1
|
Evaluation of okadaic acid toxicity in human retinal cells and zebrafish retinas. Toxicology 2022; 473:153209. [DOI: 10.1016/j.tox.2022.153209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/04/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
|
2
|
Zhu JX, Ling W, Xue C, Zhou Z, Zhang YS, Yan C, Wu MP. Higenamine attenuates cardiac fibroblast abstract and fibrosis via inhibition of TGF-β1/Smad signaling. Eur J Pharmacol 2021; 900:174013. [PMID: 33766620 DOI: 10.1016/j.ejphar.2021.174013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE Higenamine (HG), is one of the main active components in many widely used Chinese herbs, and a common ingredient of health products in Europe and North America. Several groups, including our own, have previously shown the beneficial effects of HG against cardiomyocyte death during acute ischemic damage. However, the effect of HG on chronic cardiac remodeling, such as cardiac fibrosis, remains unknown. OBJECTIVE Herein, we aim to investigate the role of HG in cardiac fibrosis in vivo as well as its cellular and molecular mechanisms. METHODS AND RESULTS Chronic pressure overload with transverse aortic constriction (TAC) significantly increased cardiac hypertrophy, fibrosis, and cardiac dysfunction in mice, which were significantly attenuated by HG. Consistently, cardiac fibrosis induced by the chronic infusion of isoproterenol (ISO), was also significantly reduced by HG. Interestingly, our results showed that HG had no effect on adult mouse CM hypertrophy in vitro. However, HG suppressed the activation of cardiac fibroblasts (CFs) in vitro. Furthermore, TGF-β1-induced expression of ACTA2, a marker of fibroblast activation, was significantly suppressed by HG. Concomitantly, HG inhibited TGF-β1-induced phosphorylation of Smad2/3 in CFs. HG also reduced the expression of extracellular matrix molecules such as collagen I and collagen III. To our surprise, the inhibitory effect of HG on CFs activation was independent of the activation of the beta2 adrenergic receptor (β2-AR) that is known to mediate the effect of HG on antagonizing CMs apoptosis. CONCLUSION Our findings suggest that HG ameliorates pathological cardiac fibrosis and dysfunction at least partially by suppressing TGF-β1/Smad signaling and CFs activation.
Collapse
Affiliation(s)
- Jin-Xing Zhu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China; Department of Emergency Intensive Care Unit, Traditional Chinese Hospital of LuAn, Anhui University of Traditional Chinese Medicine, 76 Renmin RD, LuAn Anhui, 237001, China
| | - Wang Ling
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China
| | - Chao Xue
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Zhen Zhou
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China
| | - Yi-Shuai Zhang
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Chen Yan
- Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States
| | - Mei-Ping Wu
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 274 Zhijiang RD, Shanghai, 200071, China; Aab Cardiovascular Research Institute, School of Medicine and Dentistry, University of Rochester, 601 Elmwood Ave Box CVRI, Rochester, NY, 14642, United States.
| |
Collapse
|
3
|
Rizvi F, Siddiqui R, DeFranco A, Homar P, Emelyanova L, Holmuhamedov E, Ross G, Tajik AJ, Jahangir A. Simvastatin reduces TGF-β1-induced SMAD2/3-dependent human ventricular fibroblasts differentiation: Role of protein phosphatase activation. Int J Cardiol 2018; 270:228-236. [PMID: 30220377 DOI: 10.1016/j.ijcard.2018.06.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive cardiac fibrosis due to maladaptive remodeling leads to progression of cardiac dysfunction and is modulated by TGF-β1-activated intracellular phospho-SMAD signaling effectors and transcription regulators. SMAD2/3 phosphorylation, regulated by protein-phosphatases, has been studied in different cell types, but its role in human ventricular fibroblasts (hVFs) is not defined as a target to reduce cytokine-mediated excessive fibrotic response and adverse cardiac remodeling. Statins are a class of drugs reported to reduce cardiac fibrosis, although underlying mechanisms are not completely understood. We aimed to assess whether simvastatin-mediated reduction in TGF-β1-augmented profibrotic response involves reduction in phospho-SMAD2/3 owing to activation of protein-phosphatase in hVFs. METHODS AND RESULTS Cultures of hVFs were used. Effect of simvastatin on TGF-β1-treated hVF proliferation, cytotoxicity, myofibroblast differentiation/activation, profibrotic gene expression and protein-phosphatase activity was assessed. Simvastatin (1 μM) reduced effect of TGF-β1 (5 ng/mL) on hVF proliferation, myofibroblast differentiation (reduced α-smooth muscle actin [α-SMA-expression]) and activation (decreased procollagen-peptide release). Simvastatin also reduced TGF-β1-stimulated time-dependent increases in SMAD2/3 phosphorylation and nuclear translocation, mediated through catalytic activation of protein-phosphatases PPM1A and PP2A, which physically interact with SMAD2/3, thereby promoting their dephosphorylation. Effect of simvastatin on TGF-β1-induced fibroblast activation was annulled by okadaic acid, an inhibitor of protein-phosphatase. CONCLUSIONS This proof-of-concept study using an in vitro experimental cell culture model identifies the protective role of simvastatin against TGF-β1-induced hVF transformation into activated myofibroblasts through activation of protein phosphatase, a novel target that can be therapeutically modulated to curb excessive cardiac fibrosis associated with maladaptive cardiac remodeling.
Collapse
Affiliation(s)
- Farhan Rizvi
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA.
| | - Ramail Siddiqui
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Alessandra DeFranco
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Peter Homar
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Larisa Emelyanova
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Ekhson Holmuhamedov
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Gracious Ross
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - A Jamil Tajik
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| | - Arshad Jahangir
- Center for Integrative Research on Cardiovascular Aging (CIRCA), Aurora Research Institute, Aurora Health Care, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA; Aurora Cardiovascular Services, Aurora Sinai/Aurora St. Luke's Medical Centers, University of Wisconsin School of Medicine and Public Health, 2801 W. Kinnickinnic River Parkway, Milwaukee, WI, USA
| |
Collapse
|
4
|
Yamaguchi M, Saito SY, Nishiyama R, Nakamura M, Todoroki K, Toyo'oka T, Ishikawa T. Caffeine Suppresses the Activation of Hepatic Stellate Cells cAMP-Independently by Antagonizing Adenosine Receptors. Biol Pharm Bull 2018; 40:658-664. [PMID: 28458351 DOI: 10.1248/bpb.b16-00947] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
During liver injury, hepatic stellate cells (HSCs) are activated by various cytokines and transdifferentiated into myofibroblast-like activated HSCs, which produce collagen, a major source of liver fibrosis. Therefore, the suppression of HSC activation is regarded as a therapeutic target for liver fibrosis. Several epidemiological reports have revealed that caffeine intake decreases the risk of liver disease. In this study, therefore, we investigated the effect of caffeine on the activation of primary HSCs isolated from mice. Caffeine suppressed the activation of HSC in a concentration-dependent manner. BAPTA-AM, an intracellular Ca2+ chelator, had no effect on the caffeine-induced suppression of HSC activation. None of the isoform-selective inhibitors of phosphodiesterase1 to 5 affected changes in the morphology of HSC during activation, whereas CGS-15943, an adenosine receptor antagonist, inhibited them. Caffeine had no effect on intracellular cAMP level or on the phosphorylation of extracellular signal-regulated kinase (ERK)1/2. In contrast, caffeine significantly decreased the phosphorylation of Akt1. These results suggest that caffeine inhibits HSC activation by antagonizing adenosine receptors, leading to Akt1 signaling activation.
Collapse
Affiliation(s)
- Momoka Yamaguchi
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Shin-Ya Saito
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Ryota Nishiyama
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| | - Misuzu Nakamura
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Kenichiro Todoroki
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Toshimasa Toyo'oka
- Laboratory of Analytical and Bio-analytical Chemistry, School of Pharmaceutical Sciences, University of Shizuoka
| | - Tomohisa Ishikawa
- Department of Pharmacology, School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
5
|
Bodero M, Hoogenboom RL, Bovee TF, Portier L, de Haan L, Peijnenburg A, Hendriksen PJ. Whole genome mRNA transcriptomics analysis reveals different modes of action of the diarrheic shellfish poisons okadaic acid and dinophysis toxin-1 versus azaspiracid-1 in Caco-2 cells. Toxicol In Vitro 2018; 46:102-112. [DOI: 10.1016/j.tiv.2017.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 09/12/2017] [Accepted: 09/18/2017] [Indexed: 01/09/2023]
|
6
|
Ward MP, Spiers JP. Protein phosphatase 2A regulation of markers of extracellular matrix remodelling in hepatocellular carcinoma cells: functional consequences for tumour invasion. Br J Pharmacol 2017; 174:1116-1130. [PMID: 28239848 DOI: 10.1111/bph.13759] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE A hallmark of tumour invasion is breakdown of the extracellular matrix due to dysregulation of the matrix metalloproteinase (MMP) system. While our understanding of how this is regulated by kinase signalling pathways is well established, its counter-regulation by protein phosphatases (PP) is poorly understood. Therefore, we investigated the effect of PP inhibition on markers of extracellular remodelling and how PP2A activity modulated MMP-9 abundance and function of Hep3B cells. EXPERIMENTAL APPROACH Cells were exposed to okadaic acid (OA), tautomycetin and cyclosporin A, and the expression profile determined using PCR. Effects of OA and a protein inhibitor of PP2A, CIP2A, on MMP-9 abundance, PP2A activity and cell migration were investigated using ELISA, promoter constructs, siRNA knockdown and transwell migration assays. KEY RESULTS OA increased expression and abundance of MMP-9 and the tissue inhibitor of MMP, TIMP-1, without affecting other MMPs, TIMPs and ADAMs. The effect on MMP-9 was mimicked by CIP2A overexpression and knockdown of the PPP2CA catalytic, but not PPP2R1A scaffolding, subunit. Cyclosporin A and PPP1CA silencing did not alter MMP-9 expression, while tautomycetin transiently increased it. Mutation of AP-1, but not NF-κB, binding sites inhibited OA-mediated MMP-9 transcriptional activity. OA and CIP2A decreased PP2A activity and increased cell migration. CONCLUSION AND IMPLICATIONS OA increased MMP-9 by decreasing PP2A activity and PP2Ac, through AP-1 binding sites on the MMP-9 promoter. The functional consequence of this and CIP2A overexpression was increased cell migration. Hence, PP2A inhibition induced a metastatic phenotype through alterations in MMP-9 in Hep3B cells.
Collapse
Affiliation(s)
- M P Ward
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | - J P Spiers
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
7
|
Cristóbal I, Madoz-Gúrpide J, Manso R, González-Alonso P, Rojo F, García-Foncillas J. Potential anti-tumor effects of FTY720 associated with PP2A activation: a brief review. Curr Med Res Opin 2016; 32:1137-41. [PMID: 26950691 DOI: 10.1185/03007995.2016.1162774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
FTY720 (Fingolimod, Gilenya (†) ) is an FDA-approved immunosuppressant currently used in the treatment of multiple sclerosis. However, a large number of studies over the last few years have shown that FTY720 shows potent antitumor properties that suggest its potential usefulness as a novel anticancer agent. Interestingly, the restoration of protein phosphatase 2A (PP2A) activity mediated by FTY720 could play a key role in its antitumor effects. Taking into account that PP2A inactivation is a common event that determines poor outcome in several tumor types, FTY720 could serve as an alternative therapeutic strategy for cancer patients with such alterations.
Collapse
Affiliation(s)
- Ion Cristóbal
- a Translational Oncology Division , Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz' , Madrid , Spain
| | | | - Rebeca Manso
- b Pathology Department , IIS 'Fundacion Jimenez Diaz' , Madrid , Spain
| | | | - Federico Rojo
- b Pathology Department , IIS 'Fundacion Jimenez Diaz' , Madrid , Spain
| | - Jesús García-Foncillas
- a Translational Oncology Division , Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital 'Fundacion Jimenez Diaz' , Madrid , Spain
| |
Collapse
|
8
|
|
9
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|