1
|
Wang Y, Zhu Y, Wang J, Dong L, Liu S, Li S, Wu Q. Purinergic signaling: A gatekeeper of blood-brain barrier permeation. Front Pharmacol 2023; 14:1112758. [PMID: 36825149 PMCID: PMC9941648 DOI: 10.3389/fphar.2023.1112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
This review outlined evidence that purinergic signaling is involved in the modulation of blood-brain barrier (BBB) permeability. The functional and structural integrity of the BBB is critical for maintaining the homeostasis of the brain microenvironment. BBB integrity is maintained primarily by endothelial cells and basement membrane but also be regulated by pericytes, neurons, astrocytes, microglia and oligodendrocytes. In this review, we summarized the purinergic receptors and nucleotidases expressed on BBB cells and focused on the regulation of BBB permeability by purinergic signaling. The permeability of BBB is regulated by a series of purinergic receptors classified as P2Y1, P2Y4, P2Y12, P2X4, P2X7, A1, A2A, A2B, and A3, which serve as targets for endogenous ATP, ADP, or adenosine. P2Y1 and P2Y4 antagonists could attenuate BBB damage. In contrast, P2Y12-mediated chemotaxis of microglial cell processes is necessary for rapid closure of the BBB after BBB breakdown. Antagonists of P2X4 and P2X7 inhibit the activation of these receptors, reduce the release of interleukin-1 beta (IL-1β), and promote the function of BBB closure. In addition, the CD39/CD73 nucleotidase axis participates in extracellular adenosine metabolism and promotes BBB permeability through A1 and A2A on BBB cells. Furthermore, A2B and A3 receptor agonists protect BBB integrity. Thus, the regulation of the BBB by purinergic signaling is complex and affects the opening and closing of the BBB through different pathways. Appropriate selective agonists/antagonists of purinergic receptors and corresponding enzyme inhibitors could modulate the permeability of the BBB, effectively delivering therapeutic drugs/cells to the central nervous system (CNS) or limiting the entry of inflammatory immune cells into the brain and re-establishing CNS homeostasis.
Collapse
Affiliation(s)
| | | | - Junmeng Wang
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Longcong Dong
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shuqing Liu
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Sihui Li
- Acupuncture and Moxibustion College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | | |
Collapse
|
2
|
Choi RCY, Chu GKY, Siow NL, Yung AWY, Yung LY, Lee PSC, Lo CCW, Simon J, Dong TTX, Barnard EA, Tsim KWK. Activation of UTP-sensitive P2Y2 receptor induces the expression of cholinergic genes in cultured cortical neurons: a signaling cascade triggered by Ca2+ mobilization and extracellular regulated kinase phosphorylation. Mol Pharmacol 2013; 84:50-61. [PMID: 23592515 DOI: 10.1124/mol.112.084160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
ATP functions as an extracellular signaling molecule that is costored and coreleased with neurotransmitters at central and peripheral neuronal synapses. Stimulation by ATP upregulates the expression of synaptic genes in muscle-including the genes for nicotine acetylcholine receptor (α-, δ-, and ε-subunits) and acetylcholinesterase (AChE)-via the P2Y receptor (P2YR), but the trophic response of neurons to the activation of P2YRs is less well understood. We reported that cultured cortical neurons and the developing rat brain expressed different types of P2YRs, and among these the UTP-sensitive P2Y2R was the most abundant. P2Y2R was found to exist in membrane rafts and it colocalized with the postsynaptic protein PSD-95 in cortical neurons. Notably, agonist-dependent stimulation of P2Y2R elevated the neuronal expression of cholinergic genes encoding AChE, PRiMA (an anchor for the globular form AChE), and choline acetyltransferase, and this induction was mediated by a signaling cascade that involved Ca(2+) mobilization and extracellular regulated kinases 1/2 activation. The importance of P2Y2R action was further shown by the receptor's synergistic effect with P2Y1R in enhancing cholinergic gene expression via the robust stimulation of Ca(2+) influx. Taken together our results revealed a developmental function of P2Y2R in promoting synaptic gene expression and demonstrated the influence of costimulation of P2Y1R and P2Y2R in neurons.
Collapse
Affiliation(s)
- Roy C Y Choi
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Polini N, Rauschemberger MB, Mendiberri J, Selles J, Massheimer V. Effect of genistein and raloxifene on vascular dependent platelet aggregation. Mol Cell Endocrinol 2007; 267:55-62. [PMID: 17306449 DOI: 10.1016/j.mce.2006.12.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2006] [Revised: 12/11/2006] [Accepted: 12/13/2006] [Indexed: 11/30/2022]
Abstract
We checked the hypothesis whether the non-classical estrogen receptor modulators genistein and raloxifene could affect platelet aggregation through their direct effect on vascular tissue by regulating the synthesis of vasoactive compounds. In rat aortic strips, 10nM genistein or 10nM raloxifene significantly increased nitric oxide synthesis, event prevented by ICI182780. Both agents exhibited an antiaggregatory action, dependent on the nitric oxide release from vascular tissue, since preincubation of aortic strips with L-NAME partially and completely suppressed the inhibition of platelet aggregation induced by genistein or raloxifene respectively. The phytoestrogen enhanced phospholipase A(2) and prostacyclin release into the incubation medium. Indomethacin reduced in half the inhibition of platelet aggregation elicited by genistein. Finally, genistein or raloxifene also inhibited platelet aggregation in aortic strips from ovariectomized rats. In conclusion, genistein and raloxifene exhibit an antiplatelet activity through their direct action on vascular tissue, in rats with or without ovarian activity.
Collapse
Affiliation(s)
- Nélida Polini
- Cátedra de Análisis Clínicos II, Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, B8000ICN Bahía Blanca, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Duval M, Beaudoin AR, Bkaily G, Gendron FP, D' Orléans-Juste P. Characterization of the NTPDase activities in the mesentery pre- and post-capillary circuits of the guinea pig. Can J Physiol Pharmacol 2003; 81:212-9. [PMID: 12733820 DOI: 10.1139/y03-043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
NTPDase is one of the principal enzymes involved in the sequential hydrolysis of ATP. In the present study, the presence and functionality of NTPDase in the mesenteric vein and artery were examined. Adenosine triphosphate (ATP) (0.01-1000 pmol) induces a dose-dependent vasodilation in the isolated arterial and venous mesenteric vasculatures of the guinea pig. Adenosine diphosphate (ADP) (0.01-1000 pmol) but not adenosine monophosphate (AMP) (0.01-1000 pmol) induces a similar response in the mesenteric vascular circuit. L-NAME, a nitric oxide synthase inhibitor (200 microM, 30 min), significantly reduces the arterial dilatory effect of ATP and abolishes the responses to ADP and AMP. Complete removal of the endothelium with 3-[(3-cholamidopropyl) dimethylammonio]-1-propansulfonate (CHAPS) (20 mM, 2 x 45 s) abolishes ATP-induced responses. Infusion of ATP in the vascular circuit generated detectable amounts of ADP and AMP, as measured by HPLC. CHAPS treatment significantly reduced the level of ATP and the production of AMP in the arterial mesenteric circuit. In contrast to the arterial mesenteric vasculature, endothelium removal in the venous circuit triggered a marked potentiation of ADP release and, interestingly, a marked reduction in the release of AMP. Moreover, a specific inhibitor of NTP diphosphohydrolase, 1-hydroxynaphthlene-3,6-disulfonic acid BGO 136 (10 mM for 20 min), significatively reduced AMP production in both vascular preparations. These results confirm that the endothelium contributes to the vasoactive properties of ATP, ADP, and AMP. Our data also demonstrated a significant role of endothelium in NTPDase activity on ADP and AMP production prior to exogenous administration of ATP. The activity of this particular enzyme appears to be different from the reaction products viewpoint (i.e., the production of ADP) in the pre- and post-mesenteric circuits, suggesting two different isoforms with different substrate specificities.
Collapse
Affiliation(s)
- M Duval
- Department of Pharmacology, Institute of Pharmacology of Sherbrooke, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | | | | | | | | |
Collapse
|
5
|
Tetens J, Venugopal CS, Holmes EP, Koch CE, Hosgood G, Moore RM. In vitro responses of equine colonic arterial and venous rings to adenosine triphosphate. Am J Vet Res 2001; 62:1928-33. [PMID: 11763183 DOI: 10.2460/ajvr.2001.62.1928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the in vitro effects of adenosine tryphosphate (ATP) on vasomotor tone of equine colonic vasculature. SAMPLE POPULATION Arteries and veins from the left ventral colon of 14 mixed-breed horses euthanatized for reasons unrelated to cardiovascular or gastrointestinal tract disease. PROCEDURES Endothelium-intact and -denuded arterial and venous rings were precontracted with 10(-7) and 1.8 x 10(-8) M endothelin-1, respectively. In 1 trial, endothelium-intact rings were also incubated with 10(-4) M N omega-nitro-L-arginine methyl ester (L-NAME) to inhibit nitric oxide (NO) production. Adenosine triphosphate (10(-8) to 10(-3) M) was added in a noncumulative manner, and relaxation percentage versus time curves were generated. Areas under the curves (ie, percentage of relaxation time) were calculated. RESULTS Relaxation response of arterial and venous rings to ATP was dose-dependent. Percentage of relaxation time in response to 10(-4) and 10(-3) MATP was significantly greater, compared with that for rings not treated with ATP Removal of endothelium attenuated but did not eliminate the relaxation response. Addition of L-NAME did not attenuate the relaxation response in arteries. At higher concentrations, the vascular response to ATP was biphasic. CONCLUSIONS AND CLINICAL RELEVANCE ATP applied to equine colonic arterial and venous rings with and without intact endothelium induced a biphasic response characterized by transient contraction followed by slow, substantial, and sustained relaxation. This ATP-induced response is possibly mediated by a mechanism other than NO. Adenosine triphosphate may be a useful treatment to modulate colonic vasomotor tone in horses with strangulating volvulus of the ascending colon.
Collapse
Affiliation(s)
- J Tetens
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge 70803-8410, USA
| | | | | | | | | | | |
Collapse
|
6
|
Boarder MR, White PJ, Roberts JR, Webb TE. Regulation of vascular endothelial cells and vascular smooth muscle cells by multiple P2Y receptor subtypes. Drug Dev Res 2001. [DOI: 10.1002/ddr.1186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Lacza Z, Káldi K, Kövecs K, Görlach C, Nagy Z, Sándor P, Benyó Z, Wahl M. Involvement of prostanoid release in the mediation of UTP-induced cerebrovascular contraction in the rat. Brain Res 2001; 896:169-74. [PMID: 11277988 DOI: 10.1016/s0006-8993(01)02083-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interaction between uridine-5'-triphosphate (UTP) and prostanoids was studied in isolated rat middle cerebral arteries (MCAs). The strong contractions in MCA segments induced by UTP were weakened significantly by indomethacin and more markedly by the thromboxane receptor antagonist ICI 192605. Thromboxane A(2) (TXA(2)) release by MCAs was below the detection limit of the chemiluminescence enzyme immunoassay, but increased TXA(2) formation was detected in basilar arteries in the presence of UTP. Prostacyclin (PGI(2)) formation by MCAs also increased in the presence of UTP. These results suggest that UTP stimulates the release of both TXA(2) and PGI(2) from the rat MCA but the vascular effect of TXA(2) is dominant.
Collapse
Affiliation(s)
- Z Lacza
- Department of Physiology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Otero M, Garrad RC, Velázquez B, Hernández-Pérez MG, Camden JM, Erb L, Clarke LL, Turner JT, Weisman GA, González FA. Mechanisms of agonist-dependent and -independent desensitization of a recombinant P2Y2 nucleotide receptor. Mol Cell Biochem 2000; 205:115-23. [PMID: 10821429 DOI: 10.1023/a:1007018001735] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UTP activates P2Y, receptors in both 1321N1 cell transfectants expressing the P2Y2 receptor and human HT-29 epithelial cells expressing endogenous P2Y, receptors with an EC50 of 0.2-1.0 microM. Pretreatment of these cells with UTP diminished the effectiveness of a second dose of UTP (the IC50 for UTP-induced receptor desensitization was 0.3-1.0 microM for both systems). Desensitization and down-regulation of the P2Y2 nucleotide receptor may limit the effectiveness of UTP as a therapeutic agent. The present studies investigated the phenomenon of P2Y2 receptor desensitization in human 1321N1 astrocytoma cells expressing recombinant wild type and C-terminal truncation mutants of the P2Y2 receptor. In these cells, potent P2Y2 receptor desensitization was observed after a 5 min exposure to UTP. Full receptor responsiveness returned 5-10 min after removal of UTP. Thapsigargin, an inhibitor of Ca2+-ATPase in the endoplasmic reticulum, induced an increase in the intracellular free calcium concentration, [Ca2+]i, after addition of desensitizing concentrations of UTP, indicating that P2Y2 receptor desensitization is not due to depletion of calcium from intracellular stores. Single cell measurements of increases in [Ca2+]i induced by UTP in 1321N1 cell transfectants expressing the P2Y2 receptor indicate that time- and UTP concentration-dependent desensitization occurred uniformly across a cell population. Other results suggest that P2Y2 receptor phosphorylation/dephosphorylation regulate receptor desensitization/resensitization. A 5 min preincubation of 1321N1 cell transfectants with the protein kinase C activator, phorbol 12-myristate 13-acetate (PMA), reduced the subsequent response to UTP by about 50%, whereas co-incubation of PMA with UTP caused a greater inhibition in the response. The protein phosphatases-1 and -2A inhibitor, okadaic acid, partially blocked resensitization of the receptor. Furthermore, C-terminal truncation mutants of the P2Y2 receptor that eliminated several potential phosphorylation sites including two for PKC were resistant to UTP-, but not phorbol ester-induced desensitization. Down regulation of protein kinase C isoforms prevented phorbol ester-induced desensitization but had no effect on agonist-induced desensitization of wild type or truncation mutant receptors. These results suggest that phosphorylation of the C-terminus of the P2Y2 receptor by protein kinases other than protein kinase C mediates agonist-induced receptor desensitization. A better understanding of the molecular mechanisms of P2Y2 nucleotide receptor desensitization may help optimize a promising cystic fibrosis pharmacotherapy based on the activation of anion secretion in airway epithelial cells by P2Y, receptor agonists.
Collapse
Affiliation(s)
- M Otero
- Department of Chemistry, University of Puerto Rico, San Juan 00931-3346, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Brown J, Reading SJ, Jones S, Fitchett CJ, Howl J, Martin A, Longland CL, Michelangeli F, Dubrova YE, Brown CA. Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: a comparison with the human bladder cancer derived epithelial cell line T24/83. J Transl Med 2000; 80:37-45. [PMID: 10653001 DOI: 10.1038/labinvest.3780006] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Early reports indicated that ECV304 was a spontaneously-transformed line derived from a Japanese human umbilical vein endothelial cells (HUVEC) culture. Many morphological, immunochemical, and genetic studies provided further evidence that ECV304 was a valuable biomedical research tool and could be used to study processes that include angiogenesis in vitro and signal transduction by a variety of G protein-coupled receptors. However, several distinct differences between ECV304 and HUVEC are now apparent and recent reports have indicated genetic similarity between ECV304 and T24/83, a human bladder cancer cell line. To further assess the utility of ECV304 as a human endothelial cell model, we compared the functional responses of ECV304 and T24/83 to a range of G protein-coupled receptor agonists. We also used DNA fingerprinting to karyotype both ECV304 and T24/83. Both ATP and uridine triphosphate (UTP) stimulated inositol phosphate metabolism in ECV304 without alteration of cAMP levels. Comparative data using selective P2Y receptor agonists indicated that this response, leading to calcium mobilization from intracellular stores, was predominantly mediated by the activation of P2Y2 receptors. Similar responses were recorded from both ECV304 and T24/83 cells. ECV304 expressed a relatively high basal activity of NOS that was reduced by L-NAME and stimulated by P2Y2 receptor agonists. In contrast, P2Y2 receptor activation did not induce prostaglandin synthesis in ECV304. Both ECV304 and T24/83 express receptors for adenosine, adrenaline, and calcitonin, which stimulate adenylate cyclase. Proliferation of ECV304 and T24/83 cells, measured by the incorporation of [3H]thymidine into DNA, was largely serum-independent. This was in contrast to parallel experiments with porcine and bovine aortic endothelial cells that indicated a marked serum-dependent increase in DNA synthesis. Genetic analysis confirmed that ECV304 and T24/83 are identical. ECV304 displays some endothelial characteristics and is useful for the study of receptor pharmacology. However, ECV304 is not of HUVEC origin and is therefore an inappropriate cell line to study endothelial cell biology.
Collapse
Affiliation(s)
- J Brown
- Molecular Pharmacology Group, School of Health Sciences, University of Wolverhampton, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Ou YJ, Leung YM, Huang SJ, Kwan CY. Dual effects of extracellular Ca2+ on cardiotoxin-induced cytotoxicity and cytosolic Ca2+ changes in cultured single cells of rabbit aortic endothelium. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1330:29-38. [PMID: 9375810 DOI: 10.1016/s0005-2736(97)00136-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of extracellular Ca2+ on cytotoxicity induced by cardiotoxin (CTX), isolated from Chinese cobra venom, were investigated in cultured rabbit aortic endothelial cells (RAECs). In Hank's buffered saline solution (HBSS) containing 1.2 mM Ca2+, CTX (1-30 microM) caused cell necrosis and cell death in a concentration-dependent manner, as determined by trypan blue exclusion test performed after a 20-min CTX treatment. The concentration of CTX that caused 50% cell death was about 6.5 microM. CTX (10 microM)-induced RAEC damage was also evident but less prominent in Ca2+-free medium and almost completely prevented in medium containing 7-10 mM Ca2+. Therefore, Ca2+ appears to provoke CTX-induced injury at physiological concentrations, but protects against it at high concentrations. The protection of RAECs from CTX-induced injury could also be achieved by high concentrations of Ni2+ and Mg2+. Using the fura-2 fluorescence technique to measure the cytosolic free Ca2+ concentration ([Ca2+]i) of single RAEC, it was shown that in 1.2 mM Ca2+-containing HBSS, treatment of RAECs with 10 microM CTX for 7-35 min resulted in a tremendous and irreversible [Ca2+]i elevation, suggestive of cell membrane damage and extracellular Ca2+ entry. Ni2+ could also enter the cytosol of these damaged RAECs. However, there was no [Ca2+]i elevation or Ni2+ entry in RAECs that were preincubated in HBSS containing 7 mM Ca2+ or Ni2+ before CTX exposure. In RAECs protected with 7 mM Ca2+, the intracellular Ca2+ signals triggered by 100 microM extracellular ATP or 10 microM bradykinin in CTX-treated groups were similar to those in the untreated control groups. Taken together, the results indicate that high extracellular Ca2+ concentrations protected RAECs from CTX-induced injury, and preserved the ability of CTX-treated RAECs to generate Ca2+ signals in response to physiological stimuli.
Collapse
Affiliation(s)
- Y J Ou
- Department of Physiology, Faculty of Medicine, The University of Hong Kong, China
| | | | | | | |
Collapse
|
12
|
Albert JL, Boyle JP, Roberts JA, Challiss RA, Gubby SE, Boarder MR. Regulation of brain capillary endothelial cells by P2Y receptors coupled to Ca2+, phospholipase C and mitogen-activated protein kinase. Br J Pharmacol 1997; 122:935-41. [PMID: 9384512 PMCID: PMC1565009 DOI: 10.1038/sj.bjp.0701453] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. The blood-brain barrier is formed by capillary endothelial cells and is regulated by cell-surface receptors, such as the G protein-coupled P2Y receptors for nucleotides. Here we investigated some of the characteristics of control of brain endothelial cells by these receptors, characterizing the phospholipase C and Ca2+ response and investigating the possible involvement of mitogen-activated protein kinases (MAPK). 2. Using an unpassaged primary culture of rat brain capillary endothelial cells we showed that ATP, UTP and 2-methylthio ATP (2MeSATP) give similar and substantial increases in cytosolic Ca2+, with a rapid rise to peak followed by a slower decline towards basal or to a sustained plateau. Removal of extracellular Ca2+ had little effect on the peak Ca2+-response, but resulted in a more rapid decline to basal. There was no response to alpha,beta-MethylATP (alpha,beta MeATP) in these unpassaged cells, but a response to this P2X agonist was seen after a single passage. 3. ATP (log EC50 -5.1+/-0.2) also caused an increase in the total [3H]-inositol (poly)phosphates ([3H]-InsPx) in the presence of lithium with a rank order of agonist potency of ATP=UTP=UDP>ADP, with 2MeSATP and alpha,beta MeATP giving no detectable response. 4. Stimulating the cells with ATP or UTP gave a rapid rise in the level of inositol 1,4,5-trisphosphate (Ins(1,4,5)P3), with a peak at 10 s followed by a decline to a sustained plateau phase. 2MeSATP gave no detectable increase in the level of Ins(1,4,5)P3. 5. None of the nucleotides tested affected basal cyclic AMP, while ATP and ATPgammaS, but not 2MeSATP, stimulated cyclic AMP levels in the presence of 5 microM forskolin. 6. Both UTP and ATP stimulated tyrosine phosphorylation of p42 and p44 mitogen-activated protein kinase (MAPK), while 2MeSATP gave a smaller increase in this index of MAPK activation. By use of a peptide kinase assay, UTP gave a substantial increase in MAPK activity with a concentration-dependency consistent with activation at P2Y2 receptors. 2MeSATP gave a much smaller response with a lower potency than UTP. 7. These results are consistent with brain endothelial regulation by P2Y2 receptors coupled to phospholipase C, Ca2+ and MAPK; and by P2Y1-like (2MeSATP-sensitive) receptors which are linked to Ca2+ mobilization by a mechanism apparently independent of agonist stimulated Ins(1,4,5)P3 levels. A further response to ATP, acting at an undefined receptor, caused an increase in cyclic AMP levels in the presence of forskolin. The differential MAPK coupling of these receptors suggests that they exert fundamentally distinct influences over brain endothelial function.
Collapse
Affiliation(s)
- J L Albert
- Department of Cell Physiology and Pharmacology, University of Leicester
| | | | | | | | | | | |
Collapse
|
13
|
Helgadóttir A, Halldórsson H, Magnúsdóttir K, Kjeld M, Thorgeirsson G. A role for tyrosine phosphorylation in generation of inositol phosphates and prostacyclin production in endothelial cells. Arterioscler Thromb Vasc Biol 1997; 17:287-94. [PMID: 9081683 DOI: 10.1161/01.atv.17.2.287] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have examined the effects of the protein tyrosine phosphatase inhibitor pervanadate on activation of signal transduction in human umbilical vein endothelial cells. Endothelial cells responded to pervanadate treatment by increasing tyrosine phosphorylation of cellular proteins, including phospholipase C (PLC) gamma 1, generating inositol phosphates (IPs), releasing arachidonic acid, and producing prostacyclin (prostaglandin [PG] I2). The dose and time responses for these events were similar. Tyrosine phosphorylation and formation of IPs in response to pervanadate were reduced by both staurosporine and genistein. Short-term incubation with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate, which inhibits thrombin-induced IP generation, did not affect the IP response to pervanadate. To investigate the possible involvement of tyrosine phosphorylation in thrombin or histamine-induced IP generation and PGI2 production, we examined the effects of costimulation with pervanadate and either thrombin or histamine. These responses proved to be different. While the tyrosine phosphorylation of PLC gamma 1 was enhanced after cotreatment with thrombin and pervanadate compared with pervanadate alone, costimulation with pervanadate and histamine resulted in no more tyrosine phosphorylation of PLC gamma 1 than after pervanadate alone. Similarly, while cotreatment with pervanadate and thrombin caused synergistic increase in IP generation, costimulation with pervanadate and histamine resulted in an additive response. However, PGI2 responses to costimulation of pervanadate with either thrombin or histamine were both synergistic. Furthermore, stimulation with histamine, thrombin, or pervanadate all caused tyrosine phosphorylation of a mitogen-activated protein kinase (ERK1/p44). The results suggest that a tyrosine phosphorylation-dependent mechanism has a role in the phosphoinositide signal transduction pathway of human endothelial cells. Moreover, thrombin- but not histamine-induced generation of IPs appears to be partly caused by tyrosine phosphorylation of PLC gamma 1.
Collapse
Affiliation(s)
- A Helgadóttir
- Department of Pharmacology, University of Iceland, Reykjavik, Iceland
| | | | | | | | | |
Collapse
|
14
|
Patel V, Brown C, Goodwin A, Wilkie N, Boarder MR. Phosphorylation and activation of p42 and p44 mitogen-activated protein kinase are required for the P2 purinoceptor stimulation of endothelial prostacyclin production. Biochem J 1996; 320 ( Pt 1):221-6. [PMID: 8947491 PMCID: PMC1217921 DOI: 10.1042/bj3200221] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Extracellular ATP and ADP, released from platelets and other sites stimulate the endothelial production of prostacyclin (PGI2) by acting on G-protein-coupled P2Y2 and P2Y2 purinoceptors, contributing to the maintenance of a non-thrombogenic surface. The mechanism, widely described as being dependent on elevated cytosolic [Ca2+], also requires protein tyrosine phosphorylation. Here we show that activation of both these P2 receptor types leads to the tyrosine phosphorylation and activation of both the p42 and p44 forms of mitogen-activated protein kinase (MAPK). 2-Methylthio-ATP and UTP, selectively activating P2Y1 and P2Y2 purinoceptors respectively, and ATP, a non-selective agonist at these two receptors, stimulate the tyrosine phosphorylation of both p42mapk and p44mapk, as revealed by Western blots with an antiserum specific for the tyrosine-phosphorylated forms of the enzymes. By using separation on Resource Q columns, peptide kinase activity associated with the phosphorylated MAPK enzymes distributes into two peaks, one mainly p42mapk and one mainly p44mapk, both of which are stimulated by ATP with respect to kinase activity and phospho-MAPK immunoreactivity. Stimulation of P2Y1 or P2Y2 purinoceptors leads to a severalfold increase in PGI2 efflux; this was blocked in a dose-dependent manner by the selective MAPK kinase inhibitor PD98059. This drug also blocked the agonist-stimulated increase in phospho-MAPK immunoreactivity for both p42mapk and p44mapk but left the phospholipase C response to P2 agonists essentially unchanged. Olomoucine has been reported to inhibit p44mapk activity. Here we show that in the same concentration range olomoucine inhibits activity in both peaks from the Resource Q column and also the agonist stimulation of 6-keto-PGF1, but has no effect on agonist-stimulated phospho-MAPK immunoreactivity. These results provide direct evidence for the involvement of p42 and p44 MAPK in the PGI2 response of intact endothelial cells: we have shown that both the endothelial P2Y purinoceptors are linked to activation of MAPK, and that activation of this pathway is a requirement for the stimulation by ATP/ADP of endothelial PGI2 production.
Collapse
Affiliation(s)
- V Patel
- Department of Cell Physiology and Pharmacology, University of Leicester, U.K
| | | | | | | | | |
Collapse
|
15
|
ORAL COMMUNICATIONS. Br J Pharmacol 1996. [DOI: 10.1111/j.1476-5381.1996.tb16425.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
16
|
POSTER COMMUNICATIONS. Br J Pharmacol 1996. [DOI: 10.1111/j.1476-5381.1996.tb16426.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Patel V, Brown C, Boarder MR. Protein kinase C isoforms in bovine aortic endothelial cells: role in regulation of P2Y- and P2U-purinoceptor-stimulated prostacyclin release. Br J Pharmacol 1996; 118:123-30. [PMID: 8733584 PMCID: PMC1909475 DOI: 10.1111/j.1476-5381.1996.tb15374.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
1. Enhanced synthesis of prostacyclin (PGI2) and inositol polyphosphates in bovine aortic endothelial cells in response to ATP and ADP is mediated by co-existing P2Y- and P2U-purinoceptors. Here we examine the regulation of these responses by isoforms of protein kinase C (PKC). 2. Immunoblots with antisera specific for 8 different PKC isoforms revealed the presence of alpha, epsilon and zeta, while no immunoreactivity was found for beta, gamma, delta, eta and theta isoforms. PKC-alpha was largely cytosolic in unstimulated cells and almost all translocated to the membrane (Triton X-100 soluble) after a 1 min treatment with the PKC activating phorbol myristate acetate (PMA); PKC-epsilon was always in a Triton X-100 insoluble membrane fraction, while PKC-zeta was found in both soluble and membrane bound (Triton X-100 soluble) forms in the unstimulated cells and was unaffected by PMA. 3. Treatment with PMA for 6 h led to a 90% downregulation of PKC-alpha, while the immunoreactivity to the epsilon and zeta isoforms remained largely unchanged. 4. After either 10 min or 6 h exposure to PMA the PGI2 response to activation of both receptors was enhanced, while the inositol 1,4,5-trisphosphate response to P2Y-purinoceptor activation was substantially attenuated and the P2U-purinoceptor response was unchanged. Thus the PGI2 response to PMA under conditions when 90% of the PKC-alpha was lost resembles that seen on acute stimulation of PKC by PMA, and the PGI2 response does not correlate with phospholipase C response. 5. Inhibition of PKC with the isoform non-selective inhibitors, Ro 31-8220 and Go 6850 abolished the PGI2 response to both P2U- and P2Y-purinoceptor stimulation. However, Go 6976, which preferentially inhibits Ca2+ sensitive isoforms (such as PKC-alpha) and not Ca2+ insensitive isoforms (such as PKC-epsilon), had no effect on the PGI2 response. 6. The results show that there is a requirement for PKC in the stimulation of PGI2 production by endothelial P2Y- and P2U-purinoceptors. Both downregulation and inhibition studies show that PKC-alpha is not responsible for the regulation of the response to P2-purinergic stimulation, and imply that the response is mediated by PKC-epsilon (PKC-zeta is unresponsive to PMA), or an as yet uncharacterized PKC isoform.
Collapse
Affiliation(s)
- V Patel
- Department of Cell Physiology and Pharmacology, University of Leicester
| | | | | |
Collapse
|