1
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
2
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
3
|
Lechner S, Steimbach RR, Wang L, Deline ML, Chang YC, Fromme T, Klingenspor M, Matthias P, Miller AK, Médard G, Kuster B. Chemoproteomic target deconvolution reveals Histone Deacetylases as targets of (R)-lipoic acid. Nat Commun 2023; 14:3548. [PMID: 37322067 PMCID: PMC10272112 DOI: 10.1038/s41467-023-39151-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
Lipoic acid is an essential enzyme cofactor in central metabolic pathways. Due to its claimed antioxidant properties, racemic (R/S)-lipoic acid is used as a food supplement but is also investigated as a pharmaceutical in over 180 clinical trials covering a broad range of diseases. Moreover, (R/S)-lipoic acid is an approved drug for the treatment of diabetic neuropathy. However, its mechanism of action remains elusive. Here, we performed chemoproteomics-aided target deconvolution of lipoic acid and its active close analog lipoamide. We find that histone deacetylases HDAC1, HDAC2, HDAC3, HDAC6, HDAC8, and HDAC10 are molecular targets of the reduced form of lipoic acid and lipoamide. Importantly, only the naturally occurring (R)-enantiomer inhibits HDACs at physiologically relevant concentrations and leads to hyperacetylation of HDAC substrates. The inhibition of HDACs by (R)-lipoic acid and lipoamide explain why both compounds prevent stress granule formation in cells and may also provide a molecular rationale for many other phenotypic effects elicited by lipoic acid.
Collapse
Affiliation(s)
- Severin Lechner
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Raphael R Steimbach
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Biosciences Faculty, Heidelberg University, Heidelberg, Germany
| | - Longlong Wang
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031, Basel, Switzerland
| | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Yun-Chien Chang
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- EKFZ - Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany
- ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Patrick Matthias
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland
- Faculty of Sciences, University of Basel, 4031, Basel, Switzerland
| | - Aubry K Miller
- Cancer Drug Development, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Guillaume Médard
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich, Freising, Germany.
- German Cancer Consortium (DKTK), Heidelberg, Germany.
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
4
|
Gao J, Ma L, Ma J, Xia S, Gong S, Yin Y, Chen Y. Camellia ( Camellia oleifera Abel.) Seed Oil Regulating of Metabolic Phenotype and Alleviates Dyslipidemia in High Fat-Fed Mice through Serum Branch-Chain Amino Acids. Nutrients 2022; 14:nu14122424. [PMID: 35745155 PMCID: PMC9228151 DOI: 10.3390/nu14122424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Camellia (Camellia oleifera Abel.) seed oil (CO) has been shown to effectively reduce the blood lipid level of its host due to its fatty acid content, but the specific molecular mechanism associated with the metabolic phenotype after digestion is not clear. Here, we further investigated the relationship between branched-chain amino acids (BCAA) and the metabolic phenotype that may exhibit the anti-dyslipidemia effect of CO on mice fed a high-fat diet for 30 day C57BL/6J male mice were allocated to three groups: the control group (Cont), the high-fat feed group (HFD), and a high-fat feed group with CO treatment (CO). A serum sample was collected to detect lipid biomarkers and BCAA concentration. Notably, Low-density lipoprotein (LDL), Total Cholesterol (TC), and Triglycerides (TG) showed a significant decrease, whereas High-density lipoprotein (HDL) increased in CO mice but not in the HFD group. The concentration of Isoleucine (Ile), leucine (Leu), and valine (Val) was similar between the Cont and CO groups compared with the HFD group, exhibiting an inhibition induced by CO in mice fed with a high-fat diet. A metabolic phenotype from serum examined by non-targeted metabolite analysis using UHPLC/MS showed most metabolites exhibited lipid and BCAA metabolism. The results indicated that CO treatment notably regulated the metabolism of arachidonic acid and steroid biosynthesis in response to HFD-induced dyslipidemia. In addition, the expression of PPARγ genes that correlated with the BCAA and serum lipid biomarkers were compared, and significant inhibition was noticed, which might lead to the potential exposure of the anti-dyslipidemia mechanism of CO in HFD-fed mice. In conclusion, the expression of PPARγ genes, serum lipid level, BCAA concentration, and the metabolic phenotype was significantly positive in correlation with a high-fat diet, whereas oral CO improved the biomarkers and metabolism of some specific serum metabolites in HFD-fed mice.
Collapse
Affiliation(s)
- Jing Gao
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Li Ma
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Siting Xia
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Saiming Gong
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
| | - Yulong Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410127, China; (J.M.); (S.X.); (S.G.)
- Correspondence: (Y.Y.); (Y.C.)
| | - Yongzhong Chen
- Research Institute of Oil Tea Camellia, Hunan Academy of Forestry, Shao Shan South Road, No. 658, Changsha 410004, China; (J.G.); (L.M.)
- National Engineering Research Center for Oil Tea Camellia, Changsha 410004, China
- Correspondence: (Y.Y.); (Y.C.)
| |
Collapse
|
5
|
Niu W, Miao J, Li X, Guo Q, Deng Z, Wu L. Metabolomics combined with systematic pharmacology reveals the therapeutic effects of Salvia miltiorrhiza and Radix Pueraria lobata herb pair on type 2 diabetes rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.104950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
He X, Liu J, Zang WJ. Mitochondrial homeostasis and redox status in cardiovascular diseases: Protective role of the vagal system. Free Radic Biol Med 2022; 178:369-379. [PMID: 34906725 DOI: 10.1016/j.freeradbiomed.2021.12.255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/21/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Mitochondria participate in essential cellular functions, including energy production, metabolism, redox homeostasis regulation, intracellular Ca2+ handling, apoptosis, and cell fate determination. Disruption of mitochondrial homeostasis under pathological conditions results in mitochondrial reactive oxygen species (ROS) generation and energy insufficiency, which further disturb mitochondrial and cellular homeostasis in a deleterious loop. Mitochondrial redox status has therefore become a potential target for therapy against cardiovascular diseases. In this review, we highlight recent progress in determining the roles of mitochondrial processes in regulating mitochondrial redox status, including mitochondrial dynamics (fusion-fission pathways), mitochondrial cristae remodeling, mitophagy, biogenesis, and mitochondrion-organelle interactions (endoplasmic reticulum-mitochondrion interactions, nucleus-mitochondrion communication, and lipid droplet-mitochondrion interactions). The strategies that activate vagal system include direct vagal activation (electrical vagal stimulation and administration of vagal neurotransmitter acetylcholine) and pharmacological modulation (choline and cholinesterase inhibitors). The vagal system plays an important role in maintaining mitochondrial homeostasis and suppressing mitochondrial oxidative stress by promoting mitochondrial biogenesis and mitophagy, moderating mitochondrial fusion and fission, strengthening mitochondrial cristae stabilization, regulating mitochondrion-organelle interactions, and inhibiting mitochondrial Ca2+ overload. Therefore, enhancement of vagal activity can maintain mitochondrial homeostasis and represents a promising therapeutic strategy for cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, PR China; University of Health and Rehabilitation Sciences, Qingdao, PR China
| | - Wei-Jin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, PR China.
| |
Collapse
|
7
|
Adiponectin and Asthma: Knowns, Unknowns and Controversies. Int J Mol Sci 2021; 22:ijms22168971. [PMID: 34445677 PMCID: PMC8396527 DOI: 10.3390/ijms22168971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/11/2021] [Accepted: 08/16/2021] [Indexed: 12/14/2022] Open
Abstract
Adiponectin is an adipokine associated with the healthy obese phenotype. Adiponectin increases insulin sensitivity and has cardio and vascular protection actions. Studies related to adiponectin, a modulator of the innate and acquired immunity response, have suggested a role of this molecule in asthma. Studies based on various asthma animal models and on the key cells involved in the allergic response have provided important insights about this relation. Some of them indicated protection and others reversed the balance towards negative effects. Many of them described the cellular pathways activated by adiponectin, which are potentially beneficial for asthma prevention or for reduction in the risk of exacerbations. However, conclusive proofs about their efficiency still need to be provided. In this article, we will, briefly, present the general actions of adiponectin and the epidemiological studies supporting the relation with asthma. The main focus of the current review is on the mechanisms of adiponectin and the impact on the pathobiology of asthma. From this perspective, we will provide arguments for and against the positive influence of this molecule in asthma, also indicating the controversies and sketching out the potential directions of research to complete the picture.
Collapse
|
8
|
Zeng M, Xu J, Zhang Z, Zou X, Wang X, Cao K, Lv W, Cui Y, Long J, Feng Z, Liu J. Htd2 deficiency-associated suppression of α-lipoic acid production provokes mitochondrial dysfunction and insulin resistance in adipocytes. Redox Biol 2021; 41:101948. [PMID: 33774475 PMCID: PMC8027779 DOI: 10.1016/j.redox.2021.101948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria harbor a unique fatty acid synthesis pathway (mtFAS) with mysterious functions gaining increasing interest, while its involvement in metabolic regulation is essentially unknown. Here we show that 3-Hydroxyacyl-ACP dehydratase (HTD2), a key enzyme in mtFAS pathway was primarily downregulated in adipocytes of mice under metabolic disorders, accompanied by decreased de novo production of lipoic acid, which is the byproduct of mtFAS pathway. Knockdown of Htd2 in 3T3-L1 preadipocytes or differentiated 3T3-L1 mature adipocytes impaired mitochondrial function via suppression of complex I activity, resulting in enhanced oxidative stress and impaired insulin sensitivity, which were all attenuated by supplement of lipoic acid. Moreover, lipidomic study revealed limited lipid alterations in mtFAS deficient cells which primarily presenting accumulation of triglycerides, attributed to mitochondrial dysfunction. Collectively, the present study highlighted the pivotal role of mtFAS pathway in regulating mitochondrial function and adipocytes insulin sensitivity, demonstrating supportive evidence for lipoic acid being potential effective nutrient for improving insulin resistance and related metabolic disorders.
3-Hydroxyacyl-ACP dehydratase is decreased in adipocytes under diabetic condition. Deficient of 3-Hydroxyacyl-ACP dehydratase (HTD2) triggers mitochondrial dysfunction. Deficient of HTD2 promotes insulin resistance in adipocytes. Supplement of lipoic acid ameliorates deleterious effects of HTD2 deficiency.
Collapse
Affiliation(s)
- Mengqi Zeng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jie Xu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xuan Zou
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, 710004, China
| | - Xueqiang Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Ke Cao
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Weiqiang Lv
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Yuting Cui
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shannxi, 710004, China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
9
|
Huang CC, Sun J, Ji H, Kaneko G, Xie XD, Chang ZG, Deng W. Systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish (Danio rerio): focusing on the transcriptional level. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1631-1644. [PMID: 32651854 DOI: 10.1007/s10695-020-00795-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/11/2020] [Indexed: 06/11/2023]
Abstract
Considering the excessive lipid accumulation status caused by the increased dietary lipid intake in farmed fish, this study aimed to investigate the systemic effect of dietary lipid levels and α-lipoic acid supplementation on nutritional metabolism in zebrafish. A total of 540 male zebrafish (0.17 g) were fed with normal (CT) and high lipid level (HL) diets for 6 weeks, then fed on 1000 mg/kg α-lipoic acid supplementation diets for the second 6 weeks. HL diets did not affect whole fish protein content, but increased ASNS expression (P < 0.05). Dietary α-lipoic acid increased whole fish protein content, and decreased the expressions of protein catabolism-related genes in muscle of high lipid level groups (P < 0.05). Furthermore, HL diets increased the whole fish lipid content and the expressions of gluconeogenesis and lipogenesis-related genes (P < 0.05), and α-lipoic acid counteracted these effects and decreased the whole fish triglyceride and cholesterol contents and expressions of lipogenesis-related genes, with the enhanced expressions of lipolytic genes, especially in high lipid groups (P < 0.05). HL diets did not affect hepatocyte mitochondrial quantity or the mRNA expressions of mitochondrial biogenesis and electron transport chain-related genes; they were significantly increased by dietary α-lipoic acid (P < 0.05). These results indicated that high dietary lipid promotes lipid accumulation, while α-lipoic acid increases protein content in association of enhanced lipid catabolism. Thus, dietary α-lipoic acid supplementation could reduce lipid accumulation under high lipid, which provides a promising new approach in solving the problem of lipid accumulation in farmed fish.
Collapse
Affiliation(s)
- Chen-Cui Huang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jian Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hong Ji
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| | - Gen Kaneko
- School of Arts and Sciences, University of Houston-Victoria, 3007, North Ben Wilson, Victoria, TX, 77901, USA
| | - Xing-da Xie
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Zhi-Guang Chang
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Deng
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
10
|
Ayusman S, Duraivadivel P, Gowtham H, Sharma S, Hariprasad P. Bioactive constituents, vitamin analysis, antioxidant capacity and α-glucosidase inhibition of Canna indica L. rhizome extracts. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100544] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Tie F, Wang J, Liang Y, Zhu S, Wang Z, Li G, Wang H. Proanthocyanidins Ameliorated Deficits of Lipid Metabolism in Type 2 Diabetes Mellitus Via Inhibiting Adipogenesis and Improving Mitochondrial Function. Int J Mol Sci 2020; 21:E2029. [PMID: 32188147 PMCID: PMC7139784 DOI: 10.3390/ijms21062029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/13/2020] [Accepted: 03/14/2020] [Indexed: 12/26/2022] Open
Abstract
Proanthocyanidins are the major active compounds extracted from Iris lactea Pall. var. Chinensis (Fisch.) Koidz (I. lactea). Proanthocyanidins exhibit a variety of pharmacological activities such as anti-oxidation, anti-inflammation, anti-tumor, and lowering blood lipids. However, the underlying mechanism of its regulating effect on lipid metabolism in diabetic conditions remains unclear. The present study investigated the effects of I. lactea-derived proanthocyanidins on lipid metabolism in mice of type 2 diabetes mellitus (T2DM). Results demonstrated a beneficial effect of total proanthocyanidins on dysregulated lipid metabolism and hepatic steatosis in high-fat-diet/streptozocin (STZ)-induced T2DM. To identify the mechanisms, six flavan-3-ols were isolated from proanthocyanidins of I. lacteal and their effects on adipogenesis and dexamethasone (Dex)-induced mitochondrial dysfunctions in 3T3-L1 adipocytes were determined. In vitro studies showed flavan-3-ols inhibited adipogenesis and restored mitochondrial function after Dex-induced insulin resistance, being suggested by increased mitochondrial membrane potential, intracellular ATP contents, mitochondrial mass and mitochondrial biogenesis, and reduced reactive oxygen species. Among the six flavan-3-ols, procyanidin B3 and procyanidin B1 exhibited the strongest effects. Our study suggests potential of proanthocyanidins as therapeutic target for diabetes.
Collapse
Affiliation(s)
- Fangfang Tie
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
- Institutes of Life Science, University of Chinese Academy of Science, Beijing 100049, China
| | - Jifei Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
- Institutes of Life Science, University of Chinese Academy of Science, Beijing 100049, China
| | - Yuexin Liang
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Shujun Zhu
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Zhenhua Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
| | - Gang Li
- Center for Mitochondrial and Healthy Aging, College of Life Science, Yantai University, Yantai 264005, China; (Y.L.); (S.Z.)
| | - Honglun Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, China; (F.T.); (J.W.); (Z.W.)
| |
Collapse
|
12
|
Bhargava P, Janda J, Schnellmann RG. Elucidation of cGMP-dependent induction of mitochondrial biogenesis through PKG and p38 MAPK in the kidney. Am J Physiol Renal Physiol 2019; 318:F322-F328. [PMID: 31841384 DOI: 10.1152/ajprenal.00533.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previous studies have shown that cGMP increases mitochondrial biogenesis (MB). Our laboratory has determined that formoterol and LY344864, agonists of the β2-adrenergic receptor and 5-HT1F receptor, respectively, signal MB in a soluble guanylyl cyclase (sGC)-dependent manner. However, the pathway between cGMP and MB produced by these pharmacological agents in renal proximal tubule cells (RPTCs) and the kidney has not been determined. In the present study, we showed that treatment of RPTCs with formoterol, LY344864, or riociguat, a sGC stimulator, induces MB through protein kinase G (PKG), a target of cGMP, and p38, an associated downstream target of PKG and a regulator of peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) expression in RPTCs. We also examined if p38 plays a role in PGC-1α phosphorylation in vivo. Administration of l-skepinone, a potent and specific inhibitor of p38α and p38β, to naïve mice inhibited phosphorylated PGC-1α localization in the nuclear fraction of the renal cortex. Taken together, we demonstrated a pathway, sGC/cGMP/PKG/p38/PGC-1α, for pharmacological induction of MB and the importance of p38 in this pathway.
Collapse
Affiliation(s)
- Pallavi Bhargava
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Jaroslav Janda
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona
| | - Rick G Schnellmann
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona.,Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona
| |
Collapse
|
13
|
Scoditti E, Carpi S, Massaro M, Pellegrino M, Polini B, Carluccio MA, Wabitsch M, Verri T, Nieri P, De Caterina R. Hydroxytyrosol Modulates Adipocyte Gene and miRNA Expression Under Inflammatory Condition. Nutrients 2019; 11:nu11102493. [PMID: 31627295 PMCID: PMC6836288 DOI: 10.3390/nu11102493] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic inflammation of the adipose tissue (AT) is a major contributor to obesity-associated cardiometabolic complications. The olive oil polyphenol hydroxytyrosol (HT) contributes to Mediterranean diet cardiometabolic benefits through mechanisms still partially unknown. We investigated HT (1 and 10 μmol/L) effects on gene expression (mRNA and microRNA) related to inflammation induced by 10 ng/mL tumor necrosis factor (TNF)-α in human Simpson–Golabi–Behmel Syndrome (SGBS) adipocytes. At real-time PCR, HT significantly inhibited TNF-α-induced mRNA levels, of monocyte chemoattractant protein-1, C-X-C Motif Ligand-10, interleukin (IL)-1β, IL-6, vascular endothelial growth factor, plasminogen activator inhibitor-1, cyclooxygenase-2, macrophage colony-stimulating factor, matrix metalloproteinase-2, Cu/Zn superoxide dismutase-1, and glutathione peroxidase, as well as surface expression of intercellular adhesion molecule-1, and reverted the TNF-α-mediated inhibition of endothelial nitric oxide synthase, peroxisome proliferator-activated receptor coactivator-1α, and glucose transporter-4. We found similar effects in adipocytes stimulated by macrophage-conditioned media. Accordingly, HT significantly counteracted miR-155-5p, miR-34a-5p, and let-7c-5p expression in both cells and exosomes, and prevented NF-κB activation and production of reactive oxygen species. HT can therefore modulate adipocyte gene expression profile through mechanisms involving a reduction of oxidative stress and NF-κB inhibition. By such mechanisms, HT may blunt macrophage recruitment and improve AT inflammation, preventing the deregulation of pathways involved in obesity-related diseases.
Collapse
Affiliation(s)
- Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Sara Carpi
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology (IFC), 73100 Lecce, Italy.
| | - Mariangela Pellegrino
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Beatrice Polini
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | | - Martin Wabitsch
- Division of Pediatric Endocrinology, Diabetes and Obesity, Department of Pediatrics and Adolescent Medicine, University of Ulm, 89075 Ulm, Germany.
| | - Tiziano Verri
- Laboratory of Applied Physiology, Department of Biological and Environmental Science and Technology (DISTEBA), University of Salento, 73100 Lecce, Italy.
| | - Paola Nieri
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Pisa, 56126 Pisa, Italy.
| | | |
Collapse
|
14
|
Hou Y, Li X, Peng S, Yao J, Bai F, Fang J. Lipoamide Ameliorates Oxidative Stress via Induction of Nrf2/ARE Signaling Pathway in PC12 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8227-8234. [PMID: 31299148 DOI: 10.1021/acs.jafc.9b02680] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The mechanisms underlying neurodegenerative diseases are not fully understood yet. However, an increasing amount of evidence has suggested that these disorders are related to oxidative stress. We reported herein that lipoamide (LM), a neutral amide derivative of lipoic acid (LA), could resist oxidative stress-mediated neuronal cell damage. LM is more potent than LA in alleviating hydrogen peroxide- or 6-hydroxydopamine-induced PC12 cell injury. Our results reveal that LM promotes the nuclear accumulation of NFE2-related factor 2 (Nrf2), following with the activation of expression of Nrf2-governed antioxidant and detoxifying enzymes. Notably, silencing Nrf2 gene annuls the protection of LM, which demonstrates that Nrf2 is engaged in this cytoprotection. Our findings suggest that LM might be used as a potential therapeutic candidate for oxidative stress-related neurological disorders.
Collapse
Affiliation(s)
- Yanan Hou
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Shoujiao Peng
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Juan Yao
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Feifei Bai
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering , Lanzhou University , Lanzhou , Gansu 730000 , China
| |
Collapse
|
15
|
Alpha Lipoamide Ameliorates Motor Deficits and Mitochondrial Dynamics in the Parkinson's Disease Model Induced by 6-Hydroxydopamine. Neurotox Res 2017; 33:759-767. [PMID: 29019159 DOI: 10.1007/s12640-017-9819-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 12/18/2022]
Abstract
The precise mechanisms underlying neuronal injury in Parkinson's disease (PD) are not yet fully elucidated; however, evidence from the in vitro and in vivo PD models suggest that mitochondrial dysfunction may play a major role in PD pathogenesis. Alpha lipoamide, a neutral amide derivative of the lipoic acid, is a better cofactor for mitochondrial dehydrogenase with a stronger protective effect on mitochondria than lipoic acid. Identification of these protective effects of alpha lipoamide on mitochondria, together with the evidence that mitochondrial dysfunction plays a critical role in PD, we speculate that alpha lipoamide may exert a protective effect in PD by regulating the mitochondrial function. The present study investigated the neuroprotective effects of alpha lipoamide in an animal model of PD induced by 6-hydroxydopamine (6-OHDA). The results demonstrated that alpha lipoamide could significantly antagonize the 6-OHDA-induced behavioral damages; restore ATP levels in the midbrain; and also improve the fragmentation, vacuolization, and morphology of the mitochondria. The results of Western blot indicated that alpha lipoamide significantly restored the number of dopaminergic neurons in midbrain and substantially recovered the balance between mitochondrial fission, fusion, and transport. In conclusion, the results demonstrated that alpha lipoamide might exert a significant neuroprotective effect in the animal model of PD by regulation of the dynamic properties of mitochondria.
Collapse
|
16
|
Jankovic A, Korac A, Buzadzic B, Stancic A, Otasevic V, Ferdinandy P, Daiber A, Korac B. Targeting the NO/superoxide ratio in adipose tissue: relevance to obesity and diabetes management. Br J Pharmacol 2017; 174:1570-1590. [PMID: 27079449 PMCID: PMC5446578 DOI: 10.1111/bph.13498] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/31/2016] [Accepted: 04/04/2016] [Indexed: 12/21/2022] Open
Abstract
Insulin sensitivity and metabolic homeostasis depend on the capacity of adipose tissue to take up and utilize excess glucose and fatty acids. The key aspects that determine the fuel-buffering capacity of adipose tissue depend on the physiological levels of the small redox molecule, nitric oxide (NO). In addition to impairment of NO synthesis, excessive formation of the superoxide anion (О2•- ) in adipose tissue may be an important interfering factor diverting the signalling of NO and other reactive oxygen and nitrogen species in obesity, resulting in metabolic dysfunction of adipose tissue over time. Besides its role in relief from superoxide burst, enhanced NO signalling may be responsible for the therapeutic benefits of different superoxide dismutase mimetics, in obesity and experimental diabetes models. This review summarizes the role of NO in adipose tissue and highlights the effects of NO/О2•- ratio 'teetering' as a promising pharmacological target in the metabolic syndrome. LINKED ARTICLES This article is part of a themed section on Redox Biology and Oxidative Stress in Health and Disease. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.12/issuetoc.
Collapse
Affiliation(s)
- Aleksandra Jankovic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Aleksandra Korac
- Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia
| | - Biljana Buzadzic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Ana Stancic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Vesna Otasevic
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| | - Péter Ferdinandy
- Department of Pharmacology and PharmacotherapySemmelweis UniversityBudapestHungary
- Pharmahungary GroupSzegedHungary
| | - Andreas Daiber
- Center for Cardiology ‐ Cardiology 1, Molecular CardiologyUniversity Medical CenterMainzGermany
| | - Bato Korac
- Department of Physiology, Institute for Biological Research “Sinisa Stankovic”University of BelgradeBelgradeSerbia
| |
Collapse
|
17
|
Xie Q, Wei T, Huang C, Liu P, Sun M, Shen W, Gao P. Nebivolol Ameliorates Cardiac NLRP3 Inflammasome Activation in a Juvenile-Adolescent Animal Model of Diet-Induced Obesity. Sci Rep 2016; 6:34326. [PMID: 27686325 PMCID: PMC5043271 DOI: 10.1038/srep34326] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/12/2016] [Indexed: 01/02/2023] Open
Abstract
NLRP3 is involved in obesity-induced cardiac remodeling and dysfunction. In this study, we evaluated whether the cardiac protective effects of nebivolol relied on attenuating NLRP3 activation in a juvenile-adolescent animal model of diet-induced obesity. Weaning male Sprague-Dawley rats were fed with either a standard chow diet (ND) or a high-fat diet (HFD) for 8 weeks. The obese rats were subsequently subdivided into three groups: 1) HFD control group; 2) HFD with low-dose nebivolol (5 mg/kg/d); 3) HFD with high-dose nebivolol (10 mg/kg/d). Treatment with nebivolol prevented HFD-induced obesity associated excess cardiac lipid accumulation as well as myocardial mitochondrial dysfunction. Nebivolol attenuated pro-inflammatory cytokines secretion and NLRP3 inflammasome activation in myocardium of obese rats. In parallel, nebivolol treatment of obese animals increased cardiac β3-AR expression, reversing the reduction of endothelial nitric oxide synthase (eNOS). In vitro, nebivolol treatment of palmitate-incubated H9C2 cells suppressed autophagy, restored mitochondrial biogenesis, leading to decreased mitochondrial reactive oxygen species (mtROS) generation, and suppressed NLRP3 inflammasome activation. Meanwhile the presence of shRNA against β3-AR or against eNOS deteriorated the protective effects of nebivolol. These data suggest the beneficial effect of nebivolol on myocardial lipotoxicity contributing to inhibiting NLRP3 inflammasome activation possibly via improved mitochondrial dysfunction.
Collapse
Affiliation(s)
- Qihai Xie
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Cardiology, Shanghai Jiading District Central Hospital, Shanghai, China
| | - Tong Wei
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenglin Huang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Penghao Liu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Mengwei Sun
- Key Laboratory of State General Administration of Sport, Shanghai Research Institute of Sports Science, Shanghai, China
| | - Weili Shen
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Pingjin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Department of Hypertension Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Whitaker RM, Corum D, Beeson CC, Schnellmann RG. Mitochondrial Biogenesis as a Pharmacological Target: A New Approach to Acute and Chronic Diseases. Annu Rev Pharmacol Toxicol 2016; 56:229-49. [DOI: 10.1146/annurev-pharmtox-010715-103155] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ryan M. Whitaker
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Daniel Corum
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Craig C. Beeson
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
| | - Rick G. Schnellmann
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina and
- Ralph H. Johnson Veterans Administration Medical Center, Charleston, South Carolina 29425; , , ,
| |
Collapse
|
19
|
Effects of alpha-lipoic acid on chemerin secretion in 3T3-L1 and human adipocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2015; 1861:260-8. [PMID: 26721419 DOI: 10.1016/j.bbalip.2015.12.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 12/12/2015] [Accepted: 12/18/2015] [Indexed: 12/31/2022]
Abstract
Chemerin is a novel adipokine associated with obesity and insulin resistance. α-Lipoic acid (α-LA) has shown beneficial properties on diabetes and obesity. The aim of this study was to examine the effects of α-LA on chemerin production in adipocytes in absence or presence of TNF-α, insulin and AICAR. The potential signaling pathways involved in α-LA effects on chemerin were also analyzed. α-LA actions on chemerin were tested in differentiated 3T3-L1 adipocytes and in some cases in human subcutaneous and omental adipocytes. Chemerin mRNA levels were measured by RT-PCR and the amount of chemerin secreted to culture media was determined by ELISA. α-LA induced a concentration-dependent inhibition on both chemerin secretion and mRNA levels in 3T3-L1 adipocytes. The AMPK activator AICAR and the PI3K inhibitor LY294002 dramatically abrogated both chemerin secretion and gene expression, and further potentiated the inhibitory effect of α-LA on chemerin secretion. Insulin was able to partially reverse the inhibitory action of α-LA on chemerin secretion. α-LA also reduced basal chemerin secretion in both subcutaneous and omental adipocytes from overweight/obese subjects. Moreover, α-LA was able to abolish the stimulatory effects of the pro-inflammatory cytokine TNF-α on chemerin secretion. Our data demonstrated the ability of α-LA to inhibit chemerin production, an adipokine associated to obesity and metabolic syndrome, suggesting that the reduction of chemerin could contribute to the antiobesity/antidiabetic properties described for α-LA.
Collapse
|
20
|
Quercetin protects against aluminium induced oxidative stress and promotes mitochondrial biogenesis via activation of the PGC-1α signaling pathway. Neurotoxicology 2015; 51:116-37. [DOI: 10.1016/j.neuro.2015.10.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 09/03/2015] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
|
21
|
Aquilano K, Lettieri Barbato D, Rosa CM. The multifaceted role of nitric oxide synthases in mitochondrial biogenesis and cell differentiation. Commun Integr Biol 2015; 8:e1017158. [PMID: 26479127 PMCID: PMC4594549 DOI: 10.1080/19420889.2015.1017158] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/25/2022] Open
Abstract
Nitric oxide (NO) is physiologically synthetized by a family of enzymes called NO synthases (NOSs). NO is a pleiotropic second messenger having a fundamental role in several cellular processes including cell differentiation. Being a high reactive molecule, NO must be synthetized in close proximity to the effector/target. For this reason, the subcellular localization of NOSs is tightly regulated by different post-translation mechanisms. Recently, in murine C2C12 myoblasts, we have demonstrated that mitochondrial biogenesis, an essential event for cell differentiation, can be effective only if the site of NO production is located at nuclear level, where NO favors the CREB-dependent expression of PGC-1α gene. The increase of NO flux in nuclei is elicited by the up-regulation and redistribution of neuronal NOS (nNOS) toward nuclei. Herein we show that an upregulation of endothelial NOS (eNOS) occurs during adipocyte differentiation in 3T3-L1 cells. However, differently to differentiating myocytes, a concomitant redistribution of eNOS toward nuclei was not detected. We also observed that, upon treatment with the NO synthesis inhibitor L-NAME, mitochondrial biogenesis as well as triglyceride accumulation that normally occurs during adipogenesis were not impeded. The absence of eNOS in nuclei together with the ineffectiveness of L-NAME suggest that, at least during 3T3-L1 differentiation, NO is not fundamental for the induction of mitochondrial biogenesis and adipogenesis.
Collapse
Affiliation(s)
- Katia Aquilano
- Department of Biology; University of Rome "Tor Vergata" ; Rome, Italy ; IRCCS San Raffaele ; Rome, Italy
| | | | - Ciriolo Maria Rosa
- Department of Biology; University of Rome "Tor Vergata" ; Rome, Italy ; IRCCS San Raffaele ; Rome, Italy
| |
Collapse
|
22
|
Litvinova L, Atochin DN, Fattakhov N, Vasilenko M, Zatolokin P, Kirienkova E. Nitric oxide and mitochondria in metabolic syndrome. Front Physiol 2015; 6:20. [PMID: 25741283 PMCID: PMC4330700 DOI: 10.3389/fphys.2015.00020] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome (MS) is a cluster of metabolic disorders that collectively increase the risk of cardiovascular disease. Nitric oxide (NO) plays a crucial role in the pathogeneses of MS components and is involved in different mitochondrial signaling pathways that control respiration and apoptosis. The present review summarizes the recent information regarding the interrelations of mitochondria and NO in MS. Changes in the activities of different NO synthase isoforms lead to the formation of metabolic disorders and therefore are highlighted here. Reduced endothelial NOS activity and NO bioavailability, as the main factors underlying the endothelial dysfunction that occurs in MS, are discussed in this review in relation to mitochondrial dysfunction. We also focus on potential therapeutic strategies involving NO signaling pathways that can be used to treat patients with metabolic disorders associated with mitochondrial dysfunction. The article may help researchers develop new approaches for the diagnosis, prevention and treatment of MS.
Collapse
Affiliation(s)
- Larisa Litvinova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Dmitriy N. Atochin
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Harvard Medical School, Massachusetts General HospitalBoston, MA, USA
| | - Nikolai Fattakhov
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Mariia Vasilenko
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| | - Pavel Zatolokin
- Department of Reconstructive and Endoscopic Surgery, Kaliningrad Regional HospitalKaliningrad, Russia
| | - Elena Kirienkova
- Laboratory of Immunology and Cellular Biotechnologies, Innovation Park of the Immanuel Kant Baltic Federal UniversityKaliningrad, Russia
| |
Collapse
|
23
|
Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL, Houssier M, Burrell MA, Langin D, Martínez JA, Moreno-Aliaga MJ. α-Lipoic acid treatment increases mitochondrial biogenesis and promotes beige adipose features in subcutaneous adipocytes from overweight/obese subjects. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:273-81. [PMID: 25542506 DOI: 10.1016/j.bbalip.2014.12.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/10/2014] [Accepted: 12/15/2014] [Indexed: 01/20/2023]
Abstract
α-Lipoic acid (α-Lip) is a natural occurring antioxidant with beneficial anti-obesity properties. The aim of this study was to investigate the putative effects of α-Lip on mitochondrial biogenesis and the acquirement of brown-like characteristics by subcutaneous adipocytes from overweight/obese subjects. Thus, fully differentiated human subcutaneous adipocytes were treated with α-Lip (100 and 250μM) for 24h for studies on mitochondrial content and morphology, mitochondrial DNA (mtDNA) copy number, fatty acid oxidation enzymes and brown/beige characteristic genes. The involvement of the Sirtuin1/Peroxisome proliferator-activated receptor gamma, coactivator 1 alpha (SIRT1/PGC-1α) pathway was also evaluated. Our results showed that α-Lip increased mitochondrial content in cultured human adipocytes as revealed by electron microscopy and by mitotracker green labeling. Moreover, an enhancement in mtDNA content was observed. This increase was accompanied by an up-regulation of SIRT1 protein levels, a decrease in PGC-1α acetylation and up-regulation of Nuclear respiratory factor 1 (Nrf1) and Mitochondrial transcription factor (Tfam) transcription factors. Enhanced oxygen consumption and fatty acid oxidation enzymes, Carnitine palmitoyl transferase 1 and Acyl-coenzyme A oxidase (CPT-1 and ACOX) were also observed. Mitochondria from α-Lip-treated adipocytes exhibited some morphological characteristics of brown mitochondria, and α-Lip also induced up-regulation of some brown/beige adipocytes markers such as cell death-inducing DFFA-like effector a (Cidea) and T-box 1 (Tbx1). Moreover, α-Lip up-regulated PR domain containing 16 (Prdm16) mRNA levels in treated adipocytes. Therefore, our study suggests the ability of α-Lip to promote mitochondrial biogenesis and brown-like remodeling in cultured white subcutaneous adipocytes from overweight/obese donors.
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | - Patricia Pérez-Matute
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Department, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Faculty of Health and Physical Activity Science, University SEK, Santiago, Chile
| | - Marianne Houssier
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France
| | - María A Burrell
- Department of Histology and Pathology, University of Navarra, Pamplona, Spain
| | - Dominique Langin
- INSERM, UMR1048, Obesity Research Laboratory, Institute of Metabolic and Cardiovascular Diseases, Toulouse, France; University of Toulouse, UMR1048, Paul Sabatier University, Toulouse, France; Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain
| | - María J Moreno-Aliaga
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain; Center for Nutrition Research, University of Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERObn), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
24
|
Ying Z, Xie X, Chen M, Yi K, Rajagopalan S. Alpha-lipoic acid activates eNOS through activation of PI3-kinase/Akt signaling pathway. Vascul Pharmacol 2014; 64:28-35. [PMID: 25460366 DOI: 10.1016/j.vph.2014.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 09/21/2014] [Accepted: 11/08/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Lipoic acid (LA) exerts therapeutic effects on cardiovascular diseases. However, the mechanisms underlying these therapeutic effects remain elusive. Endothelial nitric oxide synthase (eNOS) plays a critical role in cardiovascular homeostasis. LA was shown to potently activate PI3-kinase/Akt pathway, and the latter is critical in the regulation of eNOS activity. In the present study, we test the hypothesis that LA improves endothelial function through PI3-kinase/Akt-mediated eNOS activation. METHODS AND RESULTS Western blot analysis showed that LA time- and dose-dependently induced phosphorylation of Akt and eNOS in human umbilical vein endothelial cells (HUVECs). Both PI3-kinase and Akt inhibitors abolished LA-induced eNOS phosphorylation, indicating that LA induces eNOS phosphorylation through the PI3-kinase/Akt pathway. This increase in eNOS phosphorylation was paralleled by an increase in NO release by HUVECs, supporting its relevance in eNOS activity regulation. Myograph analysis revealed that LA relaxed phenylephrine-induced contraction. Endothelium removal and NOS inhibition by L-NAME abolished this vasodilator action of LA, and Akt but not AMPK inhibition significantly reduced the vasodilator action of LA, indicating that it is mediated by PI3-kinase/Akt pathway-dependent activation of eNOS. Consistent with in vitro results, intraperitoneal injection with LA significantly increased plasma nitrite and nitrate levels in C57Bl/6j mice. CONCLUSIONS LA activates eNOS through a PI3-kinase/Akt signaling pathway-dependent mechanism, offering a potential molecular basis for the therapeutic effects of LA on cardiovascular diseases.
Collapse
Affiliation(s)
- Zhekang Ying
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China; Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | - Xiaoyun Xie
- Division of Geriatric Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, PR China
| | - Minjie Chen
- Department of Cardiology, East Hospital, Tongji University School of Medicine, Shanghai 200120, PR China; Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kevin Yi
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Sanjay Rajagopalan
- Department of Medicine Cardiology Division, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL, Sáinz N, López-Yoldi M, Houssier M, Martínez JA, Langin D, Moreno-Aliaga MJ. α-lipoic acid reduces fatty acid esterification and lipogenesis in adipocytes from overweight/obese subjects. Obesity (Silver Spring) 2014; 22:2210-5. [PMID: 25045030 DOI: 10.1002/oby.20846] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/25/2014] [Accepted: 07/01/2014] [Indexed: 01/09/2023]
Abstract
OBJECTIVE α-Lipoic acid (α-LA) is a natural occurring antioxidant with beneficial effects on obesity. The aim of this study was to investigate the putative effects of α-LA on triglyceride accumulation and lipogenesis in subcutaneous adipocytes from overweight/obese subjects and to determine the potential mechanisms involved. METHODS Fully differentiated human subcutaneous adipocytes were treated with α-LA (100 and 250 µM) during 24 h for studying triglyceride content, de novo lipogenesis, and levels of key lipogenic enzymes. The involvement of AMP-activated protein kinase (AMPK) activation was also evaluated. RESULTS α-LA down-regulated triglyceride content by inhibiting fatty acid esterification and de novo lipogenesis. These effects were mediated by reduction in fatty acid synthase (FAS), stearoyl-coenzyme A desaturase 1, and diacylglycerol O-acyltransferase 1 protein levels. Interestingly, α-LA increased AMPK and acetyl CoA carboxylase phosphorylation, while the presence of the AMPK inhibitor Compound C reversed the inhibition observed on FAS protein levels. CONCLUSIONS α-LA down-regulates key lipogenic enzymes, inhibiting lipogenesis and reducing triglyceride accumulation through the activation of AMPK signaling pathway in human subcutaneous adipocytes from overweight/obese subjects.
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sansbury BE, Hill BG. Regulation of obesity and insulin resistance by nitric oxide. Free Radic Biol Med 2014; 73:383-99. [PMID: 24878261 PMCID: PMC4112002 DOI: 10.1016/j.freeradbiomed.2014.05.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 02/07/2023]
Abstract
Obesity is a risk factor for developing type 2 diabetes and cardiovascular disease and has quickly become a worldwide pandemic with few tangible and safe treatment options. Although it is generally accepted that the primary cause of obesity is energy imbalance, i.e., the calories consumed are greater than are utilized, understanding how caloric balance is regulated has proven a challenge. Many "distal" causes of obesity, such as the structural environment, occupation, and social influences, are exceedingly difficult to change or manipulate. Hence, molecular processes and pathways more proximal to the origins of obesity-those that directly regulate energy metabolism or caloric intake-seem to be more feasible targets for therapy. In particular, nitric oxide (NO) is emerging as a central regulator of energy metabolism and body composition. NO bioavailability is decreased in animal models of diet-induced obesity and in obese and insulin-resistant patients, and increasing NO output has remarkable effects on obesity and insulin resistance. This review discusses the role of NO in regulating adiposity and insulin sensitivity and places its modes of action into context with the known causes and consequences of metabolic disease.
Collapse
Affiliation(s)
- Brian E Sansbury
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Bradford G Hill
- Diabetes and Obesity Center, Institute of Molecular Cardiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, KY 40202, USA; Department of Biochemistry and Molecular Biology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| |
Collapse
|
27
|
Li H, Kong Y, Chang L, Feng Z, Chang N, Liu J, Long J. Determination of Lipoic Acid in Biological Samples with Acetonitrile–Salt Stacking Method in CE. Chromatographia 2013. [DOI: 10.1007/s10337-013-2560-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Huang C, Chen D, Xie Q, Yang Y, Shen W. Nebivolol stimulates mitochondrial biogenesis in 3T3-L1 adipocytes. Biochem Biophys Res Commun 2013; 438:211-7. [PMID: 23886954 DOI: 10.1016/j.bbrc.2013.07.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 01/29/2023]
Abstract
Nebivolol is a third-generation β-adrenergic receptor (β-AR) blocker with additional beneficial effects, including the improvement of lipid and glucose metabolism in obese individuals. However, the underlying mechanism of nebivolol's role in regulating the lipid profile remains largely unknown. In this study, we investigated the role of nebivolol in mitochondrial biogenesis in 3T3-L1 adipocytes. Exposure of 3T3-L1 cells to nebivolol for 24h increased mitochondrial DNA copy number, mitochondrial protein levels and the expression of transcription factors involved in mitochondrial biogenesis, including PPAR-γ coactivator-1α (PGC-1α), Sirtuin 3 (Sirt3), mitochondrial transcription factor A (Tfam) and nuclear related factor 1 (Nrf1). These changes were accompanied by an increase in oxygen consumption and in the expression of genes involved in fatty acid oxidation and antioxidant enzymes in 3T3-L1 adipocytes, including nebivolol-induced endothelial nitric oxide synthase (eNOS), as well as an increase in the formation of cyclic guanosine monophosphate (cGMP). Pretreatment with NG-nitro-L-arginine methyl ester (L-NAME) attenuated nebivolol-induced mitochondrial biogenesis, as did the soluble guanylate cyclase inhibitor, ODQ. Treatment with nebivolol and β3-AR blocker SR59230A markedly attenuated PGC-1α, Sirt3 and manganese superoxide dismutase (MnSOD) protein levels in comparison to treatment with nebivolol alone. These data indicate that the mitochondrial synthesis and metabolism in adipocytes that is promoted by nebivolol is primarily mediated through the eNOS/cGMP-dependent pathway and is initiated by the activation of β3-AR receptors.
Collapse
Affiliation(s)
- Chenglin Huang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Vascular Biology, Department of Hypertension, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, PR China
| | | | | | | | | |
Collapse
|
29
|
Rochette L, Ghibu S, Richard C, Zeller M, Cottin Y, Vergely C. Direct and indirect antioxidant properties of α-lipoic acid and therapeutic potential. Mol Nutr Food Res 2013; 57:114-25. [PMID: 23293044 DOI: 10.1002/mnfr.201200608] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 10/03/2012] [Accepted: 11/07/2012] [Indexed: 12/19/2022]
Abstract
Diabetes has emerged as a major threat to worldwide health. The exact mechanisms underlying the disease are unknown; however, there is growing evidence that the excess generation of reactive oxygen species (ROS) associated with hyperglycemia, causes oxidative stress in a variety of tissues. In this context, various natural compounds with pleiotropic actions like α-lipoic acid (LA) are of interest, especially in metabolic diseases such as diabetes. LA, either as a dietary supplement or a therapeutic agent, modulates redox potential because of its ability to match the redox status between different subcellular compartments as well as extracellularly. Both the oxidized (disulfide) and reduced (di-thiol: dihydro-lipoic acid, DHLA) forms of LA show antioxidant properties. LA exerts antioxidant effects in biological systems through ROS quenching but also via an action on transition metal chelation. Dietary supplementation with LA has been successfully employed in a variety of in vivo models of disease associated with an imbalance of redox status: diabetes and cardiovascular diseases. The complex and intimate association between increased oxidative stress and increased inflammation in related disorders such as diabetes, makes it difficult to establish the temporal sequence of the relationship.
Collapse
Affiliation(s)
- Luc Rochette
- INSERM UMR866, Laboratoire de Physiopathologie et Pharmacologie Cardio-Métaboliques, Université de Bourgogne, Facultés de Médecine et Pharmacie, 21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
30
|
Pfeifer A, Kilić A, Hoffmann LS. Regulation of metabolism by cGMP. Pharmacol Ther 2013; 140:81-91. [PMID: 23756133 DOI: 10.1016/j.pharmthera.2013.06.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 01/16/2023]
Abstract
The second messenger cyclic guanosine monophosphate (cGMP) mediates the physiological effects of nitric oxide and natriuretic peptides in a broad spectrum of tissues and cells. So far, the major focus of research on cGMP lay on the cardiovascular system. Recent evidence suggests that cGMP also plays a major role in the regulation of cellular and whole-body metabolism. Here, we focus on the role of cGMP in adipose tissue. In addition, other organs important for the regulation of metabolism and their regulation by cGMP are discussed. Targeting the cGMP signaling pathway could be an exciting approach for the regulation of energy expenditure and the treatment of obesity.
Collapse
Affiliation(s)
- Alexander Pfeifer
- Institute of Pharmacology and Toxicology, Biomedical Center, University of Bonn, Germany.
| | | | | |
Collapse
|
31
|
Fernández-Galilea M, Prieto-Hontoria PL, Martínez JA, Moreno-Aliaga MJ. Antiobesity effects of α-lipoic acid supplementation. ACTA ACUST UNITED AC 2013. [DOI: 10.2217/clp.13.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
32
|
Prieto-Hontoria PL, Fernández-Galilea M, Pérez-Matute P, Martínez JA, Moreno-Aliaga MJ. Lipoic acid inhibits adiponectin production in 3T3-L1 adipocytes. J Physiol Biochem 2013; 69:595-600. [PMID: 23307774 DOI: 10.1007/s13105-012-0230-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 12/21/2012] [Indexed: 12/28/2022]
Abstract
Lipoic acid (LA) is a naturally occurring compound with antioxidant properties. Recent attention has been focused on the potential beneficial effects of LA on obesity and related metabolic disorders. Dietary supplementation with LA prevents insulin resistance and upregulates adiponectin, an insulin-sensitizing adipokine, in obese rodents. The aim of this study was to investigate the direct effects of LA on adiponectin production in cultured adipocytes, as well as the potential signaling pathways involved. For this purpose, fully differentiated 3T3-L1 adipocytes were treated with LA (1-500 μM) during 24 h. The amount of adiponectin secreted to media was detected by ELISA, while adiponectin mRNA expression was determined by RT-PCR. Treatment with LA induced a dose-dependent inhibition on adiponectin gene expression and protein secretion. Pretreatment with the PI3K inhibitor LY294002 inhibited adiponectin secretion and mRNA levels, and significantly potentiated the inhibitory effect of LA on adiponectin secretion. The AMPK activator AICAR also reduced adiponectin production, but surprisingly, it was able to reverse the LA-induced inhibition of adiponectin. The JNK inhibitor SP600125 and the MAPK inhibitor PD98059 did not modify the inhibitory effect of LA on adiponectin. In conclusion, our results revealed that LA reduces adiponectin secretion in 3T3-L1 adipocytes, which contrasts with the stimulation of adiponectin described after in vivo supplementation with LA, suggesting that an indirect mechanism or some in vivo metabolic processing is involved.
Collapse
Affiliation(s)
- Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science and Physiology, University of Navarra, Pamplona, Spain
| | | | | | | | | |
Collapse
|
33
|
Mitschke MM, Hoffmann LS, Gnad T, Scholz D, Kruithoff K, Mayer P, Haas B, Sassmann A, Pfeifer A, Kilic A. Increased cGMP promotes healthy expansion and browning of white adipose tissue. FASEB J 2013; 27:1621-30. [PMID: 23303211 DOI: 10.1096/fj.12-221580] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
With more than half a billion individuals affected worldwide, obesity has reached pandemic proportions. Development of "brown-like" or "brite" adipocytes within white adipose tissue (WAT) has potential antiobesity and insulin-sensitizing effects. We investigated the role of cyclic GMP (cGMP) signaling, focusing on cGMP-dependent protein kinase I (PKGI) in WAT. PKGI is expressed in murine WAT, primary adipocytes, and 3T3-L1. Treatment of adipocytes with cGMP resulted in increased adipogenesis, with a 54% increase in expression of peroxisome proliferator-activated receptor-γ. Lentiviral overexpression of PKGI further increased adipogenesis, whereas loss of PKGI significantly reduced adipogenic differentiation. In addition to adipogenic effects, PKGI had an antihypertrophic and anti-inflammatory effect via RhoA phosphorylation and reduction of proinflammatory adipokine expression. Moreover, PKGI induced a 4.3-fold increase in abundance of UCP-1 and the development of a brown-like thermogenic program in primary adipocytes. Notably, treatment of C57BL/6 mice with phosphodiesterase inhibitor sildenafil (12 mg/kg/d) for 7 d caused 4.6-fold increase in uncoupling protein-1 expression and promoted establishment of a brown fat cell-like phenotype ("browning") of WAT in vivo. Taken together, PKGI is a key regulator of cell size, adipokine secretion and browning of white fat depots and thus could be a valuable target in developing novel treatments for obesity.
Collapse
|
34
|
Fernández-Galilea M, Pérez-Matute P, Prieto-Hontoria PL, Martinez JA, Moreno-Aliaga MJ. Effects of lipoic acid on lipolysis in 3T3-L1 adipocytes. J Lipid Res 2012; 53:2296-306. [PMID: 22941773 PMCID: PMC3465999 DOI: 10.1194/jlr.m027086] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/31/2012] [Indexed: 12/22/2022] Open
Abstract
Lipoic acid (LA) is a naturally occurring compound with beneficial effects on obesity. The aim of this study was to evaluate its effects on lipolysis in 3T3-L1 adipocytes and the mechanisms involved. Our results revealed that LA induced a dose- and time-dependent lipolytic action, which was reversed by pretreatment with the c-Jun N-terminal kinase inhibitor SP600125, the PKA inhibitor H89, and the AMP-activated protein kinase activator AICAR. In contrast, the PI3K/Akt inhibitor LY294002 and the PDE3B antagonist cilostamide enhanced LA-induced lipolysis. LA treatment for 1 h did not modify total protein content of hormone-sensitive lipase (HSL) but significantly increased the phosphorylation of HSL at Ser(563) and at Ser(660), which was reversed by H89. LA treatment also induced a marked increase in PKA-mediated perilipin phosphorylation. LA did not significantly modify the protein levels of adipose triglyceride lipase or its activator comparative gene identification 58 (CGI-58) and inhibitor G(0)/G(1) switch gene 2 (G0S2). Furthermore, LA caused a significant inhibition of adipose-specific phospholipase A2 (AdPLA) protein and mRNA levels in parallel with a decrease in the amount of prostaglandin E(2) released and an increase in cAMP content. Together, these data suggest that the lipolytic actions of LA are mainly mediated by phosphorylation of HSL through cAMP-mediated activation of protein kinase A probably through the inhibition of AdPLA and prostaglandin E(2).
Collapse
Affiliation(s)
- Marta Fernández-Galilea
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain; and
| | - Patricia Pérez-Matute
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain; and
- HIV and Associated Metabolic Alterations Unit, Infectious Diseases Area, Center for Biomedical Research of La Rioja (CIBIR), Logroño, Spain
| | - Pedro L Prieto-Hontoria
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain; and
| | - J Alfredo Martinez
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain; and
| | - Maria J Moreno-Aliaga
- Department of Nutrition, Food Science, Physiology and Toxicology, University of Navarra, Pamplona, Spain; and
| |
Collapse
|
35
|
Sharma S, Sun X, Rafikov R, Kumar S, Hou Y, Oishi PE, Datar SA, Raff G, Fineman JR, Black SM. PPAR-γ regulates carnitine homeostasis and mitochondrial function in a lamb model of increased pulmonary blood flow. PLoS One 2012; 7:e41555. [PMID: 22962578 PMCID: PMC3433474 DOI: 10.1371/journal.pone.0041555] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2012] [Accepted: 06/27/2012] [Indexed: 12/11/2022] Open
Abstract
Objective Carnitine homeostasis is disrupted in lambs with endothelial dysfunction secondary to increased pulmonary blood flow (Shunt). Our recent studies have also indicated that the disruption in carnitine homeostasis correlates with a decrease in PPAR-γ expression in Shunt lambs. Thus, this study was carried out to determine if there is a causal link between loss of PPAR-γ signaling and carnitine dysfunction, and whether the PPAR-γ agonist, rosiglitazone preserves carnitine homeostasis in Shunt lambs. Methods and Results siRNA-mediated PPAR-γ knockdown significantly reduced carnitine palmitoyltransferases 1 and 2 (CPT1 and 2) and carnitine acetyltransferase (CrAT) protein levels. This decrease in carnitine regulatory proteins resulted in a disruption in carnitine homeostasis and induced mitochondrial dysfunction, as determined by a reduction in cellular ATP levels. In turn, the decrease in cellular ATP attenuated NO signaling through a reduction in eNOS/Hsp90 interactions and enhanced eNOS uncoupling. In vivo, rosiglitazone treatment preserved carnitine homeostasis and attenuated the development of mitochondrial dysfunction in Shunt lambs maintaining ATP levels. This in turn preserved eNOS/Hsp90 interactions and NO signaling. Conclusion Our study indicates that PPAR-γ signaling plays an important role in maintaining mitochondrial function through the regulation of carnitine homeostasis both in vitro and in vivo. Further, it identifies a new mechanism by which PPAR-γ regulates NO signaling through Hsp90. Thus, PPAR-γ agonists may have therapeutic potential in preventing the endothelial dysfunction in children with increased pulmonary blood flow.
Collapse
Affiliation(s)
- Shruti Sharma
- Vascular Biology Center, Georgia Health Sciences University, Augusta, Georgia, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu S, Yu C, Yang F, Paganini-Hill A, Fisher MJ. Phosphodiesterase inhibitor modulation of brain microvascular endothelial cell barrier properties. J Neurol Sci 2012; 320:45-51. [PMID: 22819056 DOI: 10.1016/j.jns.2012.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 05/08/2012] [Accepted: 06/20/2012] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE Brain microvascular disorders, including cerebral microscopic hemorrhage, have high prevalence but few treatment options. To develop new strategies for these disorders, we analyzed the effects of several phosphodiesterase (PDE) inhibitors on human brain microvascular endothelial cells (HBECs). METHODS We modified barrier properties and response to histamine of HBECs using cilostazol (PDE3 inhibitor), rolipram (PDE4 inhibitor), and dipyridamole (non-specific PDE inhibitor). RESULTS Cilostazol and dipyridamole altered the distribution of endothelial F-actin. Cilostazol increased expression of tight junction protein claudin-5 by 118% compared to control (p<.001). Permeability to albumin was decreased by cilostazol (21% vs control, p<.05), and permeability to dextran (70Kd) was decreased by both cilostazol (37% vs control, p<.001) and dipyridamole (44% vs control, p<.0001). Cilostazol increased trans-endothelial electrical resistance (TEER) after 12h by 111% compared to control (p<.0001). Protein kinase A (PKA) inhibitors H89 and KT5720 attenuated the TEER increase by cilostazol. Transient increased permeability in response to histamine was significantly mitigated by cilostazol, but not by other PDE inhibitors. CONCLUSIONS These findings demonstrate distinctive effects of cilostazol and other PDE inhibitors on HBECs, including enhanced barrier characteristics and mitigation of response to histamine. PKA-mediated effects of cilostazol were prominent in this model. These in vitro findings are consistent with therapeutic potential of PDE inhibitors in human brain microvascular disorders.
Collapse
Affiliation(s)
- Shuo Liu
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, CA, United States
| | | | | | | | | |
Collapse
|
37
|
Astapova O, Leff T. Adiponectin and PPARγ: cooperative and interdependent actions of two key regulators of metabolism. VITAMINS AND HORMONES 2012; 90:143-62. [PMID: 23017715 DOI: 10.1016/b978-0-12-398313-8.00006-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent advances in the understanding of adiponectin and other adipokines have highlighted the role of adipose tissue as an active endocrine organ. One of the central regulators of adipocyte biology is peroxisome proliferator-activated receptor gamma (PPARγ), a transcription factor that induces the adipogenic gene expression program during development, promotes adipose remodeling, and regulates the functions of adipocytes in lipid storage, adipokine secretion, and energy homeostasis. Activation of PPARγ results in increased insulin sensitivity in skeletal muscle and liver and improves the secretory profile of adipose tissue, favoring release of insulin-sensitizing adipokines, such as adiponectin, and reducing inflammatory cytokines. Increased adiponectin production is likely a significant mediator of the systemic effects of PPARγ activation. This chapter will review the interplay between PPARγ and adiponectin in regulating metabolism, presenting evidence that PPARγ regulates adiponectin gene expression, processing, and secretion and that the two proteins have overlapping effects on downstream metabolic pathways.
Collapse
Affiliation(s)
- Olga Astapova
- Department of Pathology, The Cardiovascular Research Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | |
Collapse
|
38
|
Prieto-Hontoria PL, Pérez-Matute P, Fernández-Galilea M, Martínez JA, Moreno-Aliaga MJ. Lipoic acid inhibits leptin secretion and Sp1 activity in adipocytes. Mol Nutr Food Res 2011; 55:1059-69. [DOI: 10.1002/mnfr.201000534] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 12/17/2010] [Accepted: 01/12/2011] [Indexed: 01/27/2023]
|