]i) from Fura-2 fluorescence. The sodium currents in response to the agonists lysylbradykinin, histamine and carbachol show oscillatory behaviour in the 1-2 per minute frequency range. The oscillations can be terminated either by using specific antagonists or with amiloride, which prevents sodium entry into the epithelium. Oscillatory behaviour is also seen when [Ca]i is measured and occurs in the same frequency range. Sodium transport in these cultured epithelia is thought to result from an increase in [Ca]i, which in turn activates calcium-sensitive potassium channels, so increasing the electrochemical gradient for sodium entry. The oscillatory behaviour implies that the epithelial cells behave in synchrony to increase [Ca]i, so inducing synchronous changes in sodium current. It is shown that the behaviour is not unique to sodium-absorbing epithelia, and the possible utility of synchronous behaviour in epithelial tissues is discussed.
Collapse
Affiliation(s)
- R J Pickles
- Department of Pharmacology, University of Cambridge, U.K
| | | | | |
Collapse
|