1
|
Moustafa A, Habara Y. Cross talk between polysulfide and nitric oxide in rat peritoneal mast cells. Am J Physiol Cell Physiol 2016; 310:C894-902. [PMID: 27053521 DOI: 10.1152/ajpcell.00028.2016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/30/2016] [Indexed: 01/02/2023]
Abstract
The aim of this study was to define the effects of polysulfide on intracellular Ca(2+) concentration ([Ca(2+)]i) and the underlying machinery, especially from the hydrogen sulfide (H2S) and nitric oxide (NO) perspectives, in rat peritoneal mast cells. We found that a polysulfide donor, Na2S4, increased [Ca(2+)]i, which is both extracellular and intracellular Ca(2+) dependent. Intracellular Ca(2+) release induced by Na2S4 was attenuated by the addition of a ryanodine receptor blocker. A slow-releasing H2S donor, GYY4137, dose dependently increased [Ca(2+)]i that was independent from extracellular Ca(2+) influx. The GYY4137-induced [Ca(2+)]i release was partially attenuated in the presence of the ryanodine receptor blocker. Both polysulfide and H2S donors increased the intracellular NO levels in DAF-2-loaded mast cells, which were abolished by an NO scavenger, cPTIO. Inhibition of NO synthase (NOS) significantly abolished the polysulfide- or H2S-donor-induced [Ca(2+)]i elevation in the absence of extracellular Ca(2+) An NO donor, diethylamine (DEA) NONOate, increased [Ca(2+)]i in a concentration-dependent manner, in which both extracellular and intracellular Ca(2+) are associated. At higher concentrations, the DEA NONOate-induced [Ca(2+)]i increases were attenuated in the absence of extracellular Ca(2+) and by the addition of the ryanodine receptor blocker. H2S and NO dose dependently induced polysulfide production. Curiously, polysulfide, H2S, and NO donors had no effect on mast cell degranulation. Among synthases, cystathionine-γ-lyase, and neuronal NOS seemed to be the major H2S- and NO-producing synthases, respectively. These results indicate that polysulfide acts as a potential signaling molecule that regulates [Ca(2+)]i homeostasis in rat peritoneal mast cells via a cross talk with NO and H2S.
Collapse
Affiliation(s)
- Amira Moustafa
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; and Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Yoshiaki Habara
- Laboratory of Physiology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan; and
| |
Collapse
|
2
|
Tobío A, Alfonso A, Botana LM. C-kit mutations and PKC crosstalks: PKC translocates to nucleous only in cells HMC560,816. J Cell Biochem 2011; 112:2637-51. [DOI: 10.1002/jcb.23191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
3
|
Löber K, Alfonso A, Escribano L, Botana LM. STI571 (Glivec) affects histamine release and intracellular pH after alkalinisation in HMC-1560, 816. J Cell Biochem 2008; 103:865-76. [PMID: 17615556 DOI: 10.1002/jcb.21458] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The human mast cell line (HMC-1(560, 816)) was used to study the effect of the tyrosine kinase inhibitor STI571 (Glivec) on exocytosis, intracellular Ca(2+) and pH changes, because STI571 inhibits the proliferation of HMC-1(560) and induces its apoptosis. This drug does not have these effects on HMC-1(560, 816). Exocytosis in HMC-1(560, 816) cells can be stimulated by alkalinisation with NH(4)Cl as well as with ionomycin. Surprisingly 24-h pre-incubation with STI571 decreases spontaneous histamine release of HMC-1(560, 816) cells, but increases the histamine response after alkalinisation and not after ionomycin-stimulation. After addition of NH(4)Cl, pH(i) has a higher increase in STI571 pre-incubated cells, without changing intracellular Ca(2+) concentration. Activation of PKC in combination with tyrosine kinase inhibition increases also histamine release in HMC-1(560, 816) cells. Strangely, STI571 pre-incubated cells with PKC inhibited by rottlerin show the same effects. In these cells, cytosolic pH increases more than in control cells. This is the first report of STI571 effect in HMC-1(560, 816) cells. It seems that different pathways modulate signals for proliferation and exocytosis. STI571 does not only inhibit KIT TyrK, but may also influence cytosolic pH after alkalinisation in both cell lines, HMC-1(560) and HMC-1(560, 816), and this ends in induced histamine release. This work is important since HMC-1(560, 816) cells are reported in 80% of aggressive systemic mastocytosis cases and the understanding of some signalling pathways involved in mast cell response could facilitate drug targeting.
Collapse
Affiliation(s)
- Kristin Löber
- Departamento de Farmacología, Facultad de Veterinaria, 27002 Lugo, Spain
| | | | | | | |
Collapse
|
4
|
Pernas-Sueiras O, Alfonso A, Vieytes MR, Botana LM. PKC and cAMP positively modulate alkaline-induced exocytosis in the human mast cell line HMC-1. J Cell Biochem 2007; 99:1651-63. [PMID: 16823786 DOI: 10.1002/jcb.21009] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We study in HMC-1 the activation process, measured as histamine release. We know that ammonium chloride (NH(4)Cl) and ionomycin release histamine, and the modulatory role of drugs targeting protein kinase C (PKC), adenosine 3',5'-cyclic monophosphate (cAMP), tyrosine kinase (TyrK) and phosphatidylinositol 3-kinase (PI3K) on this effect. We used Gö6976 (100 nM) and low concentration of GF 109203X (GF) (50 nM) to inhibit Ca(2+)-dependent PKC isozymes. For Ca(2+)-independent isozymes, we used 500 nM GF and 10 microM rottlerin (specifically inhibits PKCdelta). Phorbol 12-myristate 13-acetate (PMA) (100 ng/ml) was used to stimulate PKC, and genistein (10 microM) and lavendustin A (1 microM) as unspecific TyrK inhibitors. STI571 10 microM was used to specifically inhibit the activity of Kit, the receptor for stem cell factor, and 10 nM wortmannin as a PI3K inhibitor. Activation of PKC with PMA enhances histamine release in response to NH(4)Cl and ionomycin. PMA increases NH(4)Cl-induced alkalinization and ionomycin-induced Ca(2+) entry. Inhibition of PKCdelta strongly inhibits Ca(2+) entry elicited by ionomycin, but failed to modify histamine release. The effect of cAMP-active drugs was explored with the adenylate cyclase activator forskolin (30 microM), the inhibitor SQ22,536 (1 microM), the cAMP analog dibutyryl cAMP (200 microM), and the PKA blocker H89 (1 microM). Forskolin and dibutyryl cAMP do increase NH(4)Cl-induced alkalinization, and potentiate histamine release elicited by this compound. Our data indicates that alkaline-induced exocytosis is modulated by PKC and cAMP, suggesting that pH could be a modulatory signal itself.
Collapse
|
5
|
Abstract
Albumin is the most abundant protein in serum and contributes to the maintenance of oncotic pressure as well as to transport of hydrophobic molecules. Although albumin is a large anionic protein, it is not completely retained by the glomerular filtration barrier. In order to prevent proteinuria, albumin is reabsorbed along the proximal tubules by receptor-mediated endocytosis, which involves the binding proteins megalin and cubilin. Endocytosis depends on proper vesicle acidification. Disturbance of endosomal acidification or loss of the binding proteins leads to tubular proteinuria. Furthermore, endocytosis is subject to modulation by different signaling systems, such as protein kinase A (PKA), protein kinase C (PKC), phosphatidylinositol 3-kinase (PI3-K) and transforming growth factor beta (TGF-beta). In addition to being reabsorbed in the proximal tubule, albumin can also act as a profibrotic and proinflammatory stimulus, thereby initiating or promoting tubulo-interstitial diseases.
Collapse
Affiliation(s)
- Michael Gekle
- Physiologisches Institut, University of Würzburg, 97070 Würzburg, Germany.
| |
Collapse
|
6
|
Pernas-Sueiras O, Alfonso A, Vieytes MR, Botana LM. Mast cell exocytosis can be triggered by ammonium chloride with just a cytosolic alkalinization and no calcium increase. J Cell Physiol 2005; 204:775-84. [PMID: 15754334 DOI: 10.1002/jcp.20334] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A human mast cell line (HMC-1) has been used to study the effect of cytosolic alkaline pH in exocytosis. Compound 48/80, concanavalin A, and thapsigargin do not induce histamine release in HMC-1 cells. Although thapsigargin does not activate histamine release, it does show a large increase in cytosolic Ca(2+), and no change in cytosolic pH. However, when HMC-1 cells were activated with ionomycin, a significant histamine release takes place, and this effect is higher in the presence of thapsigargin. Both drugs show an additive effect on cytosolic Ca(2+) levels. Ammonium chloride (NH(4)Cl) does activate cytosolic alkalinization and histamine release, with no increase in cytosolic Ca(2+). NH(4)Cl does block the release of internal Ca(2+) by thapsigargin, not by ionomycin, and decreases Ca(2+) influx stimulated by these drugs. Under conditions in which the alkalinization induced by NH(4)Cl is blocked by acidification with sodium propionate, histamine release is inhibited. The release of histamine is also observed when NH(4)Cl is added after propionate addition, regardless of the final pH value attained. Our results show that a shift in pH alkaline values, even with final pH below 7.2 is enough to activate histamine release. A shift to less acidic values is a sufficient signal to activate the cells.
Collapse
Affiliation(s)
- O Pernas-Sueiras
- Departamento de Farmacología, Facultad de Veterinaria, USC, Lugo, Spain
| | | | | | | |
Collapse
|
7
|
Alfonso A, Vieytes MR, Botana LM. Calcium-pH crosstalks in rat mast cells: modulation by transduction signals show non-essential role for calcium in alkaline-induced exocytosis. Biochem Pharmacol 2005; 69:319-27. [PMID: 15627484 DOI: 10.1016/j.bcp.2004.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Alkalinization of cytosolic pH with ammonium chloride (NH4Cl) was reported to be a stimulus for mast cell degranulation. This paper studied the modulatory role of drugs that target protein kinase C (PKC), adenosine 3',5'-cyclic monophosphate (cAMP), tyrosine kinase (TyrK) and phosphatidylinositol 3-kinase (PI3K) on this effect. We used Go6976 (100 nM) and low concentrations of GF109203X (Gf) (50 nM) to inhibit calcium-dependent PKC isozymes. For calcium-independent isozymes, we used 500 nM Gf, and 10 microM rottlerin to specifically inhibit PKC delta, and chelerythrine as non-specific PKC inhibitor. Genistein (10 microM) and lavendustin A (1 microM) were used as unspecific TyrK inhibitors, and 10 nM wortmannin as a PI3K inhibitor. Chelerythrine and 50 nM Gf inhibit histamine release in the presence of external calcium. The inhibition caused by wortmannin was strictly internal calcium-dependent. cAMP-active drugs did not modify the response to NH4Cl. The effect of NH4Cl on histamine release was triggered by a transient elevation on cytosolic pH, which was simultaneous to an elevation on cytosolic calcium and followed by a probable Ca2+-H+ exchange after addition of external calcium. EGTA inhibit the response to suboptimal concentrations of NH4Cl, and BAPTA increased the effect of NH4Cl. There is a clear relationship between NH4Cl-mediated calcium release and histamine release, since those drugs that inhibit this release also inhibit NH4Cl-mediated histamine release; nevertheless, NH4Cl-mediated histamine release was possible in the absence of any calcium release, as shown with BAPTA. This data, in combination with the results with PKC inhibitors, suggest that calcium is not only unnecessary to trigger cell activation, but also that it may be a negative modulator of NH4Cl-mediated exocytosis.
Collapse
Affiliation(s)
- A Alfonso
- Departamento de Farmacología, Facultad de Veterinaria, USC, 27002 Lugo, Spain
| | | | | |
Collapse
|
8
|
Lago J, Alfonso A, Vieytes MR, Botana LM. Ouabain-induced enhancement of rat mast cells response. Modulation by protein phosphorylation and intracellular pH. Cell Signal 2001; 13:515-24. [PMID: 11516627 DOI: 10.1016/s0898-6568(01)00169-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The digitalic glicoside ouabain induces potentiation of rat mast cell histamine release in response to several stimuli, which is mediated by Na+/Ca2+ exchanger. In this work, we studied the effect of ouabain on cytosolic calcium, intracellular pH and histamine release with Ca2+ ionophore A23187 in conditions designed to maximize ouabain-induced potentiation of rat mast cells response. The effect of protein kinase C (PKC), cAMP and phosphatase inhibition was also tested. Ouabain induced an enhancement in histamine release, cytosolic calcium and intracellular pH. The adenylate cyclase activator forskolin reduced the effect of ouabain on histamine release and intracellular pH, but enhanced the effect on cytosolic calcium. PKC activator PMA enhanced the effect of ouabain on histamine release and cytosolic calcium, without affecting intracellular pH. A PKC inhibitor, GF-109203X, reduced ouabain-induced enhancement of histamine release and intracellular pH, but increased the enhancement on cytosolic calcium. Finally, inhibition of protein phosphatases 1 and 2A with okadaic acid, increased the effect of ouabain on histamine release and intracellular pH, but reduced cytosolic calcium in presence of ouabain. This result suggest that ouabain-induced potentiation of rat mast cell histamine release with A23187 is modulated by kinases, and this modulation may be carried out by changes in intracellular alkalinization. However, the mechanism underlying cellular alkalinization remains to be elucidated.
Collapse
Affiliation(s)
- J Lago
- Departamento de Farmacología, Facultad de Veterinaria, 27002, Lugo, Spain
| | | | | | | |
Collapse
|
9
|
Alfonso A, Cabado AG, Vieytes MR, Botana LM. Calcium-pH crosstalks in rat mast cells: cytosolic alkalinization, but not intracellular calcium release, is a sufficient signal for degranulation. Br J Pharmacol 2000; 130:1809-16. [PMID: 10952669 PMCID: PMC1572257 DOI: 10.1038/sj.bjp.0703490] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The aim of this work was to study the relationship between intracellular alkalinization, calcium fluxes and histamine release in rat mast cells. Intracellular alkalinization was induced by nigericin, a monovalent cation ionophore, and by NH(4)Cl (ammonium chloride). Calcium cytosolic and intracellular pH were measured by fluorescence digital imaging using Fura-2-AM and BCECF-AM. In rat mast cells, nigericin and NH(4)Cl induce a dose-dependent intracellular alkalinization, a dose-dependent increase in intracellular calcium levels by releasing calcium from intracellular pools, and an activation of capacitative calcium influx. The increase in both intracellular calcium and pH activates exocytosis (histamine release) in the absence of external calcium. Under the same conditions, thapsigargin does not activate exocytosis, the main difference being that thapsigargin does not alkalinize the cytosol. After alkalinization, histamine release is intracellular-calcium dependent. With 2.5 mM EGTA and thapsigargin the cell response decreases by 62%. The cytosolic alkalinization, in addition to the calcium increase it is enough signal to elicit the exocytotic process in rat mast cells.
Collapse
Affiliation(s)
- A Alfonso
- Departamento de Farmacologìa, Facultad de Veterinaria, 27002 Lugo, Spain
| | - A G Cabado
- Departamento de Fisiologìa, Facultad de Veterinaria, 27002 Lugo, Spain
| | - M R Vieytes
- Departamento de Fisiologìa, Facultad de Veterinaria, 27002 Lugo, Spain
| | - L M Botana
- Departamento de Farmacologìa, Facultad de Veterinaria, 27002 Lugo, Spain
- Author for correspondence:
| |
Collapse
|