1
|
Yi YY, Zhang SB, Chen H, Xu HW, Wang SJ. Ascorbic acid promotes nucleus pulposus cell regeneration by regulating proliferation during intervertebral disc degeneration. J Nutr Biochem 2022; 108:109099. [PMID: 35779794 DOI: 10.1016/j.jnutbio.2022.109099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 03/07/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
Intervertebral disc degeneration (IVDD) affects human health. Ascorbic acid (AA) deficiency is a major factor that contributes to the development of degenerative disc disease in the elderly. Here, as a novel treatment with promising applications, we demonstrate that AA treatment inhibited senescence and maintained the proliferation of nucleus pulposus (NP) cells during long-term culture. AA-treated NP cells and acupuncture-treated rat models exhibited degenerative resistance during cell passaging and AA increased cell proliferation and decreased time-related senescence. Interestingly, Kyoto Encyclopedia of Genes and Genomes pathway mapping revealed five top enriched pathways and four pathways were associated with the aldehyde dehydrogenase (ALDH) enzyme family, especially proliferation-related ALDH1A3. Collectively, our findings demonstrate that ALDH1A3 expression was increased by AA treatment, which counteracted degeneration in NP cells over time and rejuvenated maintenance of proliferation in NP cells, which has a promising therapeutic implications in IVDD.
Collapse
Affiliation(s)
- Yu-Yang Yi
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shu-Bao Zhang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Chen
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao-Wei Xu
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Shan-Jin Wang
- Department of Spinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of orthopedic, East Hospital, Ji'an Hospital, Jinggangshan University School of Medicine, Jiangxi, China.
| |
Collapse
|
2
|
Role of Mitochondrial Aldehyde Dehydrogenase in Nitroglycerin-Mediated Vasodilation: Observations Concerning the Dose-Response Relationship. J Cardiovasc Pharmacol 2019; 73:359-364. [PMID: 31162244 DOI: 10.1097/fjc.0000000000000673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The mechanism of the bioactivation of nitroglycerin has long been controversial, with a number of suggested enzymatic pathways. More recently, aldehyde dehydrogenase-2 (ALDH-2) has been reported as the important enzyme involved in the bioactivation of nitroglycerin at therapeutically relevant concentrations. Other previously described enzyme systems can also bioactivate nitroglycerin, but only at concentrations, which are significantly higher than achieved in clinical practice. This study investigated the vascular response to nitroglycerin given over a wide range of concentrations in subjects with and without the ALDH-2 Glu504Lys polymorphism, a common genetic variant that greatly reduces the activity of ALDH-2 (n = 10 in both groups). Forearm blood flow (FBF) responses to a brachial artery infusion of nitroglycerin were assessed using venous occlusion plethysmography. Intra-arterial infusion of nitroglycerin caused a significant increase in FBF beginning at 0.464 µg/min with increasing responses seen in both groups at all infusion rates. However, there were no differences in the FBF responses to nitroglycerin in those with and without the ALDH-2 polymorphism, suggesting that ALDH-2 is not solely responsible for the bioactivation of nitroglycerin at either low (therapeutically relevant) or high concentrations of nitroglycerin.
Collapse
|
3
|
Axton ER, Cristobal E, Choi J, Miranda CL, Stevens JF. Metabolomics-Driven Elucidation of Cellular Nitrate Tolerance Reveals Ascorbic Acid Prevents Nitroglycerin-Induced Inactivation of Xanthine Oxidase. Front Pharmacol 2018; 9:1085. [PMID: 30319419 PMCID: PMC6167911 DOI: 10.3389/fphar.2018.01085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022] Open
Abstract
Glyceryl trinitrate (GTN) has found widespread use for the treatment of angina pectoris, a pathological condition manifested by chest pain resulting from insufficient blood supply to the heart. Metabolic conversion of GTN, a nitric oxide (NO) pro-drug, into NO induces vasodilation and improves blood flow. Patients develop tolerance to GTN after several weeks of continuous use, limiting the potential for long-term therapy. The mechanistic cause of nitrate tolerance is relatively unknown. We developed a cell culture model of nitrate tolerance that utilizes stable isotopes to measure metabolism of 15N3-GTN into 15N-nitrite. We performed global metabolomics to identify the mechanism of GTN-induced nitrate tolerance and to elucidate the protective role of vitamin C (ascorbic acid). Metabolomics analyses revealed that GTN impaired purine metabolism and depleted intracellular ATP and GTP. GTN inactivated xanthine oxidase (XO), an enzyme that is critical for the metabolic bioactivation of GTN into NO. Ascorbic acid prevented inactivation of XO, resulting in increased NO production from GTN. Our studies suggest that ascorbic acid has the ability to prevent nitrate tolerance by protecting XO, but not aldehyde dehydrogenase (another GTN bioactivating enzyme), from GTN-induced inactivation. Our findings provide a mechanistic explanation for the previously observed beneficial effects of ascorbic acid in nitrate therapy.
Collapse
Affiliation(s)
- Elizabeth Rose Axton
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States.,Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Eleonso Cristobal
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jaewoo Choi
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States
| | - Cristobal L Miranda
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| | - Jan Frederik Stevens
- The Linus Pauling Institute, Oregon State University, Corvallis, OR, United States.,Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
4
|
Daiber A, Münzel T. Organic Nitrate Therapy, Nitrate Tolerance, and Nitrate-Induced Endothelial Dysfunction: Emphasis on Redox Biology and Oxidative Stress. Antioxid Redox Signal 2015; 23:899-942. [PMID: 26261901 PMCID: PMC4752190 DOI: 10.1089/ars.2015.6376] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Organic nitrates, such as nitroglycerin (GTN), isosorbide-5-mononitrate and isosorbide dinitrate, and pentaerithrityl tetranitrate (PETN), when given acutely, have potent vasodilator effects improving symptoms in patients with acute and chronic congestive heart failure, stable coronary artery disease, acute coronary syndromes, or arterial hypertension. The mechanisms underlying vasodilation include the release of •NO or a related compound in response to intracellular bioactivation (for GTN, the mitochondrial aldehyde dehydrogenase [ALDH-2]) and activation of the enzyme, soluble guanylyl cyclase. Increasing cyclic guanosine-3',-5'-monophosphate (cGMP) levels lead to an activation of the cGMP-dependent kinase I, thereby causing the relaxation of the vascular smooth muscle by decreasing intracellular calcium concentrations. The hemodynamic and anti-ischemic effects of organic nitrates are rapidly lost upon long-term (low-dose) administration due to the rapid development of tolerance and endothelial dysfunction, which is in most cases linked to increased intracellular oxidative stress. Enzymatic sources of reactive oxygen species under nitrate therapy include mitochondria, NADPH oxidases, and an uncoupled •NO synthase. Acute high-dose challenges with organic nitrates cause a similar loss of potency (tachyphylaxis), but with distinct pathomechanism. The differences among organic nitrates are highlighted regarding their potency to induce oxidative stress and subsequent tolerance and endothelial dysfunction. We also address pleiotropic effects of organic nitrates, for example, their capacity to stimulate antioxidant pathways like those demonstrated for PETN, all of which may prevent adverse effects in response to long-term therapy. Based on these considerations, we will discuss and present some preclinical data on how the nitrate of the future should be designed.
Collapse
Affiliation(s)
- Andreas Daiber
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| | - Thomas Münzel
- The 2nd Medical Clinic, Medical Center of the Johannes Gutenberg University , Mainz, Germany
| |
Collapse
|
5
|
Jabs A, Oelze M, Mikhed Y, Stamm P, Kröller-Schön S, Welschof P, Jansen T, Hausding M, Kopp M, Steven S, Schulz E, Stasch JP, Münzel T, Daiber A. Effect of soluble guanylyl cyclase activator and stimulator therapy on nitroglycerin-induced nitrate tolerance in rats. Vascul Pharmacol 2015; 71:181-91. [DOI: 10.1016/j.vph.2015.03.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/20/2015] [Accepted: 03/25/2015] [Indexed: 01/06/2023]
|
6
|
Wölkart G, Beretta M, Wenzl MV, Stessel H, Schmidt K, Maeda N, Mayer B, Schrammel A. Tolerance to nitroglycerin through proteasomal down-regulation of aldehyde dehydrogenase-2 in a genetic mouse model of ascorbate deficiency. Br J Pharmacol 2015. [PMID: 23194305 PMCID: PMC3623057 DOI: 10.1111/bph.12081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background and Purpose L-gulonolactone oxidase-deficient (Gulo(-/-)) mice were used to study the effects of ascorbate deficiency on aortic relaxation by nitroglycerin (GTN) with focus on changes in the expression and activity of vascular aldehyde dehydrogenase-2 (ALDH2), which catalyses GTN bioactivation. Experimental Approach Ascorbate deficiency was induced in Gulo(-/-) mice by ascorbate deprivation for 4 weeks. Some of the animals were concomitantly treated with the proteasome inhibitor bortezomib and effects compared with ascorbate-supplemented Gulo(-/-), untreated or nitrate-tolerant wild-type mice. Aortic relaxation of the experimental groups to GTN, ACh and a NO donor was studied. Changes in mRNA and protein expression of vascular ALDH2 were quantified by qPCR and immunoblotting, respectively, and aortic GTN denitration rates determined. Key Results Like GTN treatment, ascorbate deprivation induced vascular tolerance to GTN that was associated with markedly decreased rates of GTN denitration. Ascorbate deficiency did not affect ALDH2 mRNA levels, but reduced ALDH2 protein expression and the total amount of ubiquitinated proteins to about 40% of wild-type controls. These effects were largely prevented by ascorbate supplementation or treating Gulo(-/-) mice with the 26S proteasome inhibitor bortezomib. Conclusions and Implications Our data indicate that ascorbate deficiency results in vascular tolerance to GTN via proteasomal degradation of ALDH2. The results support the view that impaired ALDH2-catalysed metabolism of GTN contributes significantly to the development of vascular nitrate tolerance and reveal a hitherto unrecognized protective effect of ascorbate in the vasculature.
Collapse
Affiliation(s)
- G Wölkart
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Neubauer R, Neubauer A, Wölkart G, Schwarzenegger C, Lang B, Schmidt K, Russwurm M, Koesling D, Gorren ACF, Schrammel A, Mayer B. Potent inhibition of aldehyde dehydrogenase-2 by diphenyleneiodonium: focus on nitroglycerin bioactivation. Mol Pharmacol 2013; 84:407-14. [PMID: 23793290 DOI: 10.1124/mol.113.086835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Aldehyde dehydrogenase-2 (ALDH2) catalyzes vascular bioactivation of the antianginal drug nitroglycerin (GTN) to yield nitric oxide (NO) or a related species that activates soluble guanylate cyclase (sGC), resulting in cGMP-mediated vasodilation. Accordingly, established ALDH2 inhibitors attenuate GTN-induced vasorelaxation in vitro and in vivo. However, the ALDH2 hypothesis has not been reconciled with early studies demonstrating potent inhibition of the GTN response by diphenyleneiodonium (DPI), a widely used inhibitor of flavoproteins, in particular NADPH oxidases. We addressed this issue and investigated the effects of DPI on GTN-induced relaxation of rat aortic rings and the function of purified ALDH2. DPI (0.3 µM) inhibited the high affinity component of aortic relaxation to GTN without affecting the response to NO, indicating that the drug interfered with GTN bioactivation. Denitration and bioactivation of 1-2 µM GTN, assayed as 1,2-glycerol dinitrate formation and activation of purified sGC, respectively, were inhibited by DPI with a half-maximally active concentration of about 0.2 µM in a GTN-competitive manner. Molecular modeling indicated that DPI binds to the catalytic site of ALDH2, and this was confirmed by experiments showing substrate-competitive inhibition of the dehydrogenase and esterase activities of the enzyme. Our data identify ALDH2 as highly sensitive target of DPI and explain inhibition of GTN-induced relaxation by this drug observed previously. In addition, the data provide new evidence for the essential role of ALDH2 in GTN bioactivation and may have implications to other fields of ALDH2 research, such as hepatic ethanol metabolism and cardiac ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Regina Neubauer
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
D'Souza Y, Dowlatshahi S, Bennett BM. Changes in aldehyde dehydrogenase 2 expression in rat blood vessels during glyceryl trinitrate tolerance development and reversal. Br J Pharmacol 2012; 164:632-43. [PMID: 21506955 DOI: 10.1111/j.1476-5381.2011.01448.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested an essential role for aldehyde dehydrogenase 2 (ALDH2) in the bioactivation of organic nitrates such as glyceryl trinitrate (GTN). In the present study, we utilized an in vivo GTN tolerance model to further investigate the role of ALDH2 in GTN bioactivation and tolerance. EXPERIMENTAL APPROACH We assessed changes in aortic ALDH activity, and in ALDH2 protein expression in various rat blood vessels (aorta, vena cava, femoral artery and femoral vein) during continuous GTN exposure (0.4 mg·h⁻¹ for 6, 12, 24 or 48 h) or after a 1-, 3- or 5-day drug-free period following a 48 h exposure to GTN, in relation to changes in vasodilator responses to GTN and in vascular GTN biotransformation. KEY RESULTS A decrease was observed in both ALDH2 protein expression (80% in tolerant veins and 30% in tolerant arteries after 48 h exposure to GTN) and aortic ALDH activity, concomitant with decreased vasodilator responses to GTN and decreased aortic GTN biotransformation. However, after a 24 h drug-free period following 48 h of GTN exposure, vasodilator responses to GTN and aortic GTN biotransformation activity had returned to control values, whereas vascular ALDH2 expression and aortic ALDH activity were still significantly depressed, and remained so for 3-5 days following cessation of GTN exposure. CONCLUSIONS AND IMPLICATIONS The dissociation of reduced ALDH activity and ALDH2 expression from the duration of the impaired vasodilator and biotransformation responses to GTN in nitrate-tolerant blood vessels, suggests that factors other than changes in ALDH2-mediated GTN bioactivation contribute to nitrate tolerance.
Collapse
Affiliation(s)
- Y D'Souza
- Department of Pharmacology and Toxicology, Faculty of Health Sciences, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
9
|
Beretta M, Wölkart G, Schernthaner M, Griesberger M, Neubauer R, Schmidt K, Sacherer M, Heinzel FR, Kohlwein SD, Mayer B. Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2. Circ Res 2011; 110:385-93. [PMID: 22207712 DOI: 10.1161/circresaha.111.245837] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE According to general view, aldehyde dehydrogenase-2 (ALDH2) catalyzes the high-affinity pathway of vascular nitroglycerin (GTN) bioactivation in smooth muscle mitochondria. Despite having wide implications to GTN pharmacology and raising many questions that are still unresolved, mitochondrial bioactivation of GTN in blood vessels is still lacking experimental support. OBJECTIVE In the present study, we investigated whether bioactivation of GTN is affected by the subcellular localization of ALDH2 using immortalized ALDH2-deficient aortic smooth muscle cells and mouse aortas with selective overexpression of the enzyme in either cytosol or mitochondria. METHODS AND RESULTS Quantitative Western blotting revealed that ALDH2 is mainly cytosolic in mouse aorta and human coronary arteries, with only approximately 15% (mouse) and approximately 5% (human) of the enzyme being localized in mitochondria. Infection of ALDH2-deficient aortic smooth muscle cells or isolated aortas with adenovirus containing ALDH2 cDNA with or without the mitochondrial signal peptide sequence led to selective expression of the protein in mitochondria and cytosol, respectively. Cytosolic overexpression of ALDH2 restored GTN-induced relaxation and GTN denitration to wild-type levels, whereas overexpression in mitochondria (6-fold vs wild-type) had no effect on relaxation. Overexpression of ALDH2 in the cytosol of ALDH2-deficient aortic smooth muscle cells led to a significant increase in GTN denitration and cyclic GMP accumulation, whereas mitochondrial overexpression had no effect. CONCLUSIONS The data indicate that vascular bioactivation of GTN is catalyzed by cytosolic ALDH2. Mitochondrial GTN metabolism may contribute to oxidative stress-related adverse effects of nitrate therapy and the development of nitrate tolerance.
Collapse
Affiliation(s)
- Matteo Beretta
- Department of Pharmacology and Toxicology, Karl-Franzens Universität Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Vissers MCM, Bozonet SM, Pearson JF, Braithwaite LJ. Dietary ascorbate intake affects steady state tissue concentrations in vitamin C-deficient mice: tissue deficiency after suboptimal intake and superior bioavailability from a food source (kiwifruit). Am J Clin Nutr 2011; 93:292-301. [PMID: 21123463 DOI: 10.3945/ajcn.110.004853] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Humans acquire vitamin C (ascorbate) from their diet, and optimal tissue concentrations are required to maintain its enzyme cofactor and antioxidant activities. How dietary intake affects tissue concentrations is difficult to monitor and has generally been based on the measurement of plasma concentrations. OBJECTIVE We aimed to determine the effect of various ascorbate intakes on tissue concentrations in the Gulo mouse model of vitamin C deficiency and to compare the effectiveness of delivery when ascorbate was added to the drinking water or obtained through a fruit source (kiwifruit). DESIGN Gulo(-/-) mice were fed various amounts of ascorbate for 1 mo, either in their drinking water or as a kiwifruit gel. Tissue vitamin C content was measured and compared with concentrations in wild-type mice. RESULTS Ascorbate concentrations in serum, liver, kidney, heart, and white blood cells were extremely labile and were well below concentrations observed in the wild-type mice when serum concentrations were below saturation. All tissues except for brain were rapidly depleted when intake was stopped. Consumption of a preparation of fresh kiwifruit (either green or gold varieties) resulted in up to 5 times more effective delivery to tissues than when ascorbate was administered via the drinking water. CONCLUSIONS Subsaturation concentrations of plasma ascorbate resulted in severe deficiency in many tissues, and saturating amounts were required to achieve tissue concentrations similar to those found in wild-type animals. It is possible that the bioavailability of ascorbate is superior from some foods, such as kiwifruit. These results have important implications for human nutrition.
Collapse
|
11
|
Griesberger M, Kollau A, Wölkart G, Wenzl MV, Beretta M, Russwurm M, Koesling D, Schmidt K, Gorren ACF, Mayer B. Bioactivation of pentaerythrityl tetranitrate by mitochondrial aldehyde dehydrogenase. Mol Pharmacol 2010; 79:541-8. [PMID: 21156756 DOI: 10.1124/mol.110.069138] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial aldehyde dehydrogenase (ALDH2) contributes to vascular bioactivation of the antianginal drugs nitroglycerin (GTN) and pentaerythrityl tetranitrate (PETN), resulting in cGMP-mediated vasodilation. Although continuous treatment with GTN results in the loss of efficacy that is presumably caused by inactivation of ALDH2, PETN does not induce vascular tolerance. To clarify the mechanisms underlying the distinct pharmacological profiles of GTN and PETN, bioactivation of the nitrates was studied with aortas isolated from ALDH2-deficient and nitrate-tolerant mice, isolated mitochondria, and purified ALDH2. Pharmacological inhibition or gene deletion of ALDH2 attenuated vasodilation to both GTN and PETN to virtually the same degree as long-term treatment with GTN, whereas treatment with PETN did not cause tolerance. Purified ALDH2 catalyzed bioactivation of PETN, assayed as activation of soluble guanylate cyclase (sGC) and formation of nitric oxide (NO). The EC(50) value of PETN for sGC activation was 2.2 ± 0.5 μM. Denitration of PETN to pentaerythrityl trinitrate was catalyzed by ALDH2 with a specific activity of 9.6 ± 0.8 nmol · min(-1) · mg(-1) and a very low apparent affinity of 94.7 ± 7.4 μM. In contrast to GTN, PETN did not cause significant inactivation of ALDH2. Our data suggest that ALDH2 catalyzes bioconversion of PETN in two distinct reactions. Besides the major denitration pathway, which occurs only at high PETN concentrations, a minor high-affinity pathway may reflect vascular bioactivation of the nitrate yielding NO. The very low rate of ALDH2 inactivation, presumably as a result of low affinity of the denitration pathway, may at least partially explain why PETN does not induce vascular tolerance.
Collapse
Affiliation(s)
- Martina Griesberger
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, Graz, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Daiber A, Münzel T, Gori T. Organic nitrates and nitrate tolerance--state of the art and future developments. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 60:177-227. [PMID: 21081219 DOI: 10.1016/b978-0-12-385061-4.00007-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The hemodynamic and antiischemic effects of nitroglycerin (GTN) are lost upon chronic administration due to the rapid development of nitrate tolerance. The mechanism of this phenomenon has puzzled several generations of scientists, but recent findings have led to novel hypotheses. The formation of reactive oxygen and nitrogen species in the mitochondria and the subsequent inhibition of the nitrate-bioactivating enzyme mitochondrial aldehyde dehydrogenase (ALDH-2) appear to play a central role, at least for GTN, that is, bioactivated by ALDH-2. Importantly, these findings provide the opportunity to reconcile the two "traditional" hypotheses of nitrate tolerance, that is, the one postulating a decreased bioactivation and the concurrent one suggesting a role of oxidative stress. Furthermore, recent animal and human experimental studies suggest that the organic nitrates are not a homogeneous group but demonstrate a broad diversity with regard to induction of vascular dysfunction, oxidative stress, and other side effects. In the past, attempts to avoid nitrate-induced side effects have focused on administration schedules that would allow a "nitrate-free interval"; in the future, the role of co-therapies with antioxidant compounds and of activation of endogeneous protective pathways such as the heme oxygenase 1 (HO-1) will need to be explored. However, the development of new nitrates, for example, tolerance-free aminoalkyl nitrates or combination of nitrate groups with established cardiovascular drugs like ACE inhibitors or AT(1)-receptor blockers (hybrid molecules) may be of great clinical interest.
Collapse
Affiliation(s)
- Andreas Daiber
- II. Medizinische Klinik, Labor für Molekulare Kardiologie und Abteilung für Kardiologie und Angiologie, Universitätsmedizin der Johannes-Gutenberg-Universität, Mainz, Germany
| | | | | |
Collapse
|
13
|
Beretta M, Gorren ACF, Wenzl MV, Weis R, Russwurm M, Koesling D, Schmidt K, Mayer B. Characterization of the East Asian variant of aldehyde dehydrogenase-2: bioactivation of nitroglycerin and effects of Alda-1. J Biol Chem 2009; 285:943-52. [PMID: 19906643 PMCID: PMC2801295 DOI: 10.1074/jbc.m109.014548] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The East Asian variant of mitochondrial aldehyde dehydrogenase (ALDH2) exhibits significantly reduced dehydrogenase, esterase, and nitroglycerin (GTN) denitrating activities. The small molecule Alda-1 was reported to partly restore low acetaldehyde dehydrogenase activity of this variant. In the present study we compared the wild type enzyme (ALDH2*1) with the Asian variant (ALDH2*2) regarding GTN bioactivation and the effects of Alda-1. Alda-1 increased acetaldehyde oxidation by ALDH2*1 and ALDH2*2 approximately 1.5- and 6-fold, respectively, and stimulated the esterase activities of both enzymes to similar extent as the coenzyme NAD. The effect of NAD was biphasic with pronounced inhibition occurring at > or = 5 mM. In the presence of 1 mM NAD, Alda-1 stimulated ALDH2*2-catalyzed ester hydrolysis 73-fold, whereas the NAD-stimulated activity of ALDH2*1 was inhibited because of 20-fold increased inhibitory potency of NAD in the presence of the drug. Although ALDH2*2 exhibited 7-fold lower GTN denitrating activity and GTN affinity than ALDH2*1, the rate of nitric oxide formation was only reduced 2-fold, and soluble guanylate cyclase (sGC) activation was more pronounced than with wild type ALDH2 at saturating GTN. Alda-1 caused slight inhibition of GTN denitration and did not increase GTN-induced sGC activation in the presence of either variant. The present results indicate that Alda-1 stimulates established ALDH2 activities by improving NAD binding but does not improve the GTN binding affinity of the Asian variant. In addition, our data revealed an unexpected discrepancy between GTN reductase activity and sGC activation, suggesting that GTN denitration and bioactivation may reflect independent pathways of ALDH2-catalyzed GTN biotransformation.
Collapse
Affiliation(s)
- Matteo Beretta
- Department of Pharmacology and Toxicology, Karl-Franzens-Universität Graz, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
In this issue, BJP is proud to publish an Endothelium Themed Section to celebrate the life of Robert F. Furchgott, who died on May 19th 2009. It is 30 years since he discovered endothelium-derived relaxant factor and a decade since he was awarded the Nobel Prize for this work. His discovery has led to an array of new therapeutic targets. The themed section includes three reviews on the pathophysiology of the endothelium and the drug targets that this presents, four research papers and three commentaries on research. This themed section also forms the nucleus of an online Virtual Issue that collects in one place further reviews and research papers on the topic of the 'Endothelium' that BJP and our sister journal BJCP have published in the past year, and that should help researchers and students to find the latest work in this field.
Collapse
|
15
|
Abstract
The organic nitrate drugs, such as glyceryl trinitrate (GTN; nitroglycerin), are clinically effective in angina because of their dilator profile in veins and arteries. The exact mechanism of intracellular delivery of nitric oxide (NO), or another NO-containing species, from these compounds is not understood. However, mitochondrial aldehyde dehydrogenase (mtALDH) has recently been identified as an organic nitrate bioactivation enzyme. Nitrate tolerance, the loss of effect of organic nitrates over time, is caused by reduced bioactivation and/or generation of NO-scavenging oxygen-free radicals. In a recent issue of the British Journal of Pharmacology, Wenzl et al. show that guinea-pigs, deficient in ascorbate, also have impaired responsiveness to GTN, but nitrate tolerance was not due to ascorbate deficiency that exhibited divergent changes in mtALDH activity. Thus, the complex function of mtALDH appears to be the key to activation of GTN, the active NO species formed and the induction of tolerance that can limit clinical effectiveness of organic nitrate drugs.
Collapse
Affiliation(s)
- Mark R Miller
- Department of Cardiovascular Science, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|