1
|
Pușcașu C, Zanfirescu A, Negreș S, Șeremet OC. Exploring the Multifaceted Potential of Sildenafil in Medicine. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:2190. [PMID: 38138293 PMCID: PMC10744870 DOI: 10.3390/medicina59122190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023]
Abstract
Phosphodiesterase type 5 (PDE5) is pivotal in cellular signalling, regulating cyclic guanosine monophosphate (cGMP) levels crucial for smooth muscle relaxation and vasodilation. By targeting cGMP for degradation, PDE5 inhibits sustained vasodilation. PDE5 operates in diverse anatomical regions, with its upregulation linked to various pathologies, including cancer and neurodegenerative diseases. Sildenafil, a selective PDE5 inhibitor, is prescribed for erectile dysfunction and pulmonary arterial hypertension. However, considering the extensive roles of PDE5, sildenafil might be useful in other pathologies. This review aims to comprehensively explore sildenafil's therapeutic potential across medicine, addressing a gap in the current literature. Recognising sildenafil's broader potential may unveil new treatment avenues, optimising existing approaches and broadening its clinical application.
Collapse
Affiliation(s)
| | - Anca Zanfirescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (C.P.); (S.N.); (O.C.Ș.)
| | | | | |
Collapse
|
2
|
Awad AK, Gad ER, Abdelgalil MS, Elsaeidy AS, Ahmed O, Elbadawy MA. Sildenafil for congenital heart diseases induced pulmonary hypertension, a meta-analysis of randomized controlled trials. BMC Pediatr 2023; 23:372. [PMID: 37474896 PMCID: PMC10360284 DOI: 10.1186/s12887-023-04180-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Sildenafil was first prescribed for angina pectoris and then for erectile dysfunction from its effects on vascular smooth muscle relaxation and vasodilatation. Recently, sildenafil has been proposed for congenital heart diseases induced pulmonary hypertension, which constitutes a huge burden on children's health and can attribute to fatal complications due to presence of unoxygenated blood in the systemic circulation. Therefore, our meta-analysis aims to further investigate the safety and efficacy of sildenafil on children population. METHODS We searched the following electronic databases: PubMed, Cochrane CENTRAL, WOS, Embase, and Scopus from inception to April 20th, 2022. Randomized controlled trials that assess the efficacy of using sildenafil in comparison to a placebo or any other vasodilator drug were eligible for inclusion. The inverse variance method was used to pool study effect estimates using the random effect model. Effect sizes are provided in the form of mean difference (MD) with 95% confidence intervals (CI). RESULTS Our study included 14 studies with (n = 849 children) with a mean age of 7.9 months old. Sildenafil showed a statistically significant decrease over placebo in mean and systolic pulmonary artery pressure (PAP) with MD -7.42 (95%CI [-13.13, -1.71], P = 0.01) and -8.02 (95%CI [-11.16, -4.88], P < 0.0001), respectively. Sildenafil revealed a decrease in mean aortic pressure and pulmonary artery/aortic pressure ratio over placebo with MD -0.34 (95%CI [-2.42, 1.73], P = 0.75) and MD -0.10 (95%CI [-0.11, -0.09], P < 0.00001), respectively. Regarding post corrective operations parameters, sildenafil had a statistically significant lower mechanical ventilation time, intensive care unit stay, and hospital stay over placebo with MD -19.43 (95%CI [-31.04, -7.81], s = 0.001), MD -34.85 (95%CI [-50.84, -18.87], P < 0.00001), and MD -41.87 (95%CI [-79.41, -4.33], P = 0.03), respectively. Nevertheless, no difference in mortality rates between sildenafil and placebo with OR 0.25 (95%CI 0.05, 1.30], P = 0.10) or tadalafil with OR 1 (95%CI 0.06, 17.12], P = 1). CONCLUSION Sildenafil is a well-tolerated treatment in congenital heart diseases induced pulmonary hypertension, as it has proven its efficacy not only in lowering both PAP mean and systolic but also in reducing the ventilation time, intensive care unit and hospital stay with no difference observed regarding mortality rates.
Collapse
Affiliation(s)
- Ahmed K. Awad
- Faculty of Medicine, Ain-Shams University, Cairo, Egypt
| | | | | | | | - Omar Ahmed
- Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | | |
Collapse
|
3
|
Rogacka D, Rachubik P, Audzeyenka I, Kulesza T, Szrejder M, Myślińska D, Angielski S, Piwkowska A. Inhibition of phosphodiesterase 5A by tadalafil improves SIRT1 expression and activity in insulin-resistant podocytes. Cell Signal 2023; 105:110622. [PMID: 36754339 DOI: 10.1016/j.cellsig.2023.110622] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/13/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023]
Abstract
A decrease in intracellular levels of 3',5'-cyclic guanosine monophosphate (cGMP) has been implicated in the progression of diabetic nephropathy. Hyperglycemia significantly inhibits cGMP-dependent pathway activity in the kidney, leading to glomerular damage and proteinuria. The enhancement of activity of this pathway that is associated with an elevation of cGMP levels may be achieved by inhibition of the cGMP specific phosphodiesterase 5A (PDE5A) using selective inhibitors, such as tadalafil. Hyperglycemia decreased the insulin responsiveness of podocytes and impaired podocyte function. These effects were associated with lower protein amounts and activity of the protein deacetylase sirtuin 1 (SIRT1) and a decrease in the phosphorylation of adenosine monophosphate-dependent protein kinase (AMPK). We found that PDE5A protein levels increased in hyperglycemia, and PDE5A downregulation improved the insulin responsiveness of podocytes with reestablished SIRT1 expression and activity. PDE5A inhibitors potentiate nitric oxide (NO)/cGMP signaling, and NO modulates the activity and expression of SIRT1. Therefore, we investigated the effects of tadalafil on SIRT1 and AMPK in the context of improving the insulin sensitivity in podocytes and podocyte function in hyperglycemia. Our study revealed that tadalafil restored SIRT1 expression and activity and activated AMPK by increasing its phosphorylation. Tadalafil also restored stimulating effect of insulin on glucose transport in podocytes with high glucose-induced insulin resistance. Additionally, tadalafil improved the function of podocytes that were exposed to high glucose concentrations. Our results display novel mechanisms involved in the pathogenesis of glomerulopathies in diabetes, which may contribute to the development of more effective treatment strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Dorota Rogacka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Patrycja Rachubik
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Irena Audzeyenka
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Tomasz Kulesza
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Maria Szrejder
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk 80-308, Poland.
| | - Stefan Angielski
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland.
| | - Agnieszka Piwkowska
- Laboratory of Molecular and Cellular Nephrology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Wita Stwosza 63, Gdansk 80-308, Poland; Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, Gdansk 80-308, Poland.
| |
Collapse
|
4
|
Shnayder NA, Ashkhotov AV, Trefilova VV, Nurgaliev ZA, Novitsky MA, Petrova MM, Narodova EA, Al-Zamil M, Chumakova GA, Garganeeva NP, Nasyrova RF. Molecular Basic of Pharmacotherapy of Cytokine Imbalance as a Component of Intervertebral Disc Degeneration Treatment. Int J Mol Sci 2023; 24:ijms24097692. [PMID: 37175399 PMCID: PMC10178334 DOI: 10.3390/ijms24097692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Intervertebral disc degeneration (IDD) and associated conditions are an important problem in modern medicine. The onset of IDD may be in childhood and adolescence in patients with a genetic predisposition. With age, IDD progresses, leading to spondylosis, spondylarthrosis, herniated disc, spinal canal stenosis. One of the leading mechanisms in the development of IDD and chronic back pain is an imbalance between pro-inflammatory and anti-inflammatory cytokines. However, classical therapeutic strategies for correcting cytokine imbalance in IDD do not give the expected response in more than half of the cases. The purpose of this review is to update knowledge about new and promising therapeutic strategies based on the correction of the molecular mechanisms of cytokine imbalance in patients with IDD. This review demonstrates that knowledge of the molecular mechanisms of the imbalance between pro-inflammatory and anti-inflammatory cytokines may be a new key to finding more effective drugs for the treatment of IDD in the setting of acute and chronic inflammation.
Collapse
Affiliation(s)
- Natalia A Shnayder
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Azamat V Ashkhotov
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
| | - Vera V Trefilova
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Zaitun A Nurgaliev
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Maxim A Novitsky
- Department of Neurology, Hospital for War Veterans, 193079 Saint Petersburg, Russia
| | - Marina M Petrova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Ekaterina A Narodova
- Shared Core Facilities "Molecular and Cell Technologies", V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Mustafa Al-Zamil
- Department of Physiotherapy, Faculty of Continuing Medical Education, Peoples' Friendship University of Russia, 117198 Moscow, Russia
| | - Galina A Chumakova
- Department of Therapy and General Medical Practice with a Course of Postgraduate Professional Education, Altai State Medical University, 656038 Barnaul, Russia
| | - Natalia P Garganeeva
- Department of General Medical Practice and Outpatient Therapy, Siberian State Medical University, 634050 Tomsk, Russia
| | - Regina F Nasyrova
- Institute of Personalized Psychiatry and Neurology, Shared Core Facilities, V.M. Bekhterev National Medical Research Centre for Psychiatry and Neurology, 192019 Saint Petersburg, Russia
- International Centre for Education and Research in Neuropsychiatry, Samara State Medical University, 443016 Samara, Russia
| |
Collapse
|
5
|
Garcia-Gonzalez MA, Vallejo-Ruiz V, Atonal-Flores F, Flores-Hernandez J, Torres-Ramírez O, Diaz-Fonsecae A, Perez Vizcaino F, Lopez-Lopez JG. Sildenafil prevents right ventricular hypertrophy and improves heart rate variability in rats with pulmonary hypertension secondary to experimental diabetes. Clin Exp Hypertens 2022; 44:355-365. [DOI: 10.1080/10641963.2022.2050743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Miguel Angel Garcia-Gonzalez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| | - Veronica Vallejo-Ruiz
- Instituto Mexicano del Seguro Social, Centro de Investigación Biomédica de Oriente, Laboratorio de Biología Molecular, Puebla, Mexico
| | - Fausto Atonal-Flores
- Departamento de Fisiología, Benemérita Universidad Autónoma de Puebla, Facultad de Medicina, Metepec, Mexico
| | - Jorge Flores-Hernandez
- Laboratorio de Neuromodulación, Benemerita Universidad Autonoma de Puebla, Fisiología, Puebla,Mexico
| | - Oswaldo Torres-Ramírez
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Alfonso Diaz-Fonsecae
- Departamento de Farmacia, Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias Químicas, Puebla, Mexico
| | - Francisco Perez Vizcaino
- Departamento de Farmacología y Toxicología, Universidad Complutense de Madrid, Escuela de Medicina, Puebla,Mexico
| | - Jose Gustavo Lopez-Lopez
- Departamento de Farmacia, Benemerita Universidad Autonoma de Puebla, Laboratorio de Farmacia Clinica, Edificio FCQ10, Ciudad Universitaria, Col. Jardines de San Manuel, Puebla, Mexico
| |
Collapse
|
6
|
Abdelzaher WY, Bahaa HA, Elkhateeb R, Atta M, Fawzy MA, Ahmed AF, Rofaeil RR. Role of JNK, ERK, and p38 MAPK signaling pathway in protective effect of sildenafil in cyclophosphamide-induced placental injury in rats. Life Sci 2022; 293:120354. [PMID: 35074407 DOI: 10.1016/j.lfs.2022.120354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 01/14/2023]
Abstract
AIMS Chemotherapeutic agents; cyclophosphamide (CYC) is used for treatment of cancer and autoimmune diseases. Grievously, CYC is non-selective as it affects both tumor and healthy cells resulting in systemic toxicity including placenta. The present study aimed to evaluate the effect of phosphodiesterase 5 inhibitor, sildenafil (Sild) on CYC-induced placental injury in rats. MATERIALS AND METHODS Thirty-two female Wister rats were randomly divided into 4 experimental groups. Group 1: control pregnant group; Group 2: Sild-treated pregnant rats; Group 3: pregnant rats received CYC; Group 4: pregnant rats received Sild and CYC. Placental malondialdehyde (MDA), total nitrite/nitrate (NOx), reduced glutathione (GSH), tumor necrosis factor-α (TNF-α), platelet growth factor (PlGF), c-Jun N-terminal kinase (JNK), p38 mitogen-activated protein kinase (p38MAPK), extracellular signal-regulated kinase (ERK) and cleaved caspase-3 were measured. Histological changes, Nuclear Factor kappa-light-chain-enhancer of activated B (NF-κB), Connexin 43 (GJA1) and proliferating cell nuclear antigen (PCNA) immuno-expressions were also evaluated. KEY FINDINGS CYC showed significant decrease in placental GSH, NOx, PlGF, GJA1 and PCNA immuno-expressions but significant increase in placental MDA, TNF-α, JNK, P38MAPK, ERK, caspase-3 and NF-kB immuno-expression. Sild showed significant improvement in all oxidative, inflammatory and apoptotic parameters. SIGNIFICANCE Sild is a promising protective drug against placental injury induced by CYC through antagonizing MAPK (JNK, ERK, and p38) signaling pathway with anti-oxidant, anti-inflammatory and anti-apoptotic effects.
Collapse
Affiliation(s)
| | - Haitham Ahmed Bahaa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Reham Elkhateeb
- Department of Obstetrics and Gynecology, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Medhat Atta
- Department of Anatomy, Faculty of Medicine, Minia University, Minia 61511, Egypt
| | - Michael Atef Fawzy
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Amira F Ahmed
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Remon Roshdy Rofaeil
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia 61511, Egypt; Department of Pharmacology, Deraya University, New Minia, Egypt.
| |
Collapse
|
7
|
El-Kady MM, Naggar RA, Guimei M, Talaat IM, Shaker OG, Saber-Ayad M. Early Renoprotective Effect of Ruxolitinib in a Rat Model of Diabetic Nephropathy. Pharmaceuticals (Basel) 2021; 14:ph14070608. [PMID: 34202668 PMCID: PMC8308627 DOI: 10.3390/ph14070608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 01/12/2023] Open
Abstract
Diabetic kidney disease (DKD) is still one of the unresolved major complications of diabetes mellitus, which leads ultimately to end-stage renal disease in both type 1 and type 2 diabetes patients. Available drugs that suppress the renin-angiotensin system have partially minimized the disease impact. Yet, there is an unmet need for new therapeutic interventions to protect the kidneys of diabetic patients. In DN, glomerular sclerosis and tubulointerstitial fibrosis are mediated through several pathways, of which JAK/STAT is a key one. The current study explored the potential renoprotective effect of the JAK1/JAK2 inhibitor ruxolitinib (at doses of 0.44, 2.2, and 4.4 mg·kg-1) compared to that of enalapril at a dose of 10 mg·kg-1, in a rat model of streptozotocin-induced diabetes mellitus over 8 weeks. The effect of ruxolitinib was assessed by determining urinary albumin/creatinine ratio, serum level of cystatin, and levels of TGF-β1, NF-κB, and TNF-α in renal tissue homogenates by biochemical assays, the glomerular sclerosis and tubulointerstitial fibrosis scores by histological analysis, and fibronectin, TGF-β1, and Vimentin levels by immunohistochemical staining with the respective antibodies. Our results revealed a significant early favorable effect of a two-week ruxolitinib treatment on the renal function, supported by a decline in the proinflammatory biomarkers of DKD. This pre-clinical study suggests that the renoprotective effect of ruxolitinib in the long term should be investigated in animals, as this drug may prove to be a potential option for the treatment of diabetic kidney disease.
Collapse
Affiliation(s)
- Mohamed M. El-Kady
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo 11559, Egypt;
| | - Reham A. Naggar
- Department of Pharmacology, Faculty of Pharmacy, Misr University for Science and Technology, Giza 12411, Egypt;
| | - Maha Guimei
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt; (M.G.); (I.M.T.)
| | - Iman M. Talaat
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21526, Egypt; (M.G.); (I.M.T.)
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Olfat G. Shaker
- Department of Biochemistry and Molecular Biology, Faculty of Medicine Cairo University, Cairo 11559, Egypt
- Correspondence: (O.G.S.); (M.S.-A.)
| | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- Correspondence: (O.G.S.); (M.S.-A.)
| |
Collapse
|
8
|
Zhang Q, Yang M, Xiao Y, Han Y, Yang S, Sun L. Towards Better Drug Repositioning: Targeted Immunoinflammatory Therapy for Diabetic Nephropathy. Curr Med Chem 2021; 28:1003-1024. [PMID: 31701843 DOI: 10.2174/0929867326666191108160643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 11/22/2022]
Abstract
Diabetic nephropathy (DN) is one of the most common and important microvascular complications of diabetes mellitus (DM). The main clinical features of DN are proteinuria and a progressive decline in renal function, which are associated with structural and functional changes in the kidney. The pathogenesis of DN is multifactorial, including genetic, metabolic, and haemodynamic factors, which can trigger a sequence of events. Controlling metabolic risks such as hyperglycaemia, hypertension, and dyslipidaemia is not enough to slow the progression of DN. Recent studies emphasized immunoinflammation as a critical pathogenic factor in the progression of DN. Therefore, targeting inflammation is considered a potential and novel treatment strategy for DN. In this review, we will briefly introduce the inflammatory process of DN and discuss the anti-inflammatory effects of antidiabetic drugs when treating DN.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ying Xiao
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shikun Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Coskuner ER, Ozkan B. Reno-protective effects of Phosphodiesterase 5 inhibitors. Clin Exp Nephrol 2021; 25:585-597. [PMID: 33754203 DOI: 10.1007/s10157-021-02051-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
The kidneys are vital organs that play an important role in removing waste materials from the blood, electrolyte balance, blood pressure regulation, and red blood cell genesis. Kidney disease can be caused by various factors, including diabetes, ischemia/reperfusion injury, and nephrotoxic agents. Inflammation and oxidative stress play a key role in the progression and pathogenesis of kidney diseases. Acute kidney injury (AKI) and chronic kidney disease (CKD) are important health problems worldwide, as they are associated with a long-term hospital stay, and increased morbidity and mortality in high-risk patients. Current standard therapeutic options are not sufficient to delay or stop the loss of kidney function. Therefore, it is necessary to develop new therapeutic options. Phosphodiesterase 5 inhibitors (PDE5Is) are a currently available class of drugs that are used to treat erectile dysfunction and pulmonary hypertension in humans. However, recent evidence suggests that PDE5Is have beneficial renoprotective effects via a variety of mechanisms. In this review, the benefits of PDE5 inhibitors in clinical conditions associated with kidney disease, such as diabetic nephropathy, ischemia-reperfusion injury, and acute and chronic kidney injury, are summarized.
Collapse
Affiliation(s)
- Enis Rauf Coskuner
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Acibadem Bakirkoy Hospital, Halit Ziya Usakligil Cad No:1, Bakirkoy, 34140, Istanbul, Turkey.
| | - Burak Ozkan
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Acibadem Bakirkoy Hospital, Halit Ziya Usakligil Cad No:1, Bakirkoy, 34140, Istanbul, Turkey
| |
Collapse
|
10
|
Bergougnan L, Andersen G, Plum-Mörschel L, Evaristi MF, Poirier B, Tardat A, Ermer M, Herbrand T, Arrubla J, Coester HV, Sansone R, Heiss C, Vitse O, Hurbin F, Boiron R, Benain X, Radzik D, Janiak P, Muslin AJ, Hovsepian L, Kirkesseli S, Deutsch P, Parkar AA. Endothelial-protective effects of a G-protein-biased sphingosine-1 phosphate receptor-1 agonist, SAR247799, in type-2 diabetes rats and a randomized placebo-controlled patient trial. Br J Clin Pharmacol 2020; 87:2303-2320. [PMID: 33125753 PMCID: PMC8247405 DOI: 10.1111/bcp.14632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/20/2020] [Accepted: 10/24/2020] [Indexed: 12/12/2022] Open
Abstract
Aims SAR247799 is a G‐protein‐biased sphingosine‐1 phosphate receptor‐1 (S1P1) agonist designed to activate endothelial S1P1 and provide endothelial‐protective properties, while limiting S1P1 desensitization and consequent lymphocyte‐count reduction associated with higher doses. The aim was to show whether S1P1 activation can promote endothelial effects in patients and, if so, select SAR247799 doses for further clinical investigation. Methods Type‐2 diabetes patients, enriched for endothelial dysfunction (flow‐mediated dilation, FMD <7%; n = 54), were randomized, in 2 sequential cohorts, to 28‐day once‐daily treatment with SAR247799 (1 or 5 mg in ascending cohorts), placebo or 50 mg sildenafil (positive control) in a 5:2:2 ratio per cohort. Endothelial function was assessed by brachial artery FMD. Renal function, biomarkers and lymphocytes were measured following 5‐week SAR247799 treatment (3 doses) to Zucker diabetic fatty rats and the data used to select the doses for human testing. Results The maximum FMD change from baseline vs placebo for all treatments was reached on day 35; mean differences vs placebo were 0.60% (95% confidence interval [CI] −0.34 to 1.53%; P = .203) for 1 mg SAR247799, 1.07% (95% CI 0.13 to 2.01%; P = .026) for 5 mg SAR247799 and 0.88% (95% CI −0.15 to 1.91%; P = .093) for 50 mg sildenafil. Both doses of SAR247799 were well tolerated, did not affect blood pressure, and were associated with minimal‐to‐no lymphocyte reduction and small‐to‐moderate heart rate decrease. Conclusion These data provide the first human evidence suggesting endothelial‐protective properties of S1P1 activation, with SAR247799 being as effective as the clinical benchmark, sildenafil. Further clinical testing of SAR247799, at sub‐lymphocyte‐reducing doses (≤5 mg), is warranted in vascular diseases associated with endothelial dysfunction.
Collapse
Affiliation(s)
- Luc Bergougnan
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | - Bruno Poirier
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Agnes Tardat
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | | | | | | | | | - Roberto Sansone
- Division of Cardiology, Pulmonary diseases and Vascular medicine, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, University of Surrey, Stag Hill, Guildford, UK
| | - Olivier Vitse
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Fabrice Hurbin
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - Rania Boiron
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Xavier Benain
- Sanofi R&D, 371 Rue du Professeur Blayac, Montpellier, France
| | - David Radzik
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | - Philip Janiak
- Sanofi R&D, 1 Avenue Pierre Brossolette, Chilly Mazarin, France
| | | | | | | | | | | |
Collapse
|
11
|
Azouz AA, Saleh E, Abo-Saif AA. Aliskiren, tadalafil, and cinnamaldehyde alleviate joint destruction biomarkers; MMP-3 and RANKL; in complete Freund's adjuvant arthritis model: Downregulation of IL-6/JAK2/STAT3 signaling pathway. Saudi Pharm J 2020; 28:1101-1111. [PMID: 32922141 PMCID: PMC7474170 DOI: 10.1016/j.jsps.2020.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune inflammatory disease, which is accompanied by progressive joint damage and disability. The intolerability of conventional antirheumatic drugs by some patients necessitates the search for effective antirheumatic agents having better tolerability. In the current work, we aimed to investigate the efficacy of cinnamaldehyde, tadalafil, and aliskiren as potential antirheumatic candidates and to explore their modulatory effects on joint destruction, inflammatory response, and intracellular signaling. Arthritis was induced in female Wistar rats by complete Freund's adjuvant (CFA) 0.4 ml s.c. on days 1, 4, and 7. Treated groups received their respective drugs, starting from day 13, daily for 3 weeks. Methotrexate and prednisolone were the standard antirheumatic drugs, while cinnamaldehyde, tadalafil, and aliskiren were the test agents. Treatment with cinnamaldehyde, tadalafil, or aliskiren reduced serum levels of rheumatoid factor, and pro-inflammatory cytokines; tumor necrosis factor-alpha and interleukin-6 (IL-6), along with elevated level of IL-10 which is an anti-inflammatory cytokine. Besides, cartilage and bone destruction biomarkers; matrix metalloproteinase-3 (MMP-3) and receptor activator of nuclear factor-kappa B ligand (RANKL); were significantly reduced after treatment with the test agents, which was further confirmed by histopathological investigation. The elevated protein expressions of phosphorylated-Janus kinase 2 (p-JAK2), phosphorylated-signal transducer and activator of transcription 3 (p-STAT3), and inducible nitric oxide synthase (iNOS) in articular tissue were markedly attenuated after treatment with cinnamaldehyde, tadalafil, or aliskiren, while that of endothelial nitric oxide synthase (eNOS) was greatly enhanced. In addition, oxidative stress and inflammatory markers such as malondialdehyde, nitric oxide, and myeloperoxidase were reduced in joint tissue after treatment with the test agents, while glutathione content was elevated. Furthermore, the renin inhibitor aliskiren produced effects close to those of the normal and methotrexate, the gold standard antirheumatic drug, in most of the measured parameters. Collectively, these findings led to the assumption that the downregulation of IL-6/JAK2/STAT3 signaling by cinnamaldehyde, tadalafil, and aliskiren could alleviate joint destruction by MMP-3 and RANKL, reduce iNOS, and enhance eNOS expressions. Moreover, aliskiren could be a promising therapeutic agent for RA, because of its ability to normalize most of the measured parameters after CFA-induced arthritis.
Collapse
Key Words
- Aliskiren
- CFA, complete Freund's adjuvant
- CFA-induced arthritis
- DMARD, disease-modifying antirheumatic drug
- GSH, reduced glutathione
- H&E, hematoxylin and eosin
- IL-10, interleukin-10
- IL-6, interleukin-6
- IL-6/JAK2/STAT3 signaling
- JAK2, Janus kinase 2
- MDA, malondialdehyde
- MMP-3
- MMP-3, matrix metalloproteinase-3
- MPO, myeloperoxidase
- NO, nitric oxide
- PDE, phosphodiesterase
- RA, rheumatoid arthritis
- RANKL
- RANKL, receptor activator of nuclear factor-kappa B ligand
- RAS, renin angiotensin system
- STAT3, signal transducer and activator of transcription 3
- TNF-α, tumor necrosis factor-alpha
- eNOS, endothelial nitric oxide synthase
- iNOS, inducible nitric oxide synthase
Collapse
Affiliation(s)
- Amany A Azouz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Esraa Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.,Operations Pharmacy, General Fayoum Hospital, Fayoum, Egypt
| | - Ali A Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
12
|
Liu G, Shea CM, Jones JE, Price GM, Warren W, Lonie E, Yan S, Currie MG, Profy AT, Masferrer JL, Zimmer DP. Praliciguat inhibits progression of diabetic nephropathy in ZSF1 rats and suppresses inflammation and apoptosis in human renal proximal tubular cells. Am J Physiol Renal Physiol 2020; 319:F697-F711. [PMID: 32865013 DOI: 10.1152/ajprenal.00003.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Praliciguat, a clinical-stage soluble guanylate cyclase (sGC) stimulator, increases cGMP via the nitric oxide-sGC pathway. Praliciguat has been shown to be renoprotective in rodent models of hypertensive nephropathy and renal fibrosis. In the present study, praliciguat alone and in combination with enalapril attenuated proteinuria in the obese ZSF1 rat model of diabetic nephropathy. Praliciguat monotherapy did not affect hemodynamics. In contrast, enalapril monotherapy lowered blood pressure but did not attenuate proteinuria. Renal expression of genes in pathways involved in inflammation, fibrosis, oxidative stress, and kidney injury was lower in praliciguat-treated obese ZSF1 rats than in obese control rats; fasting glucose and cholesterol were also lower with praliciguat treatment. To gain insight into how tubular mechanisms might contribute to its pharmacological effects on the kidneys, we studied the effects of praliciguat on pathological processes and signaling pathways in cultured human primary renal proximal tubular epithelial cells (RPTCs). Praliciguat inhibited the expression of proinflammatory cytokines and secretion of monocyte chemoattractant protein-1 in tumor necrosis factor-α-challenged RPTCs. Praliciguat treatment also attenuated transforming growth factor-β-mediated apoptosis, changes to a mesenchyme-like cellular phenotype, and phosphorylation of SMAD3 in RPTCs. In conclusion, praliciguat improved proteinuria in the ZSF1 rat model of diabetic nephropathy, and its actions in human RPTCs suggest that tubular effects may contribute to its renal benefits, building upon strong evidence for the role of cGMP signaling in renal health.
Collapse
Affiliation(s)
- Guang Liu
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Courtney M Shea
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Juli E Jones
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Gavrielle M Price
- Department of Medical Writing, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - William Warren
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Elisabeth Lonie
- Department of Analytical Pharmacology, Ironwood Pharmaceuticals, Cambridge, Massachusetts
| | - Shu Yan
- Department of Discovery Informatics, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Mark G Currie
- Department of Research Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Albert T Profy
- Department of Development Management, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Jaime L Masferrer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| | - Daniel P Zimmer
- Department of Pharmacology, Cyclerion Therapeutics, Cambridge, Massachusetts
| |
Collapse
|
13
|
Versmissen J, Mirabito Colafella KM, Koolen SLW, Danser AHJ. Vascular Cardio-Oncology: Vascular Endothelial Growth Factor inhibitors and hypertension. Cardiovasc Res 2020; 115:904-914. [PMID: 30726882 DOI: 10.1093/cvr/cvz022] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/16/2018] [Accepted: 01/24/2019] [Indexed: 12/27/2022] Open
Abstract
Since the formation of new blood vessels is essential for tumour growth and metastatic spread, inhibition of angiogenesis by targeting the vascular endothelial growth factor (VEGF) pathway is an effective strategy for various types of cancer, most importantly renal cell carcinoma, thyroid cancer, and hepatocellular carcinoma. However, VEGF inhibitors have serious side effects, most importantly hypertension and nephropathy. In case of fulminant hypertension, this may only be handled by lowering the dosage since the blood pressure rise is proportional to the amount of VEGF inhibition. These effects pathophysiologically and clinically resemble the most severe complication of pregnancy, preeclampsia, in which case an insufficient placenta leads to a rise in sFlt-1 levels causing a decrease in VEGF availability. Due to this overlap, studies in preeclampsia may provide important information for VEGF inhibitor-induced toxicity and vice versa. In both VEGF inhibitor-induced toxicity and preeclampsia, endothelin (ET)-1 appears to be a pivotal player. In this review, after briefly summarizing the anticancer effects, we discuss the mechanisms that potentially underlie the unwanted effects of VEGF inhibitors, focusing on ET-1, nitric oxide and oxidative stress, the renin-angiotensin-aldosterone system, and rarefaction. Given the salt sensitivity of this phenomenon, as well as the beneficial effects of aspirin in preeclampsia and cancer, we next provide novel treatment options for VEGF inhibitor-induced toxicity, including salt restriction, ET receptor blockade, and cyclo-oxygenase inhibition, in addition to classical antihypertensive and renoprotective drugs. We conclude with the recommendation of therapeutic drug monitoring to improve patient outcome.
Collapse
Affiliation(s)
- Jorie Versmissen
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| | - Katrina M Mirabito Colafella
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands.,Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia.,Department of Physiology, Monash University, Melbourne, Australia
| | - Stijn L W Koolen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.,Hospital Pharmacy, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - A H Jan Danser
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, CA Rotterdam, The Netherlands
| |
Collapse
|
14
|
Gong X, Liang L, Chen Q, Jia X, Tang L, Zhang L, Li W, Wang Z, Kong X, Xu D. Association Between Body Composition and Glomerular Hyperfiltration Among Chinese Adults. Ther Apher Dial 2019; 24:439-444. [PMID: 31574579 DOI: 10.1111/1744-9987.13436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/04/2019] [Accepted: 09/17/2019] [Indexed: 11/30/2022]
Abstract
High body mass index (BMI) is the most common parameter to assess excess adiposity, and has been linked to glomerular hyperfiltration (GH). However, BMI may be misleading in the estimation of body fat content due to its inability to discriminate between body fat and lean mass. In recent years, the convenient biological impedance analysis has made prediction of certain diseases somewhat feasible and accessible using body composition (BC). Accordingly, we conducted a cross-sectional study to explore the association between BC and GH among Chinese adult population. A total of 6902 adults (aged 38.6 ± 8.3 years, 70.1% males) who consecutively visited the Health Checkup Clinic were enrolled. BC including fat mass and lean body mass (LBM) was evaluated by biological impedance analysis. The upper quartile of eGFR which exceeded 117.3 mL/min/1.73 m2 was defined as GH, in comparison with the lower three quartiles (control group). As a categorical outcome, GH subjects had higher fat/LBM than the control group, which was 34.7 ± 10.9 (%) vs. 34.0 ± 10.5 (%), P = 0.01; however, the BMI in GH group was lower than in the control group, which was 24.5 ± 3.7 (%) vs. 24.9 ± 3.6 (%), P < 0.001. Fat/height and Fat/BSA were not significantly different between the two groups. Moreover, after adjusting for potential confounders, fat/LBM significantly correlated with GH (OR = 2.09, 95% CI, 1.11 to 3.93). The study revealed that fat/LBM significantly correlated with GH among Chinese adult population, which highlights that adiposity might be an important and potentially modifiable determinant of GH.
Collapse
Affiliation(s)
- Xiaojie Gong
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Liming Liang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Qinlan Chen
- Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaoyan Jia
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lijun Tang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Lei Zhang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Wenbin Li
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Zunsong Wang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Xianglei Kong
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.,Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, Jinan, China.,Nephrology Research Institute of Shandong Province, Jinan, China
| |
Collapse
|
15
|
Mehanna OM, El Askary A, Al-Shehri S, El-Esawy B. Effect of phosphodiesterase inhibitors on renal functions and oxidant/antioxidant parameters in streptozocin-induced diabetic rats. Arch Physiol Biochem 2018; 124:424-429. [PMID: 29271249 DOI: 10.1080/13813455.2017.1419267] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The goal of this study was to investigate the effect of different phosphodiesterase inhibitors (PDEIs), on renal oxidant/antioxidant balance in diabetic rats. Our study was conducted on 125 rats, diabetes was induced in 100 rats by a single administration of streptozocin (STZ). Diabetic rats were divided into four equal groups. The first group was assigned as diabetic control, the remaining three groups were treated with pentoxifylline, sildenafil and milrinone via drinking water for 15 successive days, another group of 25 normal rats was assigned as non-diabetic control. Significant increase in plasma levels of glucose, urea, creatinine, malondialdehyde (MDA), and nitric oxide (NO) with a concomitant decrease in the levels of insulin, reduced glutathione (GSH), glutathione peroxidase (Gpx), superoxide dismutase (SOD), catalase (CAT), and total antioxidant capacity (TAC) were observed in diabetic rats. These alterations were reverted back to near normal level after treatment with PDEIs. Our data seem to suggest a potential role of PDEIs in maintaining health in diabetes by reducing the progression of diabetic nephropathy.
Collapse
Affiliation(s)
- Osama Mahmoud Mehanna
- a Department of Medical Physiology, Faculty of Medicine , Taif University , Taif , KSA
- b Department of Medical Physiology, Faculty of Medicine (New Damietta) , Al-Azhar University , Cairo , Egypt
| | - Ahmad El Askary
- c Department of Clinical Laboratory Sciences, College of Applied Medical Sciences , Taif University , Taif , KSA
- d Department of Medical Biochemistry, Faculty of Medicine (New Damietta) , Al-Azhar University , Cairo , Egypt
| | - Saad Al-Shehri
- c Department of Clinical Laboratory Sciences, College of Applied Medical Sciences , Taif University , Taif , KSA
| | - Basem El-Esawy
- c Department of Clinical Laboratory Sciences, College of Applied Medical Sciences , Taif University , Taif , KSA
- e Department of Pathology, Faculty of medicine , Mansoura University , Mansoura , Egypt
| |
Collapse
|
16
|
Allinovi M, De Chiara L, Angelotti ML, Becherucci F, Romagnani P. Anti-fibrotic treatments: A review of clinical evidence. Matrix Biol 2018; 68-69:333-354. [DOI: 10.1016/j.matbio.2018.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 02/06/2023]
|
17
|
Urinary cGMP predicts major adverse renal events in patients with mild renal impairment and/or diabetes mellitus before exposure to contrast medium. PLoS One 2018; 13:e0195828. [PMID: 29649334 PMCID: PMC5896998 DOI: 10.1371/journal.pone.0195828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 04/01/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The use of iodine-based contrast agents entails the risk of contrast induced nephropathy (CIN). Radiocontrast agents elicit the third most common cause of nephropathy among hospitalized patients, accounting for 11-12% of cases. CIN is connected with clinically significant consequences, including increased morbidity, prolonged hospitalization, increased risk of complications, potential need for dialysis, and increased mortality rate. The number of in-hospital examinations using iodine-based contrast media has been significantly increasing over the last decade. In order to protect patients from possible complications of such examinations, new biomarkers are needed that are able to predict a risk of contrast-induced nephropathy. Urinary and plasma cyclic guanosine monophosphate (cGMP) concentrations are influenced by renal function. Urinary cGMP is primarily of renal cellular origin. Therefore, we assessed if urinary cGMP concentration may predict major adverse renal events (MARE) after contrast media exposure during coronary angiography. METHODS Urine samples were prospectively collected from non-randomized consecutive patients with either diabetes or preexisting impaired kidney function receiving intra-arterial contrast medium (CM) for emergent or elective coronary angiography at the Charité Campus Mitte, University Hospital Berlin. Urinary cGMP concentration in spot urine was analyzed 24 hours after CM exposure. Patients were followed up over 90 days for occurrence of death, initiation of dialysis, doubling of plasma creatinine concentration or MARE. RESULTS In total, 289 consecutive patients were included into the study. Urine cGMP/creatinine ratio 24 hours before CM exposure expressed as mean±SD was predictive for the need of dialysis (no dialysis: 89.77±92.85 μM/mM, n = 277; need for dialysis: 140.3±82.90 μM/mM, n = 12, p = 0.008), death (no death during follow-up: 90.60±92.50 μM/mM, n = 280; death during follow-up: 169.88±81.52 μM/mM, n = 9; p = 0.002), and the composite endpoint MARE (no MARE: 86.02±93.17 μM/mM, n = 271; MARE: 146.64±74.68 μM/mM, n = 18, p<0.001) during the follow-up of 90 days after contrast media application. cGMP/creatinine ratio stayed significantly increased at values exceeding 120 μM/mM in patients who developed MARE, required dialysis or died. CONCLUSIONS Urinary cGMP/creatinine ratio ≥ 120 μM/mM before CM exposure is a promising biomarker for the need of dialysis and all-cause mortality 90 days after CM exposure in patients with preexisting renal impairment or diabetes.
Collapse
|
18
|
Czirok S, Fang L, Radovits T, Szabó G, Szénási G, Rosivall L, Merkely B, Kökény G. Cinaciguat ameliorates glomerular damage by reducing ERK1/2 activity and TGF-ß expression in type-1 diabetic rats. Sci Rep 2017; 7:11218. [PMID: 28894114 PMCID: PMC5593847 DOI: 10.1038/s41598-017-10125-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/03/2017] [Indexed: 01/07/2023] Open
Abstract
Decreased soluble guanylate cyclase activity and cGMP levels in diabetic kidneys were shown to influence the progression of nephropathy. The regulatory effects of soluble guanylate cyclase activators on renal signaling pathways are still unknown, we therefore investigated the renal molecular effects of the soluble guanylate cyclase activator cinaciguat in type-1 diabetic (T1DM) rats. Male adult Sprague-Dawley rats were divided into 2 groups after induction of T1DM with 60 mg/kg streptozotocin: DM, untreated (DM, n = 8) and 2) DM + cinaciguat (10 mg/kg per os daily, DM-Cin, n = 8). Non-diabetic untreated and cinaciguat treated rats served as controls (Co (n = 10) and Co-Cin (n = 10), respectively). Rats were treated for eight weeks, when renal functional and molecular analyses were performed. Cinaciguat attenuated the diabetes induced proteinuria, glomerulosclerosis and renal collagen-IV expression accompanied by 50% reduction of TIMP-1 expression. Cinaciguat treatment restored the glomerular cGMP content and soluble guanylate cyclase expression, and ameliorated the glomerular apoptosis (TUNEL positive cell number) and podocyte injury. These effects were accompanied by significantly reduced TGF-ß overexpression and ERK1/2 phosphorylation in cinaciguat treated diabetic kidneys. We conclude that the soluble guanylate cyclase activator cinaciguat ameliorated diabetes induced glomerular damage, apoptosis, podocyte injury and TIMP-1 overexpression by suppressing TGF-ß and ERK1/2 signaling.
Collapse
Affiliation(s)
- Szabina Czirok
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Lilla Fang
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Tamás Radovits
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Szabó
- Department of Cardiac Surgery, University of Heidelberg, Heidelberg, Germany
| | - Gábor Szénási
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - László Rosivall
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | - Béla Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Gábor Kökény
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
19
|
Phosphodiesterase-5 inhibition preserves renal hemodynamics and function in mice with diabetic kidney disease by modulating miR-22 and BMP7. Sci Rep 2017; 7:44584. [PMID: 28294194 PMCID: PMC5353686 DOI: 10.1038/srep44584] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/09/2017] [Indexed: 01/13/2023] Open
Abstract
Diabetic Nephropathy (DN) is the leading cause of end-stage renal disease. Preclinical and experimental studies show that PDE5 inhibitors (PDE5is) exert protective effects in DN improving perivascular inflammation. Using a mouse model of diabetic kidney injury we investigated the protective proprieties of PDE5is on renal hemodynamics and the molecular mechanisms involved. PDE5i treatment prevented the development of DN-related hypertension (P < 0.001), the increase of urine albumin creatinine ratio (P < 0.01), the fall in glomerular filtration rate (P < 0.001), and improved renal resistive index (P < 0.001) and kidney microcirculation. Moreover PDE5i attenuated the rise of nephropathy biomarkers, soluble urokinase-type plasminogen activator receptor, suPAR and neutrophil gelatinase-associated lipocalin, NGAL. In treated animals, blood vessel perfusion was improved and vascular leakage reduced, suggesting preserved renal endothelium integrity, as confirmed by higher capillary density, number of CD31+ cells and pericyte coverage. Analysis of the mechanisms involved revealed the induction of bone morphogenetic protein-7 (BMP7) expression, a critical regulator of angiogenesis and kidney homeostasis, through a PDE5i-dependent downregulation of miR-22. In conclusion PDE5i slows the progression of DN in mice, improving hemodynamic parameters and vessel integrity. Regulation of miR-22/BMP7, an unknown mechanism of PDE5is in nephrovascular protection, might represent a novel therapeutic option for treatment of diabetic complications.
Collapse
|
20
|
Sonneveld R, Hoenderop JG, Isidori AM, Henique C, Dijkman HB, Berden JH, Tharaux PL, van der Vlag J, Nijenhuis T. Sildenafil Prevents Podocyte Injury via PPAR- γ-Mediated TRPC6 Inhibition. J Am Soc Nephrol 2016; 28:1491-1505. [PMID: 27895156 DOI: 10.1681/asn.2015080885] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 11/02/2016] [Indexed: 02/06/2023] Open
Abstract
Transient receptor potential channel C6 (TRPC6) gain-of-function mutations and increased TRPC6 expression in podocytes induce glomerular injury and proteinuria. Sildenafil reduces TRPC6 expression and activity in nonrenal cell types, although the mechanism is unknown. Peroxisome proliferator-activated receptor γ (PPAR-γ) is a downstream target of sildenafil in the cyclic guanosine monophosphate (cGMP)-activated protein kinase G (PKG) axis. PPAR-γ agonists, like pioglitazone, appear antiproteinuric. We hypothesized that sildenafil inhibits TRPC6 expression in podocytes through PPAR-γ-dependent mechanisms, thereby counteracting podocyte injury and proteinuria. Treatment with sildenafil, the cGMP derivative 8-bromoguanosine 3',5'-cyclic monophosphate sodium salt (8-Br-cGMP), or pioglitazone dose-dependently downregulated podocyte injury-induced TRPC6 expression in vitro Knockdown or application of antagonists of PKG or PPAR-γ enhanced TRPC6 expression in podocytes and counteracted effects of sildenafil and 8-Br-cGMP. We observed similar effects on TRPC6 promoter activity and TRPC6-dependent calcium influx. Chromatin immunoprecipitation showed PPAR-γ binding to the TRPC6 promoter. Sildenafil or pioglitazone treatment prevented proteinuria and the increased TRPC6 expression in rats with adriamycin-induced nephropathy and mice with hyperglycemia-induced renal injury. Rats receiving PPAR-γ antagonists displayed proteinuria and increased podocyte TRPC6 expression, as did podocyte-specific PPAR-γ knockout mice, which were more sensitive to adriamycin and not protected by sildenafil. Thus, sildenafil ameliorates podocyte injury and prevents proteinuria through cGMP- and PKG-dependent binding of PPAR-γ to the TRPC6 promoter, which inhibits TRPC6 promoter activity, expression, and activity. Because sildenafil is approved for clinical use, our results suggest that additional clinical study of its antiproteinuric effect in glomerular disease is warranted.
Collapse
Affiliation(s)
| | | | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Carole Henique
- Paris Cardiovascular Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and
| | - Henry B Dijkman
- Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Pierre-Louis Tharaux
- Paris Cardiovascular Centre, Institut National de la Santé et de la Recherche Médicale, Paris, France.,Sorbonne Paris Cité, Université Paris Descartes, Paris, France; and.,Service de Néphrologie, Hôpital Européen Georges Pompidou, Paris, France
| | | | | |
Collapse
|
21
|
Wang J, Li Y, Xu M, Li D, Wang Y, Qi J, He K. C-peptide exhibits a late induction effect on matrix metallopeptidase-9 in high glucose-stimulated rat mesangial cells. Exp Ther Med 2016; 12:4142-4146. [PMID: 28101192 DOI: 10.3892/etm.2016.3873] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/06/2016] [Indexed: 12/12/2022] Open
Abstract
Insufficient matrix metalloproteinase (MMP)-9 and MMP-2 is considered to be a contributor of extracellular matrix (ECM) accumulation in diabetic nephropathy (DN). C-peptide can reverse fibrosis, thus exerting a beneficial effect on DN. Whether C-peptide induces MMP-9 and MMP-2 to reverse ECM accumulation is not clear. In the present study, in order to determine ECM metabolism, rat mesangial cells were treated with high glucose (HG) and C-peptide intervention, then the early and late effects of C-peptide on HG-affected MMP-9 and MMP-2 were evaluated. Firstly, it was confirmed that HG mainly suppressed MMP-9 expression levels. Furthermore, C-peptide treatment induced MMP-9 expression at 6 h and suppressed it at 24 h, revealing the early dual effects of C-peptide on MMP-9 expression. Subsequently, significant increase in MMP-9 expression at 72, 96 and 120 h C-peptide treatment was observed. These changes in MMP-9 protein content confirmed its expression changes following late C-peptide treatment. Furthermore, at 96 and 120 h C-peptide treatment reversed the HG-inhibited MMP-9 secretion, further indicating the late induction effect of C-peptide on MMP-9. The present results demonstrated that C-peptide exerted a late induction effect on MMP-9 in HG-stimulated rat mesangial cells, which may be associated with the underlying mechanism of C-peptide's reversal effects on DN.
Collapse
Affiliation(s)
- Junxia Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yanning Li
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Mingzhi Xu
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Dandan Li
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yu Wang
- Department of Molecular Biology, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Jinsheng Qi
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Kunyu He
- Department of Biochemistry, Hebei Key Laboratory of Medical Biotechnology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
22
|
McCarty MF. In type 1 diabetics, high-dose biotin may compensate for low hepatic insulin exposure, promoting a more normal expression of glycolytic and gluconeogenic enyzymes and thereby aiding glycemic control. Med Hypotheses 2016; 95:45-48. [PMID: 27692165 DOI: 10.1016/j.mehy.2016.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022]
Abstract
In type 1 diabetics, hepatic exposure to insulin is chronically subnormal even in the context of insulin therapy; as a result, expression of glycolytic enzymes is decreased, and that of gluconeogenic enzymes is enhanced, resulting in a physiologically inappropriate elevation of hepatic glucose output. Subnormal expression of glucokinase (GK) is of particular importance in this regard. Possible strategies for correcting this perturbation of hepatic enzyme expression include administration of small molecule allosteric activators of GK, as well as a procedure known as chronic intermittent intravenous insulin therapy (CIIIT); however, side effects accompany the use of GK activators, and CIIIT is time and labor intensive. Alternatively, administration of high-dose biotin has potential for modulating hepatic enzyme expression in a favorable way. Studies in rodents and in cultured hepatocytes demonstrate that, in the context of low insulin exposure, supra-physiological levels of biotin induce increased expression of GK while suppressing that of the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase. These effects may be a downstream consequence of the fact that biotin down-regulates mRNA expression of FOXO1; insulin's antagonism of the activity of this transcription factor is largely responsible for its modulatory impact on hepatic glycolysis and gluconeogenesis. Hence, high-dose biotin may compensate for subnormal insulin exposure by suppressing FOXO1 levels. High-dose biotin also has the potential to oppose hepatic steatosis by down-regulating SREBP-1 expression. Two pilot trials of high-dose biotin (16 or 2mg per day) in type 1 diabetics have yielded promising results. There is also some reason to suspect that high-dose biotin could aid control of diabetic neuropathy and nephropathy via its stimulatory effect on cGMP production. Owing to the safety, good tolerance, moderate expense, and current availability of high-dose biotin, this strategy merits more extensive evaluation in type 1 diabetes.
Collapse
Affiliation(s)
- Mark F McCarty
- Catalytic Longevity, 7831 Rush Rose Drive, Apt. 316, Carlsbad, CA 92009, United States.
| |
Collapse
|
23
|
El-Mahdy NA, El-Sayad MES, El-Kadem AH. Combination of telmisartan with sildenafil ameliorate progression of diabetic nephropathy in streptozotocin-induced diabetic model. Biomed Pharmacother 2016; 81:136-144. [DOI: 10.1016/j.biopha.2016.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 03/31/2016] [Accepted: 04/01/2016] [Indexed: 02/07/2023] Open
|
24
|
Abstract
AbstractThe endothelium, a thin single sheet of endothelial cells, is a metabolically active layer that coats the inner surface of blood vessels and acts as an interface between the circulating blood and the vessel wall. The endothelium through the secretion of vasodilators and vasoconstrictors serves as a critical mediator of vascular homeostasis. During the development of the vascular system, it regulates cellular adhesion and vessel wall inflammation in addition to maintaining vasculogenesis and angiogenesis. A shift in the functions of the endothelium towards vasoconstriction, proinflammatory and prothrombic states characterise improper functioning of these cells, leading to endothelial dysfunction (ED), implicated in the pathogenesis of many diseases including diabetes. Major mechanisms of ED include the down-regulation of endothelial nitric oxide synthase levels, differential expression of vascular endothelial growth factor, endoplasmic reticulum stress, inflammatory pathways and oxidative stress. ED tends to be the initial event in macrovascular complications such as coronary artery disease, peripheral arterial disease, stroke and microvascular complications such as nephropathy, neuropathy and retinopathy. Numerous strategies have been developed to protect endothelial cells against various stimuli, of which the role of polyphenolic compounds in modulating the differentially regulated pathways and thus maintaining vascular homeostasis has been proven to be beneficial. This review addresses the factors stimulating ED in diabetes and the molecular mechanisms of natural polyphenol antioxidants in maintaining vascular homeostasis.
Collapse
|
25
|
Scheele W, Diamond S, Gale J, Clerin V, Tamimi N, Le V, Walley R, Grover-Páez F, Perros-Huguet C, Rolph T, El Nahas M. Phosphodiesterase Type 5 Inhibition Reduces Albuminuria in Subjects with Overt Diabetic Nephropathy. J Am Soc Nephrol 2016; 27:3459-3468. [PMID: 27113485 DOI: 10.1681/asn.2015050473] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 02/23/2016] [Indexed: 12/31/2022] Open
Abstract
Diabetic nephropathy (DN) is the leading cause of ESRD worldwide. Reduced bioavailability or uncoupling of nitric oxide in the kidney, leading to decreased intracellular levels of the nitric oxide pathway effector molecule cyclic guanosine monophosphate (cGMP), has been implicated in the progression of DN. Preclinical studies suggest that elevating the cGMP intracellular pool through inhibition of the cGMP-hydrolyzing enzyme phosphodiesterase type 5 (PDE5) might exert renoprotective effects in DN. To test this hypothesis, the novel, highly specific, and long-acting PDE5 inhibitor, PF-00489791, was assessed in a multinational, multicenter, randomized, double-blind, placebo-controlled, parallel group trial of subjects with type 2 diabetes mellitus and overt nephropathy receiving angiotensin converting enzyme inhibitor or angiotensin receptor blocker background therapy. In total, 256 subjects with an eGFR between 25 and 60 ml/min per 1.73 m2 and macroalbuminuria defined by a urinary albumin-to-creatinine ratio >300 mg/g, were randomly assigned 3:1, respectively, to receive PF-00489791 (20 mg) or placebo orally, once daily for 12 weeks. Using the predefined primary assessment of efficacy (Bayesian analysis with informative prior), we observed a significant reduction in urinary albumin-to-creatinine ratio of 15.7% (ratio 0.843; 95% credible interval 0.73 to 0.98) in response to the 12-week treatment with PF-00489791 compared with placebo. PF-00489791 was safe and generally well tolerated in this patient population. Most common adverse events were mild in severity and included headache and upper gastrointestinal events. In conclusion, the safety and efficacy profile of PDE5 inhibitor PF-00489791 supports further investigation as a novel therapy to improve renal outcomes in DN.
Collapse
Affiliation(s)
| | - Susan Diamond
- San Antonio Kidney Disease Center, San Antonio, Texas
| | | | | | | | - Vu Le
- Pfizer Inc., Cambridge, Massachusetts
| | | | - Fernando Grover-Páez
- Institute of Experimental and Clinical Therapeutics, Universidad de Guadalajara, Guadalajara, México; and
| | | | | | | |
Collapse
|
26
|
Ramirez CE, Nian H, Yu C, Gamboa JL, Luther JM, Brown NJ, Shibao CA. Treatment with Sildenafil Improves Insulin Sensitivity in Prediabetes: A Randomized, Controlled Trial. J Clin Endocrinol Metab 2015; 100:4533-40. [PMID: 26580240 PMCID: PMC4667163 DOI: 10.1210/jc.2015-3415] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Sildenafil increases insulin sensitivity in mice. In humans, phosphodiesterase 5 inhibition improves disposition index, but the mechanism of this effect has not been elucidated and may depend on duration. In addition, increasing cyclic GMP without increasing nitric oxide could have beneficial effects on fibrinolytic balance. OBJECTIVE The objective was to test the hypothesis that chronic phosphodiesterase 5 inhibition with sildenafil improves insulin sensitivity and secretion without diminishing fibrinolytic function. DESIGN This was a randomized, double-blind, placebo-controlled study. SETTING This trial was conducted at Vanderbilt Clinical Research Center. PARTICIPANTS Participants included overweight individuals with prediabetes. INTERVENTIONS Subjects were randomized to treatment with sildenafil 25 mg three times a day or matching placebo for 3 months. Subjects underwent a hyperglycemic clamp prior to and at the end of treatment. MAIN OUTCOME MEASURES The primary outcomes of the study were insulin sensitivity and glucose-stimulated insulin secretion. RESULT Twenty-one subjects completed each treatment arm. After 3 months, the insulin sensitivity index was significantly greater in the sildenafil group compared to the placebo group by 1.84 mg/kg/min per μU/mL*100 (95% confidence interval, 0.01 to 3.67 mg/kg/min per μU/mL*100; P = .049), after adjusting for baseline insulin sensitivity index and body mass index. In contrast, there was no effect of 3-month treatment with sildenafil on acute- or late-phase glucose-stimulated insulin secretion (P > .30). Sildenafil decreased plasminogen activator inhibitor-1 (P = .01), without altering tissue-plasminogen activator. In contrast to placebo, sildenafil also decreased the urine albumin-to-creatinine ratio from 12.67 ± 14.67 to 6.84 ± 4.86 μg/mg Cr. This effect persisted 3 months after sildenafil discontinuation. CONCLUSIONS Three-month phosphodiesterase 5 inhibition enhances insulin sensitivity and improves markers of endothelial function.
Collapse
Affiliation(s)
- Claudia E Ramirez
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Hui Nian
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Chang Yu
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Jorge L Gamboa
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - James M Luther
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Nancy J Brown
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - Cyndya A Shibao
- Departments of Medicine (C.E.R., J.L.G., J.M.L., N.J.B., C.A.S.) and Biostatistics (H.N., C.Y.), Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
27
|
Mohey V, Singh M, Puri N, Kaur T, Pathak D, Singh AP. Sildenafil obviates ischemia-reperfusion injury-induced acute kidney injury through peroxisome proliferator-activated receptor γ agonism in rats. J Surg Res 2015; 201:69-75. [PMID: 26850186 DOI: 10.1016/j.jss.2015.09.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/22/2015] [Accepted: 09/25/2015] [Indexed: 11/25/2022]
Abstract
BACKGROUND Sildenafil is a phosphodiesterase inhibitor used clinically for treating erectile dysfunction. Few studies suggest sildenafil to be a renoprotective agent. The present study investigated the involvement of peroxisome proliferator-activated receptor γ (PPAR-γ) in sildenafil-mediated protection against ischemia-reperfusion-induced acute kidney injury (AKI) in rats. MATERIALS AND METHODS The rats were subjected to ischemia-reperfusion injury (IRI) with 40 min of bilateral renal ischemia followed by reperfusion for 24 h. The renal damage was assessed by measuring creatinine clearance, blood urea nitrogen, plasma uric acid, electrolytes, and microproteinuria in rats. The thiobarbituric acid reactive substances, superoxide anion generation, and reduced glutathione levels were measured to assess oxidative stress in renal tissues. The hematoxylin-eosin staining was carried out to demonstrate histopathologic changes in renal tissues. Sildenafil (0.5 and 1.0 mg/kg, intraperitoneal) was administered 1 h before subjecting the rats to renal IRI. In a separate group, bisphenol A diglycidyl ether (30 mg/kg, intraperitoneal), a PPAR-γ receptor antagonist, was given before sildenafil administration followed by IRI. RESULTS The ischemia-reperfusion demonstrated marked AKI with significant changes in serum and urinary parameters, enhanced oxidative stress, and histopathologic changes in renal tissues. The administration of sildenafil demonstrated significant protection against ischemia-reperfusion-induced AKI. The prior treatment with bisphenol A diglycidyl ether abolished sildenafil-mediated renal protection, thereby confirming involvement of PPAR-γ agonism in the sildenafil-mediated renoprotective effect. CONCLUSIONS It is concluded that sildenafil protects against ischemia-reperfusion-induced AKI through PPAR-γ agonism in rats.
Collapse
Affiliation(s)
- Vinita Mohey
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Manjinder Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Nikkita Puri
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India; Department of Pharmacology, Khalsa College of Pharmacy, Amritsar, India
| | - Devendra Pathak
- Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, India
| | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.
| |
Collapse
|
28
|
Does glimepiride alter the pharmacokinetics of sildenafil citrate in diabetic nephropathy animals: investigating mechanism of interaction by molecular modeling studies. J Mol Model 2015; 21:276. [PMID: 26428531 DOI: 10.1007/s00894-015-2823-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 09/15/2015] [Indexed: 02/07/2023]
Abstract
The present study evaluates possible drug interactions between glimepiride (GLIM) and sildenafil citrate (SIL) in streptozotocin (STZ)-induced diabetic nephropathic (DN) animals and also postulates the possible mechanism of interaction based on molecular modeling studies. Diabetic nephropathy was induced by single dose of STZ (60 mg kg(-1), i.p.) and was confirmed by assessing blood and urine biochemical parameters 28 days after induction. Selected DN animals were used to explore the drug interaction between GLIM (0.5 mg kg(-1), p.o.) and SIL (2.5 mg kg(-1), p.o.) on the 29th and 70th day of the protocol. Possible drug interaction was assessed by evaluating the plasma drug concentration using HPLC-UV and changes in biochemical parameters in blood and urine were also determined. The mechanism of the interaction was postulated from the results of a molecular modeling study using the Maestro module of Schrodinger software. DN was confirmed as there was significant alteration in blood and urine biochemical parameters in STZ-treated groups. The concentration of SIL increased significantly (P < 0.001) in rat plasma when co-administered with GLIM on the 70th day of the protocol. Molecular modeling revealed important interactions with rat serum albumin and CYP2C9. GLIM has a strong hydrophobic interaction with binding site residues of rat serum albumin compared to SIL, whereas for CYP2C9, GLIM forms a stronger hydrogen bond than SIL with polar contacts and hydrophobic interactions. The present study concludes that bioavailability of SIL increases when co-administered chronically with GLIM in the management of DN animals, and the mechanism is supported by molecular modeling studies.
Collapse
|
29
|
Phosphodiesterase type 5 inhibitors and kidney disease. Int Urol Nephrol 2015; 47:1521-8. [PMID: 26242375 DOI: 10.1007/s11255-015-1071-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023]
Abstract
Chronic kidney disease (CKD) represents a worldwide health problem. Traditionally, the nephroprotective treatment for CKD aims to slow progression to end-stage renal disease and includes dietary protein restriction, correction of metabolic acidosis, and renin-angiotensin system blockers. However, current standard therapeutic options may not be enough for preventing CKD progression in a subset of patients making necessary to develop novel therapeutic options to further slow renal function loss. Phosphodiesterase type 5 (PDE5) inhibitors represent a class of drugs traditionally used to treat erectile dysfunction and pulmonary hypertension. However, recent evidence suggests that PDE5 inhibitors may have additional therapeutic effects, such as cardioprotection and cerebrovascular protection. In the current review, we summarize PDE5 inhibitors' utility in disease states and clinical conditions related to kidney disease such as systemic hypertension and acute and chronic kidney injury and discuss the mechanisms explaining possible kidney protective roles of PDE5 inhibitors. A recently completed phase 2 trials demonstrated that the long-acting PDE5 inhibitor PF-00489791 decreased albuminuria in patients with overt diabetic nephropathy when added on top of renin-angiotensin system blockade.
Collapse
|
30
|
Webb DJ, Vachiery JL, Hwang LJ, Maurey JO. Sildenafil improves renal function in patients with pulmonary arterial hypertension. Br J Clin Pharmacol 2015; 80:235-41. [PMID: 25727860 DOI: 10.1111/bcp.12616] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 01/19/2015] [Accepted: 02/20/2015] [Indexed: 12/23/2022] Open
Abstract
AIM Elevated serum creatinine (sCr) and low estimated glomerular filtration rate (eGFR) are associated with poor outcomes in patients with pulmonary arterial hypertension (PAH) whereas sildenafil treatment improves PAH outcomes. This post hoc analysis assessed the effect of sildenafil on kidney function and links with clinical outcomes including 6-min walk distance, functional class, time to clinical worsening and survival. METHODS Patients with PAH received placebo or sildenafil 20, 40 or 80 mg three times daily in the SUPER-1 study and open-label sildenafil titrated to 80 mg three times daily (as tolerated) in the extension study. RESULTS Baseline characteristics were similar among groups (n = 277). PAH was mostly idiopathic (63%) and functional class II (39%) or III (58%). From baseline to week 12, kidney function improved (increased eGFR, decreased sCr) with sildenafil and worsened with placebo. In univariate logistic regression, improved kidney function was associated with significantly improved exercise and functional class (odds ratios 1.17 [95% CI 1.01, 1.36] and 1.21 [95% CI 1.03, 1.41], respectively, for sCr and 0.97 [95% CI 0.94, 0.99] and 0.97 [95% CI 0.94, 0.99] for eGFR, all P < 0.05). In patients who maintained or improved kidney function, time to worsening was significantly delayed (P < 0.02 for both kidney parameters). Observed trends towards improved survival were not significant. Patients with eGFR <60 (vs. ≥60) ml min(-1) 1.73 m(-2) appeared to have worse survival. CONCLUSIONS Sildenafil treatment was associated with improved kidney function in patients with PAH, which was in turn associated with improved exercise capacity and functional class, a reduced risk of clinical worsening, and a trend towards reduced mortality.
Collapse
Affiliation(s)
- David J Webb
- Christison Professor of Therapeutics and Clinical Pharmacology, Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | | | - Lie-Ju Hwang
- Director, Clinical Statistics, Specialty Care Business Unit, Pfizer Inc, New York, NY, USA
| | - Julie O Maurey
- Inflammation Field Medical Director/Director US Medical Affairs, Pfizer Inc, New York, NY, USA
| |
Collapse
|
31
|
Lee HJ, Feliers D, Mariappan MM, Sataranatarajan K, Choudhury GG, Gorin Y, Kasinath BS. Tadalafil Integrates Nitric Oxide-Hydrogen Sulfide Signaling to Inhibit High Glucose-induced Matrix Protein Synthesis in Podocytes. J Biol Chem 2015; 290:12014-26. [PMID: 25752605 DOI: 10.1074/jbc.m114.615377] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Indexed: 12/30/2022] Open
Abstract
Diabetes-induced kidney cell injury involves an increase in matrix protein expression that is only partly alleviated by current treatment, prompting a search for new modalities. We have previously shown that hydrogen sulfide (H2S) inhibits high glucose-induced protein synthesis in kidney podocytes. We tested whether tadalafil, a phosphodiesterase 5 inhibitor used to treat erectile dysfunction, ameliorates high glucose stimulation of matrix proteins by generating H2S in podocytes. Tadalafil abrogated high glucose stimulation of global protein synthesis and matrix protein laminin γ1. Tadalafil inhibited high glucose-induced activation of mechanistic target of rapamycin complex 1 and laminin γ1 accumulation in an AMP-activated protein kinase (AMPK)-dependent manner. Tadalafil increased AMPK phosphorylation by stimulating calcium-calmodulin kinase kinase β. Tadalafil rapidly increased the expression and activity of the H2S-generating enzyme cystathionine γ-lyase (CSE) by promoting its translation. dl-Propargylglycine, a CSE inhibitor, and siRNA against CSE inhibited tadalafil-induced AMPK phosphorylation and abrogated the tadalafil effect on high glucose stimulation of laminin γ1. In tadalafil-treated podocytes, we examined the interaction between H2S and nitric oxide (NO). N(ω)-Nitro-L-arginine methyl ester and 1H-[1,2,4]-oxadiazolo-[4,3-a]-quinoxalin-1-one, inhibitors of NO synthase (NOS) and soluble guanylyl cyclase, respectively, abolished tadalafil induction of H2S and AMPK phosphorylation. Tadalafil rapidly augmented inducible NOS (iNOS) expression by increasing its mRNA, and siRNA for iNOS and 1400W, an iNOS blocker, inhibited tadalafil stimulation of CSE expression and AMPK phosphorylation. We conclude that tadalafil amelioration of high glucose stimulation of synthesis of proteins including matrix proteins in podocytes requires integration of the NO-H2S-AMPK axis leading to the inhibition of high glucose-induced mechanistic target of rapamycin complex 1 activity and mRNA translation.
Collapse
Affiliation(s)
- Hak Joo Lee
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | - Denis Feliers
- From the Department of Medicine, University of Texas Health Science Center and
| | - Meenalakshmi M Mariappan
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | | | - Goutam Ghosh Choudhury
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| | - Yves Gorin
- From the Department of Medicine, University of Texas Health Science Center and
| | - Balakuntalam S Kasinath
- From the Department of Medicine, University of Texas Health Science Center and South Texas Veterans Healthcare System, San Antonio, Texas 78229
| |
Collapse
|
32
|
Gelfand RA, Vernet D, Kovanecz I, Rajfer J, Gonzalez-Cadavid NF. The transcriptional signatures of cells from the human Peyronie's disease plaque and the ability of these cells to generate a plaque in a rat model suggest potential therapeutic targets. J Sex Med 2014; 12:313-27. [PMID: 25496134 DOI: 10.1111/jsm.12760] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION The success of medical therapies for Peyronie's disease (PD) has not been optimal, possibly because many of them went directly to clinical application without sufficient preclinical scientific research. Previous studies revealed cellular and molecular pathways involved in the formation of the PD plaque and in particular the role of the myofibroblast. AIMS The current work aimed to determine under normal and fibrotic conditions what differentiates PD cells from tunica albuginea (TA) and corpora cavernosa (CC) cells by defining their global transcriptional signatures and testing in vivo whether PD cells can generate a PD-like plaque. METHODS Human TA, PD, and CC cells were grown with transforming growth factor beta 1 (TGFβ1; TA+, PD+, CC+) or without it (TA-, PD-, CC-) and assayed by (i) immunofluorescence, Western blot and RT-PCR for myofibroblast, smooth muscle cell and stem cell markers; (ii) collagen content; and (iii) DNA microarray analysis. The ability of PD+ cells to induce a PD-like plaque in an immuno-suppressed rat model was assessed by Masson trichrome and Picrosirius Red stainings. MAIN OUTCOMES MEASURES Fibroproliferative features of PD cells and identification of related key genes as novel targets to reduce plaque size. RESULTS Upon TGFβ1stimulation, collagen levels were increased by myofibroblasts in the PD+ but not in the CC+ cells. The transcriptional signature of the PD- cells identified fibroproliferative, myogenic (myofibroblasts), inflammatory, and collagen turnover genes that differentiate them from TA- or CC- cells and respond to TGFβ1 with a PD+ fibrotic phenotype, by upregulation of IGF-1, ACTG2, MYF5, ACTC1, PSTN, COL III, MMP3, and others. The PD+ cells injected into the TA of the rat induce a PD-like plaque. CONCLUSIONS This suggests a novel combination therapy to eliminate a PD plaque by targeting the identified genes to (i) improve collagenase action by stimulating endogenous metalloproteinases specific to key collagen types and (ii) counteract fibromatosis by inhibiting myofibroblast generation, proliferation, and/or apoptosis.
Collapse
Affiliation(s)
- Robert A Gelfand
- Division of Urology, Department of Surgery, Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA, USA; Division of Endocrinology, Charles Drew University of Medicine and Science, Los Angeles, CA, USA
| | | | | | | | | |
Collapse
|
33
|
Sohn E, Kim J, Kim CS, Jo K, Lee YM, Kim JS. Root of Polygonum cuspidatum extract reduces progression of diabetes-induced mesangial cell dysfunction via inhibition of platelet-derived growth factor-BB (PDGF-BB) and interaction with its receptor in streptozotocin-induced diabetic rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:477. [PMID: 25495844 PMCID: PMC4364577 DOI: 10.1186/1472-6882-14-477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 12/03/2014] [Indexed: 02/07/2023]
Abstract
Background Platelet-derived growth factor–BB (PDGF-BB) is highly expressed in the renal tissues of patients with diabetic nephropathy, and it plays an important role in the initiation and progression of diabetic nephropathy. The aim of this study was to evaluate the protective effects of root of Polygonum cuspidatum extract (PCE) on early renal glomerular proliferation in streptozotocin (STZ)-induced diabetic rats. Methods PCE (100, 350 mg/kg/day) was administered to diabetic rats for 16 weeks. Blood glucose and albuminuria were measured. Renal histology, α-smooth muscle actin (α-SMA), and proliferating cell nuclear antigen (PCNA) expression levels were also examined. Results After 16 weeks of treatment with PCE, severe hyperglycemia and albuminuria were observed in the diabetic rats. The expressions levels of α-SMA and PCNA proteins were significantly increased in the glomeruli of the diabetic rats. The expression levels of PDGF-BB and its receptor expressions were greatly increased in the glomeruli of the diabetic rats. However, PCE markedly reduced albuminuria in the diabetic rats. PCE inhibited α-SMA and PCNA up-regulation and ameliorated PDGF-BB and PEGFR-ß protein expression in the diabetic rats. In addition, the binding of PDGF-BB/PDGFR-ß was inhibited by PCE as shown by an in vitro assay. Conclusions These results suggest that PCE has an inhibitory effect on mesangial proliferation in diabetic renal tissues via the inhibition of the interaction of PDGF-BB with its receptor. PCE may have beneficial effects in preventing the progression of diabetic nephropathy. Electronic supplementary material The online version of this article (doi:10.1186/1472-6882-14-477) contains supplementary material, which is available to authorized users.
Collapse
|
34
|
Tessari P. Nitric oxide in the normal kidney and in patients with diabetic nephropathy. J Nephrol 2014; 28:257-68. [PMID: 25216787 DOI: 10.1007/s40620-014-0136-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/26/2014] [Indexed: 01/06/2023]
Abstract
Nitric oxide (NO) is a gas with biological and regulatory properties, produced from arginine by the way of nitric oxide synthases (NOS), and with a very short half-life (few seconds). A "coupled" NOS activity leads to NO generation, whereas its uncoupling produces the reactive oxygen species peroxynitrite (ONOO(-)). Uncoupling is usually due to inflammation, oxidative stress, decreased cofactor availability, or excessive NO production. Competitive inhibitors of NO production are post-translationally methylated arginine residues in proteins, which are constantly released into the circulation. NO availability is altered in many clinical conditions associated with vascular dysfunction, such as diabetes mellitus. The kidney plays an important role in body NO homeostasis. This article provides an overview of current literature, on NO production/availability, with a focus on diabetic nephropathy. In diabetes, NO availability is usually decreased (with exception of the early, hyper filtration phase of nephropathy in Type 1 diabetes), and it could constitute a factor of the generalized vasculopathy present in diabetic nephropathy. NO generation in Type 2 diabetes with nephropathy is inversely associated with the dimethyl-arginine concentrations, which are therefore important modulators of NO synthesis independently from the classic stimulatory pathways (such as the insulin effect). A disturbed NO metabolism is present in diabetes associated with nephropathy. Although modulation of NO production is not yet a common therapeutical strategy, a number of yet experimental compounds need to be tested as potential interventions to treat the vascular dysfunction and nephropathy in diabetes, as well as in other diseased states. Finally, in diabetic nephropathy NO deficiency may be associated to that of hydrogen sulfide, another interesting gaseous mediator which is increasingly investigated.
Collapse
Affiliation(s)
- Paolo Tessari
- Metabolism Division, Department of Medicine, University of Padova, via Giustiniani 2, 35128, Padua, Italy,
| |
Collapse
|
35
|
Lankhorst S, Kappers MHW, van Esch JHM, Smedts FMM, Sleijfer S, Mathijssen RHJ, Baelde HJ, Danser AHJ, van den Meiracker AH. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study. Hypertension 2014; 64:1282-9. [PMID: 25185126 DOI: 10.1161/hypertensionaha.114.04187] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.
Collapse
Affiliation(s)
- Stephanie Lankhorst
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Mariëtte H W Kappers
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Joep H M van Esch
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Frank M M Smedts
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Stefan Sleijfer
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Ron H J Mathijssen
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Hans J Baelde
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - A H Jan Danser
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.)
| | - Anton H van den Meiracker
- From the Division of Pharmacology and Vascular Medicine, Department of Internal Medicine (S.L., M.H.W.K., J.H.M.v.E., A.H.J.D., A.H.v.d.M.) and Department of Medical Oncology, Erasmus MC Cancer Institute (S.S., R.H.J.M.), Erasmus Medical Center, Rotterdam, The Netherlands; Department of Pathology, Reinier de Graaf Groep, Delft, The Netherlands (F.M.M.S.); Department of Internal Medicine, Amphia Hospital, Breda, The Netherlands (M.H.W.K.); and Department of Pathology, Leiden University Medical Center, Leiden (H.J.B.).
| |
Collapse
|
36
|
Changes in the pharmacokinetic of sildenafil citrate in rats with Streptozotocin-induced diabetic nephropathy. J Diabetes Metab Disord 2014; 13:8. [PMID: 24398037 PMCID: PMC3922855 DOI: 10.1186/2251-6581-13-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Accepted: 12/19/2013] [Indexed: 12/17/2022]
Abstract
Aim The present investigates deals with the change in the pharmacokinetic of Sildenafil citrate (SIL) in disease condition like diabetic nephropathy (DN). Method Diabetes was induced in rats by administering Streptozotocin i.e. STZ (60 mg/kg, IP) saline solution. Assessment of diabetes was done by GOD-POD method and conformation of DN was done by assessing the level of Creatinine, Blood Urea Nitrogen (BUN) and Albuminurea. After the conformation of DN single dose of drug SIL (2.5 mg/kg, p.o.) were given orally and Pharmacokinetic Parameters like [AUC o-t (ug.h/ml), AUC 0-∞, Cmax, Tmax, Kel, Clast] were estimated in the plasma by the help of HPLC-UV. Result There was significant increase (p < 0.01) in the Pharmacokinetic parameters of SIL in DN rat (AUC0-t, AUC0-∞, Cmax, Tmax and T1/2) compare to normal control rat and significant increase Kel in the DN rat compare to control rat. Conclusion The study concluded that there was significant (p < 0.01) increase in the bioavailability of SIL in DN.
Collapse
|
37
|
Brown KE, Dhaun N, Goddard J, Webb DJ. Potential Therapeutic Role of Phosphodiesterase Type 5 Inhibition in Hypertension and Chronic Kidney Disease. Hypertension 2014; 63:5-11. [DOI: 10.1161/hypertensionaha.113.01774] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Kayleigh E. Brown
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Neeraj Dhaun
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - Jane Goddard
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| | - David J. Webb
- From the British Heart Foundation Centre for Cardiovascular Science, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, Scotland, United Kingdom (K.E.B., N.D., J.G., D.J.W.); and Renal Unit, Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom (N.D., J.G.)
| |
Collapse
|
38
|
Thompson CS. Diabetic nephropathy: Treatment with phosphodiesterase type 5 inhibitors. World J Diabetes 2013; 4:124-129. [PMID: 23961322 PMCID: PMC3746084 DOI: 10.4239/wjd.v4.i4.124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 02/05/2023] Open
Abstract
The importance of nitric oxide (NO) in vascular physiology is irrefutable; it stimulates the intracellular production of cyclic guanosine monophosphate (cGMP), initiating vascular smooth muscle relaxation. This biochemical process increases the diameter of small arteries, regulating blood flow distribution between arterioles and the microvasculature. The kidney is no exception, since NO predominantly dilates the glomerular afferent arterioles. It is now evident that the vascular production of cGMP can be augmented by inhibitors of phosphodiesterase type 5 (PDE 5), the enzyme which breakdowns this cyclic nucleotide. This has clinical relevance, since diabetic nephropathy (DN) a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease, increases intraglomerular capillary pressure, leading to glomerular hypertension. PDE 5 inhibitors may have, therefore, the potential to reduce glomerular hypertension. This review describes the use of PDE 5 inhibitors to improve the metabolic, haemodynamic and inflammatory pathways/responses, all of which are dysfunctional in DN.
Collapse
|
39
|
Therapeutic effects of human mesenchymal stem cells in Wistar-Kyoto rats with anti-glomerular basement membrane glomerulonephritis. PLoS One 2013; 8:e67475. [PMID: 23826305 PMCID: PMC3691173 DOI: 10.1371/journal.pone.0067475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 05/20/2013] [Indexed: 01/14/2023] Open
Abstract
INTRODUCTION Multipotent mesenchymal stem cells (MSCs) have become a promising therapeutic approach in many clinical conditions. The hypothesis that MSCs can provide a potential therapy for human anti-glomerular basement membrane (GBM) glomerulonephritis (GN) was tested. METHODS Nephrotoxic serum nephritis was induced in Wistar-Kyoto rats on day 0. Groups of animals were given either human MSCs (hMSCs, 3×10(6)) or vehicle by intravenous injection on day 4; all rats were sacrificed at either day 7 or day 13. RESULTS Fluorescently labeled hMSCs were localized in glomeruli and tubulointerstitium 5 h after hMSC administration and persisted until 48 h, but hMSCs were barely detectable after 7 days. hMSC-treated rats had decreased kidney weight, proteinuria, and glomerular tuft area at each time point. The serum creatinine level and degree of glomerular crescent formation were decreased by hMSC treatment on day 13. ED1-positive macrophages, CD8-positive cells, and TUNEL-positive apoptotic cells in glomeruli were reduced by hMSC treatment on day 7, and this trend in apoptotic cells persisted to day 13. Renal cortical mRNA for TNF-α, IL-1β, and IL-17, and the serum IL-17A level were decreased, whereas renal cortical mRNA for IL-4 and Foxp3 and the serum IL-10 level were increased in the MSC-treated group on day 7. Collagen types I and III and TGF-β mRNA were decreased by hMSC treatment on day 13. CONCLUSION The present results demonstrated that anti-inflammatory and immunomodulatory effects were involved in the mechanism of attenuating established experimental anti-GBM GN by hMSCs. These results suggest that hMSCs are a promising therapeutic candidate for the treatment of anti-GBM GN.
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW Connective tissue growth factor, more recently officially known as CCN-2, is a member of the CCN family of secreted cysteine-rich modular matricellular proteins. Here, we review CCN-2 in diabetic nephropathy with focus on its regulation of extracellular matrix. RECENT FINDINGS CCN-2 is upregulated in the clinical and preclinical models of diabetic nephropathy by multiple stimuli, including elevated glucose, advanced glycation, some types of lipid, various hemodynamic factors, as well as hypoxia and oxidative stress. CCN-2 has bioactivities that suggest it may mediate diabetic nephropathy pathogenesis, especially in extracellular matrix accumulation, through both induction of new matrix and inhibition of matrix degradation. CCN-2 also has proinflammatory functions. Moreover, recent studies using antibodies or antisense technologies in animal and early phase clinical trial settings have shown that inhibition of renal CCN-2 expression or action may prevent diabetic nephropathy. Additionally, determination of renal and blood levels of CCN-2 as a marker of diabetic renal disease and its progression appears to have value. SUMMARY Recent publications implicate CCN-2 as both an evolving marker and mediator of diabetic nephropathy.
Collapse
|
41
|
Thomas MC. Emerging drugs for managing kidney disease in patients with diabetes. Expert Opin Emerg Drugs 2013; 18:55-70. [PMID: 23330907 DOI: 10.1517/14728214.2013.762356] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The need for new approaches to manage the increasing numbers of patients with diabetes and their burden of complications is urgent. Of these, chronic kidney disease imposes some of the highest costs, both in dollars and in terms of human suffering. In individuals with diabetes, the presence and severity of kidney disease adversely affects their well-being, contributes to disease morbidity and increases their risk of a premature death. AREAS COVERED To collect information for the strategies previously or currently under investigation for managing kidney disease in patients with diabetes, a literature search was performed through the search engines PubMed and ClinicalTrials.gov. EXPERT OPINION Despite advancing knowledge on the pathogenesis of diabetic kidney disease, and promising effects in experimental models, at present there are no new drugs that come close to providing the solutions we desire for our patients. Even when used in combination with standard care, renal complications are at best only modestly reduced, at the considerable expense of additional pill burden and exposure to serious off-target effects. Some of the most exciting advances over the last decade, including thiazolidinediones, direct renin inhibitors, endothelin antagonists and most recently bardoxolone methyl have all fallen at this last hurdle. Better targeted ('smarter') drugs appear to be the best hope for renoprotective therapy.
Collapse
Affiliation(s)
- Merlin C Thomas
- Baker IDI Heart and Diabetes Institute, St Kilda Rd Central, PO Box 6492, Melbourne, VIC 8008, Australia.
| |
Collapse
|
42
|
Fang L, Radovits T, Szabó G, Mózes MM, Rosivall L, Kökény G. Selective phosphodiesterase-5 (PDE-5) inhibitor vardenafil ameliorates renal damage in type 1 diabetic rats by restoring cyclic 3',5' guanosine monophosphate (cGMP) level in podocytes. Nephrol Dial Transplant 2012. [PMID: 23203993 DOI: 10.1093/ndt/gfs391] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Diabetic nephropathy (DN) is characterized by podocyte damage and increased phosphodiesterase-5 (PDE-5) activity-exacerbating nitric oxide (NO)-cyclic 3',5' guanosine monophosphate (cGMP) pathway dysfunction. It has been shown that PDE-5 inhibition ameliorates DN. The role of podocytes in this mechanism remains unclear. We investigated how selective PDE-5 inhibition influences podocyte damage in streptozotocin (STZ) diabetic rats. METHODS Male Sprague-Dawley rats (250-300 g) were injected with STZ and divided into two groups: (i) STZ control (non-treated, STZ, n=6) and (ii) STZ+vardenafil treatment (10 mg/kg/day, STZ-Vard, n=8). Non-diabetic rats served as negative controls (Control, n=7). Following 8 weeks of treatment, immunohistochemical and molecular analysis of the kidneys were performed. RESULTS Diabetic rats had proteinuria, increased renal transforming growth factor (TGF)-β1 expression and podocyte damage when compared with controls. Vardenafil treatment resulted in preserved podocyte cGMP levels, less proteinuria, reduced renal TGF-β1 expression, desmin immunostaining in podocytes and restored both nephrin and podocin mRNA expression. Diabetes led to increased glomerular nitrotyrosine formation and renal neuronal nitric oxide synthase and endothelial nitric oxide synthase mRNA expression, but vardenafil did not influence these parameters. CONCLUSIONS Our data suggest that a dysfunctional NO-cGMP pathway exacerbates podocyte damage in diabetes. In conclusion, vardenafil treatment preserves podocyte function and reduces glomerular damage, which indicates therapeutic potential in patients with DN.
Collapse
Affiliation(s)
- Lilla Fang
- Institute of Pathophysiology, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
43
|
Nourazarian SM, Irajian G, Najafi M, Nourbakhsh M, Maleki J, Shabani M. The effect of Lactobacillus reuteri on bone morphogenetic protein-7 and beta transforming growth factor gene expressions in streptozotocin-induced diabetic rat's kidneys. Pak J Biol Sci 2012; 15:374-379. [PMID: 24199466 DOI: 10.3923/pjbs.2012.374.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Diabetes mellitus is a serious health problem in the world and about 20 to 40% of the patients are being affected with diabetic nephropathy. The anti diabetic property of Lactobacillus reuteri (L. reuteri) has been reported. The study designed to investigate the effect of L. reuteri on the expression of BMP-7 and TGF-beta genes, the two basic factors involved in diabetic nephropathy. This experimental study was carried out in two months. For this goal thirty male Wistar rats with 12 weeks old and 200 +/- 50 g weight was divided into 5 groups, each consisting six rats. (1) Non diabetic, (2) Untreated diabetic, (3) Diabetic rats fed with L. reuteri, (4) Diabetic rats treated with insulin (4-5 U/kg/day), (5) Non diabetic rat fed with L. reuteri. Diabetes in the was induced single intraperitoneal (i.p.) injection of streptozotocin (50 mg kg(-1) b. wt). The L. reuteri 1 x 10(8) Colony Forming Units (CFU) were administered via oral gavages. After two months rats were anesthetized and blood samples collected. Serum nitric oxide (NO) levels were determined by a chemiluminescence method using NO analyzer and serum glucose by glucose oxidize method. The expression of BMP-7 and TGF-beta genes in the rat's kidneys were determined by real time PCR. Results showed that BMP-7 gene expression was increased in diabetic rats that fed with L. reuteri, while TGF-beta gene expressions were decreased. Histopathological study showed that administration of L. reuteri (1 x 10(8) CFU/rat/day) significantly reduced kidney fibrosis and increased meaningfully NO levels in diabetic rats fed with L. reuteri. It was concluded that L. reuteri increase BMP-7 gene expression and may prevents from renal damage by oxidative stress by increasing antioxidant capacity.
Collapse
Affiliation(s)
- S M Nourazarian
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
44
|
Helal I, Fick-Brosnahan GM, Reed-Gitomer B, Schrier RW. Glomerular hyperfiltration: definitions, mechanisms and clinical implications. Nat Rev Nephrol 2012; 8:293-300. [PMID: 22349487 DOI: 10.1038/nrneph.2012.19] [Citation(s) in RCA: 464] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Glomerular hyperfiltration is a phenomenon that can occur in various clinical conditions including kidney disease. No single definition of glomerular hyperfiltration has been agreed upon, and the pathophysiological mechanisms, which are likely to vary with the underlying disease, are not well explored. Glomerular hyperfiltration can be caused by afferent arteriolar vasodilation as seen in patients with diabetes or after a high-protein meal, and/or by efferent arteriolar vasoconstriction owing to activation of the renin-angiotensin-aldosterone system, thus leading to glomerular hypertension. Glomerular hypertrophy and increased glomerular pressure might be both a cause and a consequence of renal injury; understanding the renal adaptations to injury is therefore important to prevent further damage. In this Review, we discuss the current concepts of glomerular hyperfiltration and the renal hemodynamic changes associated with this condition. A physiological state of glomerular hyperfiltration occurs during pregnancy and after consumption of high-protein meals. The various diseases that have been associated with glomerular hyperfiltration, either per nephron or per total kidney, include diabetes mellitus, polycystic kidney disease, secondary focal segmental glomerulosclerosis caused by a reduction in renal mass, sickle cell anemia, high altitude renal syndrome and obesity. A better understanding of the mechanisms involved in glomerular hyperfiltration could enable the development of new strategies to prevent progression of kidney disease.
Collapse
Affiliation(s)
- Imed Helal
- Division of Renal Diseases and Hypertension, University of Colorado Denver, 12700 East 19th Avenue, Campus Box C281, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
45
|
Francis SH, Corbin JD. PDE5 inhibitors: targeting erectile dysfunction in diabetics. Curr Opin Pharmacol 2011; 11:683-8. [PMID: 21924956 DOI: 10.1016/j.coph.2011.08.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 08/24/2011] [Indexed: 12/17/2022]
Abstract
Erectile dysfunction (ED) is strongly linked to cardiovascular disease (CVD), especially in diabetics. ED is associated with deleterious changes in the overall vasculature and is recognized as an indicator of higher risk for adverse cardiovascular events. Endothelial dysfunction, vascular smooth muscle changes and increased fibrosis are indicated as major players in both ED and CVD. ED in diabetics is more refractory to acute treatment with phosphodiesterase-5 (PDE5) inhibitors (Viagra, Cialis, Levitra, Zydena) than in non-diabetics, but recent studies indicate that chronic administration of these drugs improves endothelial function, preserves vascular smooth muscle and decreases fibrotic changes. Use of PDE5 inhibitors in pre-diabetic and diabetic men may protect cardiovascular health, including vascular function in penile tissues.
Collapse
Affiliation(s)
- Sharron H Francis
- Department Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, United States.
| | | |
Collapse
|
46
|
Hale SA, Weger L, Mandala M, Osol G. Reduced NO signaling during pregnancy attenuates outward uterine artery remodeling by altering MMP expression and collagen and elastin deposition. Am J Physiol Heart Circ Physiol 2011; 301:H1266-75. [PMID: 21856919 DOI: 10.1152/ajpheart.00519.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent findings indicate that endothelial nitric oxide (NO) plays a key role in uterine artery outward circumferential remodeling during pregnancy. Although the underlying mechanisms are not known, they likely involve matrix metalloproteinases (MMPs). The goal of this study was to examine the linkage among NO inhibition, expansive remodeling, and MMP expression within the uterine vascular wall. Adult female rats were treated with N(G)-nitro-L-arginine methyl ester [L-NAME (LPLN)] beginning on day 10 of pregnancy and until death at day 20 and compared with age-matched controls [late pregnant (LP)]. Mean arterial pressure of LPLN rats was significantly higher than controls. LPLN fetal and placental weights were significantly reduced compared with controls. Main uterine arteries (mUA) were collected to determine dimensional properties (lumen area and wall thickness), collagen and elastin content, and levels of endothelial nitric oxide synthase (eNOS) and MMP expression. Circumferential remodeling was attenuated, as evidenced by significantly smaller lumen diameters. eNOS RNA and protein were significantly (>90%) decreased in the LPLN mUA compared with LP. Collagen and elastin contents were significantly increased in LPLN rats by ∼10 and 25%, respectively, compared with LP (P < 0.05). Both MMP-2 and tissue inhibitors of metalloproteinase-2 as assessed by immunofluorescence were lower in the endothelium (reduction of 60%) and adventitia (reduction of 50%) of LPLN compared with LP mUA. Membrane bound MMP-1 (MT1-MMP) as assessed by immunoblot was significantly decreased in LPLN. These data suggest a novel contribution of MMPs to gestational uterine vascular remodeling and substantiate the linkage between NO signaling and gestational remodeling of the uterine circulation via altered MMP, TIMP-2, and MT1-MMP expression and activity.
Collapse
Affiliation(s)
- Sarah A Hale
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Vermont, Burlington, Vermont 05405, USA.
| | | | | | | |
Collapse
|
47
|
Thomas MC, Groop PH. New approaches to the treatment of nephropathy in diabetes. Expert Opin Investig Drugs 2011; 20:1057-71. [DOI: 10.1517/13543784.2011.591785] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|