1
|
Franco-García A, Gómez-Murcia V, Fernández-Gómez FJ, González-Andreu R, Hidalgo JM, Victoria Milanés M, Núñez C. Morphine-withdrawal aversive memories and their extinction modulate H4K5 acetylation and Brd4 activation in the rat hippocampus and basolateral amygdala. Biomed Pharmacother 2023; 165:115055. [PMID: 37356373 DOI: 10.1016/j.biopha.2023.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023] Open
Abstract
Chromatin modification is a crucial mechanism in several important phenomena in the brain, including drug addiction. Persistence of drug craving and risk of relapse could be attributed to drug-induced epigenetic mechanisms that seem to be candidates explaining long-lasting drug-induced behaviour and molecular alterations. Histone acetylation has been proposed to regulate drug-seeking behaviours and the extinction of rewarding memory of drug taking. In this work, we studied the epigenetic regulation during conditioned place aversion and after extinction of aversive memory of opiate withdrawal. Through immunofluorescence assays, we assessed some epigenetic marks (H4K5ac and p-Brd4) in crucial areas related to memory retrieval -basolateral amygdala (BLA) and hippocampus-. Additionally, to test the degree of transcriptional activation, we evaluated the immediate early genes (IEGs) response (Arc, Bdnf, Creb, Egr-1, Fos and Nfkb) and Smarcc1 (chromatin remodeler) through RT-qPCR in these nuclei. Our results showed increased p-Brd4 and H4K5ac levels during aversive memory retrieval, suggesting a more open chromatin state. However, transcriptional activation of these IEGs was not found, therefore suggesting that other secondary response may already be happening. Additionally, Smarcc1 levels were reduced due to morphine chronic administration in BLA and dentate gyrus. The activation markers returned to control levels after the retrieval of aversive memories, revealing a more repressed chromatin state. Taken together, our results show a major role of the tandem H4K5ac/p-Brd4 during the retrieval of aversive memories. These results might be useful to elucidate new molecular targets to improve and develop pharmacological treatments to address addiction and to avoid drug relapse.
Collapse
Affiliation(s)
- Aurelio Franco-García
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Victoria Gómez-Murcia
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Francisco José Fernández-Gómez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - Raúl González-Andreu
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain
| | - Juana M Hidalgo
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, CEIR Campus Mare Nostrum, University of Murcia, Spain; Instituto Murciano de Investigación Biosanitaria (IMIB) - Pascual Parrilla, Murcia, Spain.
| |
Collapse
|
2
|
Bardo MT, Hammerslag LR, Malone SG. Effect of early life social adversity on drug abuse vulnerability: Focus on corticotropin-releasing factor and oxytocin. Neuropharmacology 2021; 191:108567. [PMID: 33862030 DOI: 10.1016/j.neuropharm.2021.108567] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/16/2021] [Accepted: 04/09/2021] [Indexed: 12/20/2022]
Abstract
Early life adversity can set the trajectory for later psychiatric disorders, including substance use disorders. There are a host of neurobiological factors that may play a role in the negative trajectory. The current review examines preclinical evidence suggesting that early life adversity specifically involving social factors (maternal separation, adolescent social isolation and adolescent social defeat) may influence drug abuse vulnerability by strengthening corticotropin-releasing factor (CRF) systems and weakening oxytocin (OT) systems. In adulthood, pharmacological and genetic evidence indicates that both CRF and OT systems are directly involved in drug reward processes. With early life adversity, numerous studies show an increase in drug abuse vulnerability measured in adulthood, along a concomitant strengthening of CRF systems and a weakening of OT systems. Mechanistic studies, while relatively few in number, are generally consistent with the theme that strengthened CRF systems and weakened OT systems mediate, at least in part, the link between early life adversity and drug abuse vulnerability. Establishing a direct role of CRF and OT in mediating the relation between early life social stressors and drug abuse vulnerability will inform clinical researchers and practitioners toward the development of intervention strategies to reduce risk among those suffering from early life adversities. This article is part of the special issue on 'Vulnerabilities to Substance Abuse'.
Collapse
Affiliation(s)
- Michael T Bardo
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA.
| | - Lindsey R Hammerslag
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| | - Samantha G Malone
- Department of Psychology, University of Kentucky, Lexington, KY, 40536-0509, USA
| |
Collapse
|
3
|
Dunkley PR, Dickson PW. Tyrosine hydroxylase phosphorylation
in vivo. J Neurochem 2019; 149:706-728. [DOI: 10.1111/jnc.14675] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 01/29/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Peter R. Dunkley
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| | - Phillip W. Dickson
- The School of Biomedical Sciences and Pharmacy and The Hunter Medical Research Institute The University of Newcastle University Drive Callaghan NSW Australia
| |
Collapse
|
4
|
Navarro-Zaragoza J, Laorden ML, Milanés MV. Glucocorticoid receptor but not mineralocorticoid receptor mediates the activation of ERK pathway and CREB during morphine withdrawal. Addict Biol 2017; 22:342-353. [PMID: 26598419 DOI: 10.1111/adb.12328] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/19/2015] [Accepted: 10/13/2015] [Indexed: 01/12/2023]
Abstract
Recent research suggests that glucocorticoids are involved in the development of addiction to drugs of abuse. They share this role with dopamine (DA), and with different signalling pathways and/or transcription factors such as extracellular-signal regulated kinases (ERK) and cAMP response element binding protein (CREB). However, the relation between them is not completely elucidated. In this report, we further characterize the role of glucocorticoid and mineralocorticoid receptor (GR and MR) signalling in DA turnover at the Nacc, and in opiate withdrawal-induced tyrosine hydroxylase (TH) expression, ERK and CREB phosphorylation (activation) in the nucleus of tractus solitarius (NTS-A2 ). The role of GR and MR signalling was assessed with the selective GR antagonist, mifepristone or the MR antagonist, spironolactone (i.p.). Rats were implanted two morphine (or placebo) pellets. Six days later rats were pretreated with mifepristone, spironolactone or vehicle 30 min before naloxone, and DA turnover, TH expression, ERK and CREB phosphorylation, were measured using HPLC and immunoblotting. Glucocorticoid receptor blockade attenuated ERK and CREB phosphorylation and the TH expression induced by morphine withdrawal. In contrast, no changes were seen after MR blockade. Finally, GR and MR blockade did not alter the morphine withdrawal-induced increase seen both in DA turnover and DA metabolite production, in the NAcc. These results show that not only ERK and CREB phosphorylation but also TH expression in the NTS is modulated by GR signalling. The present results suggest that GR is a therapeutic target to improve aversive events associated with opiate withdrawal.
Collapse
Affiliation(s)
- Javier Navarro-Zaragoza
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine; University of Murcia; Murcia Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB); Murcia Spain
| |
Collapse
|
5
|
García-Pérez D, Sáez-Belmonte F, Laorden ML, Núñez C, Milanés MV. Morphine administration modulates expression of Argonaute 2 and dopamine-related transcription factors involved in midbrain dopaminergic neurons function. Br J Pharmacol 2015; 168:1889-901. [PMID: 23215787 DOI: 10.1111/bph.12083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/09/2012] [Accepted: 11/25/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE Alterations in transcription factors that regulate the development and maintenance of dopamine (DA) neurons (such as Nurr1 and Pitx3) play an important role in the pathogenesis of addiction diseases. We have examined the effects of acute and chronic morphine and morphine withdrawal on TH expression and activity as well as expression of Nurr1, Pitx3 and Ago2 in the ventral tegmental area (VTA) and nucleus accumbens (NAc) of the rat. EXPERIMENTAL APPROACH Rats were injected acutely with morphine and decapitated 1 or 2 h later. Another set of rats were made dependent on morphine by implantation of two morphine pellets. Precipitated withdrawal was induced by injection of naloxone. Ago2, Pitx3, Nurr1, total TH (tTH), TH phosphorylated at Ser31 and at Ser40, and 3,4-Dihydroxyphenylacetic acid, and DA determination in the VTA and/or NAc were measured using immunoblotting, HPLC and immunofluorescence. KEY RESULTS Acute morphine produced a marked increase in TH activity and DA turnover in the NAc, concomitantly with increased Nurr1 and Pitx3 expression in the VTA. In contrast, precipitated morphine withdrawal decreased TH activation, TH expression and did not increase DA turnover in the NAc. These effects paralleled decreases in Ago2 expression, which was accompanied by increased Nurr1 and Pitx3, TH activity and normalized TH protein levels in the VTA. CONCLUSIONS AND IMPLICATIONS The combined decrease in Ago2 and increases in Nurr1 and Pitx3 might represent some of the mechanisms that served to protect against accumbal TH regulation observed in morphine withdrawn rats, which may be critical for DA bioavailability to influence behaviour.
Collapse
Affiliation(s)
- D García-Pérez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | | | | | | | | |
Collapse
|
6
|
Sladek CD, Michelini LC, Stachenfeld NS, Stern JE, Urban JH. Endocrine‐Autonomic Linkages. Compr Physiol 2015; 5:1281-323. [DOI: 10.1002/cphy.c140028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
7
|
Discovery of a novel site of opioid action at the innate immune pattern-recognition receptor TLR4 and its role in addiction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 118:129-63. [PMID: 25175864 DOI: 10.1016/b978-0-12-801284-0.00006-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioids have historically, and continue to be, an integral component of pain management. However, despite pharmacokinetic and dynamic optimization over the past 100 years, opioids continue to produce many undesirable side effects such as tolerance, reward, and dependence. As such, opioids are liable for addiction. Traditionally, opioid addiction was viewed as a solely neuronal process, and while substantial headway has been made into understanding the molecular and cellular mechanisms mediating this process, research has however, been relatively ambivalent to how the rest of the central nervous system (CNS) responds to opioids. Evidence over the past 20 years has clearly demonstrated the importance of the immunocompetent cells of the CNS (glia) in many aspects of opioid pharmacology. Particular focus has been placed on microglia and astrocytes, who in response to opioids, become activated and release inflammatory mediators. Importantly, the mechanism underlying immune activation is beginning to be elucidated. Evidence suggests an innate immune pattern-recognition receptor (toll-like receptor 4) as an integral component underlying opioid-induced glial activation. The subsequent proinflammatory response may be viewed akin to neurotransmission creating a process termed central immune signaling. Translationally, we are beginning to appreciate the importance of central immune signaling as it contributes to many behavioral actions of addiction including reward, withdrawal, and craving. As such, the aim of this chapter is to review and integrate the neuronal and central immune signaling perspective of addiction.
Collapse
|
8
|
Lasheras MC, Laorden ML, Milanés MV, Núñez C. Corticotropin-releasing factor 1 receptor mediates the activity of the reward system evoked by morphine-induced conditioned place preference. Neuropharmacology 2014; 95:168-80. [PMID: 25556110 DOI: 10.1016/j.neuropharm.2014.12.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022]
Abstract
Different neurotransmitter systems are involved in behavioural and molecular responses to morphine. The brain stress system is activated by acute administration of drugs of abuse, being CRF the main neuropeptide of this circuitry. In this study we have studied the role of CRF1R in the rewarding effects of morphine using the CPP paradigm. For that, animals were treated with a CRF1R antagonist (CP-154,526) or vehicle during 6 days. Thirty min after receiving the antagonist, mice were injected with morphine on the same days that CP-154,526 was administered; another group received saline on the same days that vehicle was administered, and both groups were immediately conditioned. Control animals received vehicle and saline every day. On day 7, animals were tested for morphine-induced CPP. c-Fos, TH and OXA immunohistochemistry, NA turnover (HPLC), and corticosterone plasma concentration (RIA) were evaluated. Administration of a CRF1R antagonist CP-154,526 blocked the morphine-induced CPP and the increased NA turnover in the NAc in morphine-paired mice. CP-154-526 antagonised the enhancement in c-Fos expression evoked by morphine-induced CPP in the VTA and NAc, and the activation of the orexinergic neurons in the LLH. Present work demonstrates that morphine-induced CPP activates different brain areas involved in reward, and points out a critical role of CRF1R in molecular changes involved in morphine-conducted behaviours. Thus, our study supports a therapeutic potential of CRF1R antagonists in addictive disorders.
Collapse
Affiliation(s)
- M Carmen Lasheras
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - M Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - M Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Spain; IMIB (Institute of Biomedical Investigation of Murcia)-Arrixaca, Murcia, Spain.
| |
Collapse
|
9
|
Spironolactone decreases the somatic signs of opiate withdrawal by blocking the mineralocorticoid receptors (MR). Toxicology 2014; 326:36-43. [DOI: 10.1016/j.tox.2014.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 12/29/2022]
|
10
|
Abstract
This study examined the involvement of the brain stress system in the reinforcing effects of morphine. One group of mice was conditioned to morphine using the conditioned place preference (CPP) paradigm and the other group received morphine in a home-cage (non-conditioned). Adrenocorticotropic hormone and corticosterone levels were measured by radioimmunoassay; phospho (p) CREB expression and the number of corticotropin-releasing factor (CRF) neurons and fibres were measured by immunohistochemistry in different brain areas. We observed that the number of CRF neurons in the paraventricular nucleus (PVN) was increased after morphine-induced CPP, which was paralleled with enhanced CRF-immunoreactivity fibres in the nucleus tractus solitarius (NTS) and ventral tegmental area (VTA) vs. home-cage group injected with morphine. Morphine exposure induced an increase in CREB phosphorylated at Ser133 in the PVN and central amygdale (CeA), whereas mice exhibiting morphine CPP had higher levels of pCREB in the PVN, CeA and bed nucleus of the stria terminalis (BNST). We also found that most of the CRF-positive neurons in the PVN, CeA and BNST co-express pCREB after morphine CPP expression, suggesting that the drug-associated environmental contexts can elicit neuronal activity in the brain stress system. From the present results it is clear that exposure to a drug-associated context remains a potent activator of signalling pathways leading to CRF activation in the brain stress system.
Collapse
|
11
|
Zorrilla EP, Roberts AJ, Rivier JE, Koob GF. Anxiolytic-like effects of antisauvagine-30 in mice are not mediated by CRF2 receptors. PLoS One 2013; 8:e63942. [PMID: 24015170 PMCID: PMC3756045 DOI: 10.1371/journal.pone.0063942] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
The role of brain corticotropin-releasing factor type 2 (CRF2) receptors in behavioral stress responses remains controversial. Conflicting findings suggest pro-stress, anti-stress or no effects of impeding CRF2 signaling. Previous studies have used antisauvagine-30 as a selective CRF2 antagonist. The present study tested the hypotheses that 1) potential anxiolytic-like actions of intracerebroventricular (i.c.v.) administration of antisauvagine-30 also are present in mice lacking CRF2 receptors and 2) potential anxiolytic-like effects of antisauvagine-30 are not shared by the more selective CRF2 antagonist astressin2-B. Cannulated, male CRF2 receptor knockout (n = 22) and wildtype littermate mice (n = 21) backcrossed onto a C57BL/6J genetic background were tested in the marble burying, elevated plus-maze, and shock-induced freezing tests following pretreatment (i.c.v.) with vehicle, antisauvagine-30 or astressin2-B. Antisauvagine-30 reduced shock-induced freezing equally in wildtype and CRF2 knockout mice. In contrast, neither astressin2-B nor CRF2 genotype influenced shock-induced freezing. Neither CRF antagonist nor CRF2 genotype influenced anxiety-like behavior in the plus-maze or marble burying tests. A literature review showed that the typical antisauvagine-30 concentration infused in previous intracranial studies (∼1 mM) was 3 orders greater than its IC50 to block CRF1-mediated cAMP responses and 4 orders greater than its binding constants (Kd, Ki) for CRF1 receptors. Thus, increasing, previously used doses of antisauvagine-30 also exert non-CRF2-mediated effects, perhaps via CRF1. The results do not support the hypothesis that brain CRF2 receptors tonically promote anxiogenic-like behavior. Utilization of CRF2 antagonists, such as astressin2-B, at doses that are more subtype-selective, can better clarify the significance of brain CRF2 systems in stress-related behavior.
Collapse
Affiliation(s)
- Eric P. Zorrilla
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
- Department of Neurosciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (EPZ); (GFK)
| | - Amanda J. Roberts
- Molecular and Integrative Neurosciences Department, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean E. Rivier
- The Clayton Foundation Laboratories for Peptide Biology and Structural Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - George F. Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail: (EPZ); (GFK)
| |
Collapse
|
12
|
Pintér-Kübler B, Ferenczi S, Núnez C, Zelei E, Polyák Á, Milanés MV, Kovács KJ. Differential Changes in Expression of Stress- and Metabolic-Related Neuropeptides in the Rat Hypothalamus during Morphine Dependence and Withdrawal. PLoS One 2013; 8:e67027. [PMID: 23805290 PMCID: PMC3689674 DOI: 10.1371/journal.pone.0067027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Accepted: 05/13/2013] [Indexed: 12/27/2022] Open
Abstract
Chronic morphine treatment and naloxone precipitated morphine withdrawal activates stress-related brain circuit and results in significant changes in food intake, body weight gain and energy metabolism. The present study aimed to reveal hypothalamic mechanisms underlying these effects. Adult male rats were made dependent on morphine by subcutaneous implantation of constant release drug pellets. Pair feeding revealed significantly smaller weight loss of morphine treated rats compared to placebo implanted animals whose food consumption was limited to that eaten by morphine implanted pairs. These results suggest reduced energy expenditure of morphine-treated animals. Chronic morphine exposure or pair feeding did not significantly affect hypothalamic expression of selected stress- and metabolic related neuropeptides - corticotropin-releasing hormone (CRH), urocortin 2 (UCN2) and proopiomelanocortin (POMC) compared to placebo implanted and pair fed animals. Naloxone precipitated morphine withdrawal resulted in a dramatic weight loss starting as early as 15–30 min after naloxone injection and increased adrenocorticotrophic hormone, prolactin and corticosterone plasma levels in morphine dependent rats. Using real-time quantitative PCR to monitor the time course of relative expression of neuropeptide mRNAs in the hypothalamus we found elevated CRH and UCN2 mRNA and dramatically reduced POMC expression. Neuropeptide Y (NPY) and arginine vasopressin (AVP) mRNA levels were transiently increased during opiate withdrawal. These data highlight that morphine withdrawal differentially affects expression of stress- and metabolic-related neuropeptides in the rat hypothalamus, while relative mRNA levels of these neuropeptides remain unchanged either in rats chronically treated with morphine or in their pair-fed controls.
Collapse
Affiliation(s)
- Bernadett Pintér-Kübler
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Szilamér Ferenczi
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Cristina Núnez
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Edina Zelei
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - Ágnes Polyák
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
- * E-mail:
| |
Collapse
|
13
|
Abstract
This paper is the thirty-fourth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2011 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior (Section 2), and the roles of these opioid peptides and receptors in pain and analgesia (Section 3); stress and social status (Section 4); tolerance and dependence (Section 5); learning and memory (Section 6); eating and drinking (Section 7); alcohol and drugs of abuse (Section 8); sexual activity and hormones, pregnancy, development and endocrinology (Section 9); mental illness and mood (Section 10); seizures and neurologic disorders (Section 11); electrical-related activity and neurophysiology (Section 12); general activity and locomotion (Section 13); gastrointestinal, renal and hepatic functions (Section 14); cardiovascular responses (Section 15); respiration (Section 16); and immunological responses (Section 17).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|
14
|
Navarro-Zaragoza J, Hidalgo JM, Laorden ML, Milanés MV. Glucocorticoid receptors participate in the opiate withdrawal-induced stimulation of rats NTS noradrenergic activity and in the somatic signs of morphine withdrawal. Br J Pharmacol 2012; 166:2136-47. [PMID: 22364199 DOI: 10.1111/j.1476-5381.2012.01918.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Recent evidence suggests that glucocorticoid receptor (GR) is a major molecular substrate of addictive properties of drugs of abuse. Hence, we performed a series of experiments to further characterize the role of GR signalling in opiate withdrawal-induced physical signs of dependence, enhanced noradrenaline (NA) turnover in the hypothalamic paraventricular nucleus (PVN) and tyrosine hydroxylase (TH) phosphorylation (activation) as well as GR expression in the nucleus of the solitary tract noradrenergic cell group (NTS-A₂). EXPERIMENTAL APPROACH The role of GR signalling was assessed by i.p. pretreatment of the selective GR antagonist, mifepristone. Rats were implanted with two morphine (or placebo) pellets. Six days later, rats were pretreated with mifepristone or vehicle 30 min before naloxone and physical signs of abstinence, NA turnover, TH activation, GR expression and the hypothalamus-pituitary-adrenocortical axis activity were measured using HPLC, immunoblotting and RIA. KEY RESULTS Mifepristone alleviated the somatic signs of naloxone-induced opiate withdrawal. Mifepristone attenuated the increase in the NA metabolite, 3-methoxy-4-hydroxyphenylethylen glycol (MHPG), in the PVN, and the enhanced NA turnover observed in morphine-withdrawn rats. Mifepristone antagonized the TH phosphorylation at Ser³¹ and the expression of c-Fos expression induced by morphine withdrawal. Finally, naloxone-precipitated morphine withdrawal induced up-regulation of GR in the NTS. CONCLUSIONS AND IMPLICATIONS These results suggest that the physical signs of opiate withdrawal, TH activation and stimulation of noradrenergic pathways innervating the PVN are modulated by GR signalling. Overall, the present data suggest that drugs targeting the GR may ameliorate stress and aversive effects associated with opiate withdrawal.
Collapse
|
15
|
García-Pérez D, Laorden ML, Milanés MV, Núñez C. Glucocorticoids regulation of FosB/ΔFosB expression induced by chronic opiate exposure in the brain stress system. PLoS One 2012; 7:e50264. [PMID: 23185589 PMCID: PMC3503985 DOI: 10.1371/journal.pone.0050264] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 10/18/2012] [Indexed: 11/25/2022] Open
Abstract
Chronic use of drugs of abuse profoundly alters stress-responsive system. Repeated exposure to morphine leads to accumulation of the transcription factor ΔFosB, particularly in brain areas associated with reward and stress. The persistent effects of ΔFosB on target genes may play an important role in the plasticity induced by drugs of abuse. Recent evidence suggests that stress-related hormones (e.g., glucocorticoids, GC) may induce adaptations in the brain stress system that is likely to involve alteration in gene expression and transcription factors. This study examined the role of GC in regulation of FosB/ΔFosB in both hypothalamic and extrahypothalamic brain stress systems during morphine dependence. For that, expression of FosB/ΔFosB was measured in control (sham-operated) and adrenalectomized (ADX) rats that were made opiate dependent after ten days of morphine treatment. In sham-operated rats, FosB/ΔFosB was induced after chronic morphine administration in all the brain stress areas investigated: nucleus accumbens(shell) (NAc), bed nucleus of the stria terminalis (BNST), central amygdala (CeA), hypothalamic paraventricular nucleus (PVN) and nucleus of the solitary tract noradrenergic cell group (NTS-A(2)). Adrenalectomy attenuated the increased production of FosB/ΔFosB observed after chronic morphine exposure in NAc, CeA, and NTS. Furthermore, ADX decreased expression of FosB/ΔFosB within CRH-positive neurons of the BNST, PVN and CeA. Similar results were obtained in NTS-A(2) TH-positive neurons and NAc pro-dynorphin-positive neurons. These data suggest that neuroadaptation (estimated as accumulation of FosB/ΔFosB) to opiates in brain areas associated with stress is modulated by GC, supporting the evidence of a link between brain stress hormones and addiction.
Collapse
Affiliation(s)
- Daniel García-Pérez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, University School of Medicine, Murcia, Spain
| |
Collapse
|
16
|
Umathe SN, Mundhada YR, Bhutada PS. Differential effects of acute morphine, and chronic morphine-withdrawal on obsessive-compulsive behavior: inhibitory influence of CRF receptor antagonists on chronic morphine-withdrawal. Neuropeptides 2012; 46:217-21. [PMID: 22863536 DOI: 10.1016/j.npep.2012.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 06/16/2012] [Accepted: 06/28/2012] [Indexed: 11/24/2022]
Abstract
Recent studies have provided convincing evidences for co-morbidity between opioid addiction and obsessive-compulsive disorder (OCD), and the involvement of the corticotrophin-releasing factor (CRF) in the effects of morphine-withdrawal. Some scanty evidences also point towards the role of CRF in OCD and related disorders. But, no evidence indicated the role of CRF in morphine withdrawal associated obsessive-compulsive behavior (OCB). Therefore, the present study investigated the role of CRF in morphine-withdrawal induced OCB in mice. Marble-burying behavior in mice was used to assess OCB as this model has good predictive and face validity. The results revealed that acute morphine dose dependently attenuated the marble burying behavior, whereas withdrawal of chronic morphine was associated with significant rise in marble burying behavior. This indicates the differential effect of acute morphine and chronic morphine-withdrawal on OCB. Further, acute treatment with CRF receptor antagonists like antalarmin (2 and 4 μg/mouse, i.c.v.) or astressin-2B (3 and 10 nmol/mouse, i.c.v.) dose dependently attenuated the peak morphine-withdrawal induced increase in marble burying behavior. Moreover, concomitant treatment with antalarmin (4 μg/mouse, i.c.v.) or astressin-2B (10 nmol/mouse, i.c.v.) along with morphine blocked the morphine-withdrawal associated exacerbation of OCB. These results indicate that OCB associated with morphine withdrawal state is partly mediated by the activation of central CRF receptors.
Collapse
Affiliation(s)
- S N Umathe
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033, Maharashtra, India.
| | | | | |
Collapse
|
17
|
Cui RJ, Roberts BL, Zhao H, Andresen MC, Appleyard SM. Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience 2012; 222:181-90. [PMID: 22796075 DOI: 10.1016/j.neuroscience.2012.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Accepted: 07/04/2012] [Indexed: 12/12/2022]
Abstract
Brainstem A2/C2 catecholamine (CA) neurons within the solitary tract nucleus (NTS) influence many homeostatic functions, including food intake, stress, respiratory and cardiovascular reflexes. They also play a role in both opioid reward and withdrawal. Injections of opioids into the NTS modulate many autonomic functions influenced by catecholamine neurons including food intake and cardiac function. We recently showed that NTS-CA neurons are directly activated by incoming visceral afferent inputs. Here we determined whether opioid agonists modulate afferent activation of NTS-CA neurons using transgenic mice with EGFP expressed under the control of the tyrosine hydroxylase promoter (TH-EGFP) to identify catecholamine neurons. The opioid agonist Met-enkephalin (Met-Enk) significantly attenuated solitary tract-evoked excitatory postsynaptic currents (ST-EPSCs) in NTS TH-EGFP neurons by 80%, an effect reversed by wash or the mu opioid receptor-specific antagonist D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH(2) (CTOP). Met-Enk had a significantly greater effect to inhibit afferent inputs onto TH-EGFP-positive neurons than EGFP-negative neurons, which were only inhibited by 50%. The mu agonist, DAMGO, also inhibited the ST-EPSC in TH-EGFP neurons in a dose-dependent manner. In contrast, neither the delta agonist DPDPE, nor the kappa agonist, U69,593, consistently inhibited the ST-EPSC amplitude. Met-Enk and DAMGO increased the paired pulse ratio, decreased the frequency, but not amplitude, of mini-EPSCs and had no effect on holding current, input resistance or current-voltage relationships in TH-EGFP neurons, suggesting a presynaptic mechanism of action on afferent terminals. Met-Enk significantly reduced both the basal firing rate of NTS TH-EGFP neurons and the ability of afferent stimulation to evoke an action potential. These results suggest that opioids inhibit NTS-CA neurons by reducing an excitatory afferent drive onto these neurons through presynaptic inhibition of glutamate release and elucidate one potential mechanism by which opioids could control autonomic functions and modulate reward and opioid withdrawal symptoms at the level of the NTS.
Collapse
Affiliation(s)
- R J Cui
- Department of Veterinary Comparative Anatomy, Physiology and Pharmacology, Washington State University, Pullman, WA 99164, USA
| | | | | | | | | |
Collapse
|
18
|
Laorden ML, Ferenczi S, Pintér-Kübler B, González-Martín LL, Lasheras MC, Kovács KJ, Milanés MV, Núñez C. Hypothalamic orexin--a neurons are involved in the response of the brain stress system to morphine withdrawal. PLoS One 2012; 7:e36871. [PMID: 22590628 PMCID: PMC3348891 DOI: 10.1371/journal.pone.0036871] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/09/2012] [Indexed: 11/18/2022] Open
Abstract
Both the hypothalamus-pituitary-adrenal (HPA) axis and the extrahypothalamic brain stress system are key elements of the neural circuitry that regulates the negative states during abstinence from chronic drug exposure. Orexins have recently been hypothesized to modulate the extended amygdala and to contribute to the negative emotional state associated with dependence. This study examined the impact of chronic morphine and withdrawal on the lateral hypothalamic (LH) orexin A (OXA) gene expression and activity as well as OXA involvement in the brain stress response to morphine abstinence. Male Wistar rats received chronic morphine followed by naloxone to precipitate withdrawal. The selective OX1R antagonist SB334867 was used to examine whether orexins' activity is related to somatic symptoms of opiate withdrawal and alterations in HPA axis and extended amygdala in rats dependent on morphine. OXA mRNA was induced in the hypothalamus during morphine withdrawal, which was accompanied by activation of OXA neurons in the LH. Importantly, SB334867 attenuated the somatic symptoms of withdrawal, and reduced morphine withdrawal-induced c-Fos expression in the nucleus accumbens (NAc) shell, bed nucleus of stria terminalis, central amygdala and hypothalamic paraventricular nucleus, but did not modify the HPA axis activity. These results highlight a critical role of OXA signalling, via OX1R, in activation of brain stress system to morphine withdrawal and suggest that all orexinergic subpopulations in the lateral hypothalamic area contribute in this response.
Collapse
Affiliation(s)
- M. Luisa Laorden
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Szilamér Ferenczi
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Bernadett Pintér-Kübler
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - Laura L. González-Martín
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - M. Carmen Lasheras
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Krisztina J. Kovács
- Molecular Neuroendocrinology Laboratory, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- * E-mail:
| | - Cristina Núñez
- Cellular and Molecular Pharmacology Laboratory, Faculty of Medicine, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
19
|
Restricted role of CRF1 receptor for the activity of brainstem catecholaminergic neurons in the negative state of morphine withdrawal. Psychopharmacology (Berl) 2012; 220:379-93. [PMID: 21947312 DOI: 10.1007/s00213-011-2478-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Accepted: 09/01/2011] [Indexed: 01/24/2023]
Abstract
RATIONALE Evidence suggests that corticotropin-releasing factor (CRF) system is an important mediator in the negative symptoms of opioid withdrawal. OBJECTIVES We used genetically engineered mice lacking functional CRF receptor-1 (CRF1R) levels to study the role for CRF/CRF1R pathways in the negative affective states of opioid withdrawal. METHODS Wild-type and CRF1R(-/-) offspring of CRF1R(+/-) breeders were identified by PCR analysis of tail DNA and were rendered dependent on morphine via intraperitoneal injection of increasing doses of morphine (10-60 mg/kg). Negative state associated with opioid withdrawal was examined by using conditioned place aversion (CPA), TH expression and TH phosphorylation were measured in different brain regions involved in addictive behaviours using immunohistochemistry. RESULTS The weight loss in morphine withdrawn CRF1R(-/-) animals was significantly (p < 0.05) lower versus wild-type. The aversion for environmental cues paired with opioid withdrawal was lower (p < 0.001) in the CRF1R-deficient versus wild-type. Using dual immunolabeling for c-Fos, data show that naloxone-induced withdrawal increases the number of TH positive neurons phosphorylated at Ser40 or Ser31 that coexpress c-Fos in the nucleus of tractus solitarius (NTS)-A2 from wild-type and CRF(-/-) deficient mice. By contrast, the number of phospho-Ser40 or phospho-Ser31 positive neurons expressing c-Fos was lower in the ventrolateral medulla (VLM)-A1 in CRF(-/-)-deficient mice. CONCLUSION Our study demonstrates an increased activity of brainstem catecholaminergic neurons after CPA induced by morphine withdrawal suggesting that CRF1R is implicated in the activation of A1 neurons and provides evidence that this receptor is involved in the body weight loss and in the negative aversive effects of morphine withdrawal.
Collapse
|
20
|
Martín F, Núñez C, Marín MT, Laorden ML, Kovács KJ, Milanés MV. Involvement of noradrenergic transmission in the PVN on CREB activation, TORC1 levels, and pituitary-adrenal axis activity during morphine withdrawal. PLoS One 2012; 7:e31119. [PMID: 22355339 PMCID: PMC3280277 DOI: 10.1371/journal.pone.0031119] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 01/03/2012] [Indexed: 12/19/2022] Open
Abstract
Experimental and clinical findings have shown that administration of adrenoceptor antagonists alleviated different aspects of drug withdrawal and dependence. The present study tested the hypothesis that changes in CREB activation and phosphorylated TORC1 levels in the hypothalamic paraventricular nucleus (PVN) after naloxone-precipitated morphine withdrawal as well as the HPA axis activity arises from α1- and/or β-adrenoceptor activation. The effects of morphine dependence and withdrawal on CREB phosphorylation (pCREB), phosphorylated TORC1 (pTORC1), and HPA axis response were measured by Western-blot, immunohistochemistry and radioimmunoassay in rats pretreated with prazosin (α1-adrenoceptor antagonist) or propranolol (β-adrenoceptor antagonist). In addition, the effects of morphine withdrawal on MHPG (the main NA metabolite at the central nervous system) and NA content and turnover were evaluated by HPLC. We found an increase in MHPG and NA turnover in morphine-withdrawn rats, which were accompanied by increased pCREB immunoreactivity and plasma corticosterone concentrations. Levels of the inactive form of TORC1 (pTORC1) were decreased during withdrawal. Prazosin but not propranolol blocked the rise in pCREB level and the decrease in pTORC1 immunoreactivity. In addition, the HPA axis response to morphine withdrawal was attenuated in prazosin-pretreated rats. Present results suggest that, during acute morphine withdrawal, NA may control the HPA axis activity through CREB activation at the PVN level. We concluded that the combined increase in CREB phosphorylation and decrease in pTORC1 levels might represent, in part, two of the mechanisms of CREB activation at the PVN during morphine withdrawal.
Collapse
Affiliation(s)
- Fátima Martín
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Cristina Núñez
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - M. Teresa Marín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | - M. Luisa Laorden
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Krisztina J. Kovács
- Laboratory of Molecular Neuroendocrinology, Institute of Experimental Medicine, Budapest, Hungary
| | - M. Victoria Milanés
- Group of Cellular and Molecular Pharmacology, Department of Pharmacology, School of Medicine, University of Murcia, Murcia, Spain
- Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
- * E-mail:
| |
Collapse
|
21
|
Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal. Biol Psychiatry 2012; 71:214-23. [PMID: 21831361 DOI: 10.1016/j.biopsych.2011.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Revised: 06/14/2011] [Accepted: 06/27/2011] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hypocretin (orexin) signaling is involved in drug addiction. In this study, we investigated the role of these hypothalamic neuropeptides in nicotine withdrawal by using behavioral and neuroanatomical approaches. METHODS Nicotine withdrawal syndrome was precipitated by mecamylamine (2 mg/kg, subcutaneous) in C57BL/6J nicotine-dependent mice (25 mg/kg/day for 14 days) pretreated with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 (5 and 10 mg/kg, intraperitoneal), the hypocretin receptor 2 antagonist TCSOX229 (5 and 10 mg/kg, intraperitoneal), and in preprohypocretin knockout mice. c-Fos expression was analyzed in several brain areas related to nicotine dependence by immunofluorescence techniques. Retrograde tracing with rhodamine-labeled fluorescent latex microspheres was used to determine whether the hypocretin neurons project directly to the paraventricular nucleus of the hypothalamus (PVN), and SB334867 was locally administered intra-PVN (10 nmol/side) to test the specific involvement of Hcrtr-1 in this brain area during nicotine withdrawal. RESULTS Somatic signs of nicotine withdrawal were attenuated in mice pretreated with SB334867 and in preprohypocretin knockout mice. No changes were found in TCSOX229 pretreated animals. Nicotine withdrawal increased the percentage of hypocretin cells expressing c-Fos in the perifornical, dorsomedial, and lateral hypothalamus. In addition, the increased c-Fos expression in the PVN during withdrawal was dependent on hypocretin transmission through Hcrtr-1 activation. Hypocretin neurons directly innervate the PVN and the local infusion of SB334867 into the PVN decreased the expression of nicotine withdrawal. CONCLUSIONS These data demonstrate that hypocretin signaling acting on Hcrtr-1 in the PVN plays a crucial role in the expression of nicotine withdrawal.
Collapse
|
22
|
Shahidi S, Hasanein P. Behavioral effects of fatty acid amide hydrolase inhibition on morphine withdrawal symptoms. Brain Res Bull 2011; 86:118-22. [PMID: 21763761 DOI: 10.1016/j.brainresbull.2011.06.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 06/21/2011] [Accepted: 06/30/2011] [Indexed: 12/18/2022]
Abstract
Chronic morphine exposure causes tolerance and dependence. The cessation of morphine consumption induces a withdrawal syndrome that may involve cannabinoids and is characterized by undesirable psychological and physical signs. The present study examined whether augmentation of the endocannabinoid system by inhibition of fatty acid amide hydrolase could suppress the morphine withdrawal syndrome in morphine-addicted rats. Morphine dependency was induced by 7 consecutive days of morphine injection. The morphine-addicted rats received URB597 (1, 0.5, 0.3, 0.1, 0.03 mg/kg), a fatty acid amide hydrolase inhibitor, before the precipitation of morphine withdrawal syndromes by naloxone. Withdrawal symptoms including jumping, teeth chattering, paw tremor, wet dog shakes, face grooming, penis licking, standing, rearing, sniffing and percent of weight loss were recorded during 30 min after naloxone injection. The results showed that the morphine withdrawal precipitated rats had significantly more withdrawal symptoms than naive control rats and the administration of URB597 (all doses except 0.03 mg/kg) reduced most of the morphine withdrawal symptoms. We conclude that the administration of URB597 modulated morphine withdrawal symptoms. This finding shows that endocannabinoids interact with the opioid system during the morphine withdrawal period and that potentiation of the endogenous cannabinoid system by URB597 may be a new target strategy for the management of morphine addiction.
Collapse
Affiliation(s)
- Siamak Shahidi
- Department of Physiology, Hamadan University of Medical Sciences, Iran.
| | | |
Collapse
|