1
|
Vitola I, Angulo C, Baptista-Rosas RC, Anaya-Esparza LM, Escalante-García ZY, Villarruel-López A, Silva-Jara JM. Prospects in the Use of Cannabis sativa Extracts in Nanoemulsions. BIOTECH 2024; 13:53. [PMID: 39727490 DOI: 10.3390/biotech13040053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Cannabis sativa plants have been widely investigated for their specific compounds with medicinal properties. These bioactive compounds exert preventive and curative effects on non-communicable and infectious diseases. However, C. sativa extracts have barely been investigated, although they constitute an affordable option to treat human diseases. Nonetheless, antioxidant, antimicrobial, and immunogenicity effects have been associated with C. sativa extracts. Furthermore, innovative extraction methods in combination with nanoformulations have been proposed to increase desirable compounds' availability, distribution, and conservation, which can be aided by modern computational tools in a transdisciplinary approach. This review aims to describe available extraction and nanoformulation methods for C. sativa, as well as its known antioxidant, antimicrobial, and immunogenic activities. Critical points on the use of C. sativa extracts in nanoformulations are identified and some prospects are envisaged.
Collapse
Affiliation(s)
- Ian Vitola
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Carlos Angulo
- Grupo de Inmunología y Vacunología, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz 23096, Baja California Sur, Mexico
| | - Raul C Baptista-Rosas
- Departamento de Ciencias de la Salud-Enfermedad como Proceso Individual, CUTonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco, Tonalá 45425, Jalisco, Mexico
- Hospital General de Occidente, Secretaría de Salud Jalisco, Av. Zoquipan 1050, Colonia Zoquipan, Zapopan 45170, Jalisco, Mexico
| | - Luis Miguel Anaya-Esparza
- Centro de Estudios Para la Agricultura, la Alimentación y la Crisis Climática, Centro Universitario de los Altos, Universidad de Guadalajara, Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Jalisco, Mexico
| | - Zazil Yadel Escalante-García
- Departamento de Ingeniería Química, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| | - Jorge Manuel Silva-Jara
- Departamento de Farmacobiología, Universidad de Guadalajara, CUCEI, Blvd. Marcelino García Barragán 1421, Olímpica, Guadalajara 44430, Jalisco, Mexico
| |
Collapse
|
2
|
Larauche M, Mulak A, Ha C, Million M, Arnett S, Germano P, Pearson JP, Currie MG, Taché Y. FAAH inhibitor URB597 shows anti-hyperalgesic action and increases brain and intestinal tissues fatty acid amides in a model of CRF 1 agonist mediated visceral hypersensitivity in male rats. Neurogastroenterol Motil 2024; 36:e14927. [PMID: 39344695 PMCID: PMC11781189 DOI: 10.1111/nmo.14927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/05/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND AND AIMS The endocannabinoid (eCB) system includes ligands (anandamide and 2-arachidonoyl glycerol, 2-AG), receptors and catabolizing enzymes (fatty acid amide hydrolase, FAAH and monoacylglycerol lipase) expressed in both the brain and gut. We investigated whether the FAAH inhibitor, URB597, influenced visceral pain to colorectal distension (CRD) in an acute stress-related model of visceral hypersensitivity induced by the selective corticotropin-releasing factor receptor subtype 1 (CRF1) agonist, cortagine. METHODS Male Sprague-Dawley rats were injected subcutaneously (SC) with URB597 (3 mg/kg) or vehicle and 2 h later, intraperitoneally with cortagine (10 μg/kg) or vehicle. The visceromotor responses (VMR) were assessed to a first CRD (baseline) before injections, and to a second CRD 15 min after the last treatment. Brain, jejunum, and proximal colon were collected from treated and naïve rats for levels quantification of three fatty acid amides (FAAs) [anandamide (arachidonyl-ethanolamide, AEA), oleoyl-ethanolamide (OEA) and palmitoyl-ethanolamide (PEA)], and 2-AG. In separate animals, defecation/diarrhea were monitored after URB597 and cortagine. KEY RESULTS URB597 inhibited cortagine-induced increased VMR at 40 mmHg (89.0 ± 14.8% vs. 132.5 ± 15.6% for vehicle SC, p < 0.05) and 60 mmHg (107.5 ± 16.1% vs. 176.9 ± 24.4% for vehicle SC, p < 0.001) while not influencing basal VMR. In URB597 plus cortagine group, FAAs levels increased in the brain and intestinal tissue while 2-AG did not change. URB597 did not modify cortagine-induced defecation/diarrhea versus vehicle. CONCLUSIONS AND INFERENCES URB597 shows efficacy to elevate brain and intestinal FAAs and to counteract the colonic hypersensitivity induced by peripheral activation of CRF1 signaling supporting a potential strategy of FAAH inhibitors to alleviate stress-related visceral hypersensitivity.
Collapse
Affiliation(s)
- Muriel Larauche
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Agata Mulak
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Present Affiliation: Department of Gastroenterology and Hepatology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Chrysanthy Ha
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
- Present Affiliation: Community Memorial Healthcare, Ventura, CA, USA
| | - Mulugeta Million
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Stacy Arnett
- Present Affiliation: Department of Pathology, St. Louis University, St. Louis, MO, USA
| | - Peter Germano
- Present Affiliation: Auron Therapeutics, Inc., Newton, MA, USA
| | - James P. Pearson
- Present Affiliation: Sea Pharmaceuticals LLC, Cambridge, MA, USA
| | - Mark G. Currie
- Present Affiliation: Sea Pharmaceuticals LLC, Cambridge, MA, USA
| | - Yvette Taché
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90056, USA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| |
Collapse
|
3
|
Li Y, Jiao H, Zhang H, Wang X, Fu Y, Wang Q, Liu H, Yong YC, Guo J, Liu J. Biosafety consideration of nanocellulose in biomedical applications: A review. Int J Biol Macromol 2024; 265:130900. [PMID: 38499126 DOI: 10.1016/j.ijbiomac.2024.130900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/20/2024]
Abstract
Nanocellulose-based biomaterials have gained significant attention in various fields, especially in medical and pharmaceutical areas, due to their unique properties, including non-toxicity, high specific surface area, biodegradability, biocompatibility, and abundant feasible and sophisticated strategies for functional modification. The biosafety of nanocellulose itself is a prerequisite to ensure the safe and effective application of biomaterials as they interact with living cells, tissues, and organs at the nanoscale. Potential residual endogenous impurities and exogenous contaminants could lead to the failure of the intended functionalities or even serious health complications if they are not adequately removed and assessed before use. This review summarizes the sources of impurities in nanocellulose that may pose potential hazards to their biosafety, including endogenous impurities that co-exist in the cellulosic raw materials themselves and exogenous contaminants caused by external exposure. Strategies to reduce or completely remove these impurities are outlined and classified as chemical, physical, biological, and combined methods. Additionally, key points that require careful consideration in the interpretation of the biosafety evaluation outcomes were discussed to ensure the safety and effectiveness of the nanocellulose-based biomaterials in medical applications.
Collapse
Affiliation(s)
- Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Huan Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jiaqi Guo
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
4
|
Wardill HR, Wooley LT, Bellas OM, Cao K, Cross CB, van Dyk M, Kichenadasse G, Bowen JM, Zannettino ACW, Shakib S, Crawford GB, Boublik J, Davis MM, Smid SD, Price TJ. Supporting gut health with medicinal cannabis in people with advanced cancer: potential benefits and challenges. Br J Cancer 2024; 130:19-30. [PMID: 37884682 PMCID: PMC10781684 DOI: 10.1038/s41416-023-02466-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/08/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
The side effects of cancer therapy continue to cause significant health and cost burden to the patient, their friends and family, and governments. A major barrier in the way in which these side effects are managed is the highly siloed mentality that results in a fragmented approach to symptom control. Increasingly, it is appreciated that many symptoms are manifestations of common underlying pathobiology, with changes in the gastrointestinal environment a key driver for many symptom sequelae. Breakdown of the mucosal barrier (mucositis) is a common and early side effect of many anti-cancer agents, known to contribute (in part) to a range of highly burdensome symptoms such as diarrhoea, nausea, vomiting, infection, malnutrition, fatigue, depression, and insomnia. Here, we outline a rationale for how, based on its already documented effects on the gastrointestinal microenvironment, medicinal cannabis could be used to control mucositis and prevent the constellation of symptoms with which it is associated. We will provide a brief update on the current state of evidence on medicinal cannabis in cancer care and outline the potential benefits (and challenges) of using medicinal cannabis during active cancer therapy.
Collapse
Affiliation(s)
- Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia.
| | - Luke T Wooley
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Olivia M Bellas
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Katrina Cao
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
- School of Public Health, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Courtney B Cross
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute (SAHMRI), Adelaide, SA, Australia
| | - Madele van Dyk
- Flinders Centre for Innovation in Cancer, Flinders Medical Centre/Flinders University, SA Health, Adelaide, SA, Australia
| | - Ganessan Kichenadasse
- Flinders Centre for Innovation in Cancer, Flinders Medical Centre/Flinders University, SA Health, Adelaide, SA, Australia
- Northern Adelaide Local Health Network South Australia, SA Health, Adelaide, SA, Australia
| | - Joanne M Bowen
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Andrew C W Zannettino
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sepehr Shakib
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Gregory B Crawford
- Northern Adelaide Local Health Network South Australia, SA Health, Adelaide, SA, Australia
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | | | - Mellar M Davis
- The Geisinger Commonwealth School of Medicine, Scranton, PA, USA
| | - Scott D Smid
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Timothy J Price
- Adelaide Medical School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
- Queen Elizabeth Hospital, Adelaide, SA, Australia
| |
Collapse
|
5
|
Story G, Briere CE, McClements DJ, Sela DA. Cannabidiol and Intestinal Motility: a Systematic Review. Curr Dev Nutr 2023; 7:101972. [PMID: 37786751 PMCID: PMC10541995 DOI: 10.1016/j.cdnut.2023.101972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/13/2023] [Accepted: 07/13/2023] [Indexed: 10/04/2023] Open
Abstract
Cannabidiol (CBD) is a non-intoxicating cannabinoid extracted from the cannabis plant that is used for medicinal purposes. Ingestion of CBD is claimed to address several pathologies, including gastrointestinal disorders, although limited evidence has been generated thus far to substantiate many of its health claims. Nevertheless, CBD usage as an over-the-counter treatment for gastrointestinal disorders is likely to expand in response to increasing commercial availability, permissive legal status, and acceptance by consumers. This systematic review critically evaluates the knowledge boundaries of the published research on CBD, intestinal motility, and intestinal motility disorders. Research on CBD and intestinal motility is currently limited but does support the safety and efficacy of CBD for several therapeutic applications, including seizure disorders, inflammatory responses, and upper gastrointestinal dysfunction (i.e., nausea and vomiting). CBD, therefore, may have therapeutic potential for addressing functional gastrointestinal disorders. The results of this review show promising in vitro and preclinical data supporting a role of CBD in intestinal motility. This includes improved gastrointestinal-related outcomes in murine models of colitis. These studies, however, vary by dose, delivery method, and CBD-extract composition. Clinical trials have yet to find a conclusive benefit of CBD on intestinal motility disorders, but these trials have been limited in scope. In addition, critical factors such as CBD dosing parameters have not yet been established. Further research will establish the efficacy of CBD in applications to address intestinal motility.
Collapse
Affiliation(s)
- Galaxie Story
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts, Amherst, MA, United States
| | - D. Julian McClements
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
- Department of Nutrition, University of Massachusetts, Amherst, MA, United States
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
6
|
Santoso AD, De Ridder D. Fatty Acid Amide Hydrolase: An Integrative Clinical Perspective. Cannabis Cannabinoid Res 2023; 8:56-76. [PMID: 35900294 DOI: 10.1089/can.2021.0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Fatty acid amide hydrolase (FAAH) is one of the main terminating enzymes of the endocannabinoid system (ECS). Since being discovered in 1996, the modulation of FAAH has been viewed as a compelling alternative strategy to obtain the beneficial effect of the ECS. With a considerable amount of FAAH-related publication over time, the next step would be to comprehend the proximity of this evidence for clinical application. Objective: This review intends to highlight the rationale of FAAH modulation and provide the latest evidence from clinical studies. Methods: Publication searches were conducted to gather information focused on FAAH-related clinical evidence with an extension to the experimental research to understand the biological plausibility. The subtopics were selected to be multidisciplinary to offer more perspective on the current state of the arts. Discussion: Experimental and clinical studies have demonstrated that FAAH was highly expressed not only in the central nervous system but also in the peripheral tissues. As the key regulator of endocannabinoid signaling, it would appear that FAAH plays a role in the modulation of mood and emotional response, reward system, pain perception, energy metabolism and appetite regulation, inflammation, and other biological processes. Genetic variants may be associated with some conditions such as substance/alcohol use disorders, obesity, and eating disorder. The advancement of functional neuroimaging has enabled the evaluation of the neurochemistry of FAAH in brain tissues and this can be incorporated into clinical trials. Intriguingly, the application of FAAH inhibitors in clinical trials seems to provide less striking results in comparison with the animal models, although some potential still can be seen. Conclusion: Modulation of FAAH has an immense potential to be a new therapeutic candidate for several disorders. Further exploration, however, is still needed to ensure who is the best candidate for the treatment strategy.
Collapse
Affiliation(s)
- Anugrah D Santoso
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
- Department of Urology, Faculty of Medicine Universitas Airlangga, Dr. Soetomo General Academic Hospital, Surabaya, Indonesia
| | - Dirk De Ridder
- Laboratory of Experimental Urology, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Brierley SM, Greenwood-Van Meerveld B, Sarnelli G, Sharkey KA, Storr M, Tack J. Targeting the endocannabinoid system for the treatment of abdominal pain in irritable bowel syndrome. Nat Rev Gastroenterol Hepatol 2023; 20:5-25. [PMID: 36168049 DOI: 10.1038/s41575-022-00682-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2022] [Indexed: 12/27/2022]
Abstract
The management of visceral pain in patients with disorders of gut-brain interaction, notably irritable bowel syndrome, presents a considerable clinical challenge, with few available treatment options. Patients are increasingly using cannabis and cannabinoids to control abdominal pain. Cannabis acts on receptors of the endocannabinoid system, an endogenous system of lipid mediators that regulates gastrointestinal function and pain processing pathways in health and disease. The endocannabinoid system represents a logical molecular therapeutic target for the treatment of pain in irritable bowel syndrome. Here, we review the physiological and pathophysiological functions of the endocannabinoid system with a focus on the peripheral and central regulation of gastrointestinal function and visceral nociception. We address the use of cannabinoids in pain management, comparing them to other treatment modalities, including opioids and neuromodulators. Finally, we discuss emerging therapeutic candidates targeting the endocannabinoid system for the treatment of pain in irritable bowel syndrome.
Collapse
Affiliation(s)
- Stuart M Brierley
- Visceral Pain Research Group, College of Medicine and Public Health, Flinders Health and Medical Research Institute, Flinders University, Bedford Park, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health, South Australian Health and Medical Research Institute, North Terrace, Adelaide, South Australia, Australia
| | | | - Giovanni Sarnelli
- Department of Clinical Medicine and Surgery, University of Naples "Federico II", Naples, Italy
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany
- Zentrum für Endoskopie, Starnberg, Germany
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Ji S, You Y, Peng B, Zhong T, Kuang Y, Li S, Du L, Chen L, Sun X, Dai J, Huang S, Wu Y, Liu Y. Multi-omics analysis reveals the metabolic regulators of duodenal low-grade inflammation in a functional dyspepsia model. Front Immunol 2022; 13:944591. [PMID: 36091013 PMCID: PMC9453867 DOI: 10.3389/fimmu.2022.944591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Several gastrointestinal phenotypes and impairment of duodenal mucosal barrier have been reported in clinical studies in patients with functional dyspepsia (FD). Due to the preferential colonization of the mucosa, intestinal microbes and their metabolites are commonly involved in host metabolism and immune responses. However, there are no studies on the intertwined correlation among multi-level data. For more comprehensive illustrating, a multi-omics analysis focusing on the duodenum was performed in the FD rat model. We found that differential microbiomes in the duodenum were significantly correlated with the biosynthesis of lipopolysaccharide and peptidoglycan. The innate immune response-related genes, which were upregulated in the duodenum, were associated with the TLR2/TLR4-NFκB signaling pathway. More importantly, arachidonyl ethanolamide (anandamide, AEA) and endocannabinoid analogues showed linear relationships with the FD phenotypes. Taken together, multi-level data from microbiome, transcriptome and metabolome reveal that AEA may regulate duodenal low-grade inflammation in FD. These results suggest an important cue of gut microbiome–endocannabinoid system axis in the pathogenesis of FD.
Collapse
Affiliation(s)
- Shuai Ji
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanting You
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Baizhao Peng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Tianyu Zhong
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuxiang Kuang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shasha Li
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lijing Du
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Liqian Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaojiao Dai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Suiping Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| | - Yuyao Wu
- Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| | - Yanyan Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yanyan Liu, ; Yuyao Wu, ; Suiping Huang,
| |
Collapse
|
9
|
Thakur V, Bashashati M, Enriquez J, Chattopadhyay M. Inhibiting Fatty Acid Amide Hydrolase Ameliorates Enteropathy in Diabetic Mice: A Cannabinoid 1 Receptor Mediated Mechanism. Vet Sci 2022; 9:vetsci9070364. [PMID: 35878381 PMCID: PMC9319435 DOI: 10.3390/vetsci9070364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/09/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022] Open
Abstract
Gastrointestinal (GI) dysmotility in diabetics exhibits fecal incontinence or constipation which affects patients’ quality of life. In this study, we aimed to understand the pattern of GI transit in type 1 diabetic (T1D) mice and whether inhibiting endocannabinoid degradation would exhibit therapeutic effect. Whole gut-transit time and fecal-pellet output were measured at 16 week post-diabetes. T1D mice treated with fatty acid amide hydrolase (FAAH) inhibitor URB597 showed reduced fecal output as well as improved gut transit time. Cannabinoid 1 receptor antagonist, AM251 blocked the effects of URB597, which may demonstrate that FAAH inhibitor is a potential remedial strategy for GI dysmotility.
Collapse
Affiliation(s)
- Vikram Thakur
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Mohammad Bashashati
- Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Josue Enriquez
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
| | - Munmun Chattopadhyay
- Center of Emphasis in Diabetes and Metabolism, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA;
- Correspondence:
| |
Collapse
|
10
|
McCarty TR, Chouairi F, Hathorn KE, Chan WW, Thompson CC. Trends and Socioeconomic Health Outcomes of Cannabis Use Among Patients With Gastroparesis: A United States Nationwide Inpatient Sample Analysis. J Clin Gastroenterol 2022; 56:324-330. [PMID: 33780213 PMCID: PMC8435035 DOI: 10.1097/mcg.0000000000001526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Although cannabis may worsen nausea and vomiting for patients with gastroparesis, it may also be an effective treatment for gastroparesis-related abdominal pain. Given conflicting data and a lack of current epidemiological evidence, we aimed to investigate the association of cannabis use on relevant clinical outcomes among hospitalized patients with gastroparesis. MATERIALS AND METHODS Patients with a diagnosis of gastroparesis were reviewed from the National Inpatient Sample (NIS) database between 2008 and 2014. Gastroparesis was identified by International Classification of Diseases, Ninth Revision, Clinical Modification (ICD-9-CM) codes with patients classified based on a diagnosis of cannabis use disorder. Demographics, comorbidities, socioeconomic status, and outcomes were compared between cohorts using χ2 and analysis of variance. Logistic regression was then performed and annual trends also evaluated. RESULTS A total of 1,473,363 patients with gastroparesis were analyzed [n=33,085 (2.25%) of patients with concomitant cannabis use disorder]. Patients with gastroparesis and cannabis use disorder were more likely to be younger and male gender compared with nonusers (36.7±18.8 vs. 51.9±16.8; P<0.001 and 52.9% vs. 33.5%; P<0.001, respectively). Race/ethnicity was different between groups (P<0.001). Cannabis users had a lower median household income and were more likely to have Medicaid payor status (all P<0.001). Controlling for confounders, length of stay, and mortality were significantly decreased for patients with gastroparesis and cannabis use (all P<0.001). CONCLUSION While patients with gastroparesis and cannabis use disorder were younger, with a lower socioeconomic status, and disproportionately affected by psychiatric diagnoses, these patients had better hospitalization outcomes, including decreased length of stay and improved in-hospital mortality.
Collapse
Affiliation(s)
- Thomas R. McCarty
- Division of Gastroenterology, Hepatology and Endoscopy. Brigham and Women’s Hospital. Harvard Medical School. Boston, MA
| | | | - Kelly E. Hathorn
- Division of Gastroenterology, Hepatology and Endoscopy. Brigham and Women’s Hospital. Harvard Medical School. Boston, MA
| | - Walter W. Chan
- Division of Gastroenterology, Hepatology and Endoscopy. Brigham and Women’s Hospital. Harvard Medical School. Boston, MA
| | - Christopher C. Thompson
- Division of Gastroenterology, Hepatology and Endoscopy. Brigham and Women’s Hospital. Harvard Medical School. Boston, MA
| |
Collapse
|
11
|
Bogale K, Raup-Konsavage W, Dalessio S, Vrana K, Coates MD. Cannabis and Cannabis Derivatives for Abdominal Pain Management in Inflammatory Bowel Disease. Med Cannabis Cannabinoids 2022; 4:97-106. [PMID: 35224429 DOI: 10.1159/000517425] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 05/22/2021] [Indexed: 12/15/2022] Open
Abstract
For centuries, cannabis and its components have been used to manage a wide variety of symptoms associated with many illnesses. Gastrointestinal (GI) diseases are no exception in this regard. Individuals suffering from inflammatory bowel disease (IBD) are among those who have sought out the ameliorating properties of this plant. As legal limitations of its use have eased, interest has grown from both patients and their providers regarding the potential of cannabis to be used in the clinical setting. Similarly, a growing number of animal and human studies have been undertaken to evaluate the impact of cannabis and cannabinoid signaling elements on the natural history of IBD and its associated complications. There is little clinical evidence supporting the ability of cannabis or related products to treat the GI inflammation underlying these disorders. However, 1 recurring theme from both animal and human studies is that these agents have a significant impact on several IBD-related symptoms, including abdominal pain. In this review, we discuss the role of cannabis and cannabinoid signaling in visceral pain perception, what is currently known regarding the efficacy of cannabis and its derivatives for managing pain, related symptoms and inflammation in IBD, and what work remains to effectively utilize cannabis and its derivatives in the clinical setting.
Collapse
Affiliation(s)
- Kaleb Bogale
- Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Wesley Raup-Konsavage
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Shannon Dalessio
- Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kent Vrana
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Matthew D Coates
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA.,Division of Gastroenterology & Hepatology, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
12
|
Tartakover Matalon S, Azar S, Meiri D, Hadar R, Nemirovski A, Abu Jabal N, Konikoff FM, Drucker L, Tam J, Naftali T. Endocannabinoid Levels in Ulcerative Colitis Patients Correlate With Clinical Parameters and Are Affected by Cannabis Consumption. Front Endocrinol (Lausanne) 2021; 12:685289. [PMID: 34531823 PMCID: PMC8438407 DOI: 10.3389/fendo.2021.685289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/22/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Inflammatory bowel diseases (IBDs) are chronic, idiopathic, inflammatory, gastrointestinal disorders. The endocannabinoid system may have a role in the pathogenesis of IBD. We aimed to assess whether cannabis treatment influences endocannabinoids (eCBs) level and clinical symptoms of IBD patients. METHODS Blood samples and biopsies were taken from IBD patients treated by either cannabis or placebo for 8 weeks. Immunohistochemistry for N-acyl-phosphatidylethanolamine-selective phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH) expression was done on colon biopsies, and sample levels of anandamide (AEA), eCB2-arachidonylglycerol (2-AG), arachidonic acid (AA), palmitoylethanolamine (PEA), and oleoylethanolamine (OEA) were measured in patient's sera before and after cannabis treatment. Caco-2 cells were cultured with extracts of cannabis with/without tetrahydrocannabinol (THC) and their proteins extracted, and Western blotting for NAPE-PLD and FAAH expression was done. RESULTS Thirteen patients with Crohn's disease (CD) and nine patients with ulcerative colitis (UC) were treated with cannabis. Seventeen patients with CD and 10 with UC served as placebo groups. In all CD patients, the levels of eCBs remained unaltered during the treatment period. In UC patients treated with placebo, but not in those treated with cannabis, the levels of PEA, AEA, and AA decreased significantly. The percent reduction in bowel movements was negatively correlated with changes observed in the circulating AEA and OEA, whereas improvement in quality of life was positively correlated with the levels of 2-AG. In the biopsies from UC patients, FAAH levels increased over the study period. In Caco-2 cells, both cannabis extracts increased NAPE-PLD levels but reduced FAAH expression levels. CONCLUSION Our study supports the notion that cannabis use affects eCB "tone" in UC patients and may have beneficial effects on disease symptoms in UC patients.
Collapse
Affiliation(s)
- Shelly Tartakover Matalon
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Shahar Azar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Meiri
- Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Rivka Hadar
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Alina Nemirovski
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Narjes Abu Jabal
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Fred Meir Konikoff
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
| | - Liat Drucker
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Joseph Tam
- Obesity and Metabolism Laboratory, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Timna Naftali
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Institute of Gastroenterology and Hepatology, Meir Medical Center, Kfar Saba, Israel
- *Correspondence: Timna Naftali,
| |
Collapse
|
13
|
Huang T, Zhao L, Lin CY, Lu L, Ning ZW, Hu DD, Zhong LLD, Yang ZJ, Bian ZX. Chinese Herbal Medicine (MaZiRenWan) Improves Bowel Movement in Functional Constipation Through Down-Regulating Oleamide. Front Pharmacol 2020; 10:1570. [PMID: 32038247 PMCID: PMC6989537 DOI: 10.3389/fphar.2019.01570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 12/12/2022] Open
Abstract
In a prospective, randomized, three-arms, controlled clinical study, Chinese Herbal Medicine MaZiRenWan (MZRW, also known as Hemp Seed Pill) demonstrates comparable efficacy with Senna for functional constipation (FC) during an 8-week treatment period. Both MZRW and Senna are better than a placebo; relative to Senna and a placebo, MZRW displayed a more sustained effect during the 8-week follow-up period. The characteristic pharmacological mechanism responsible for this observation is still unclear. To explore this, we collected pre- and post-treatment serum samples of 85 FC patients from MZRW/Senna/placebo treatment groups for pharmacometabolomic analysis. An ultrahigh-performance liquid chromatography-mass spectrometer (UPLC-MS) was used for metabolic profiling and quantification. In vivo studies were conducted in constipated C57BL/6J mice to verify the effects and corresponding mechanism(s) of the action of MZRW. Pearson correlation analysis, paired t-test, one-way ANOVA analysis, χ2 test, and Student t-test were used to interpret the clinical and preclinical data. Changes in levels of circulating oleamide and its derivatives negatively correlate with improvement in complete spontaneous bowel movement (CSBM) in the MZRW group (Pearson r = -0.59, p = 0.00057). The same did not hold true for either Senna or placebo groups. Oleamide is a known regulator of intestinal motility. MZRW treatment resulted in reduced levels of circulating oleamide in FC patients. Experimental verification showed that MZRW attenuated oleamide-induced slow intestinal motility in mice. MZRW decreased oleamide levels in serum, ileum, and colon in normal mice, but increased expression of colonic fatty acid amide hydrolase (FAAH). In conclusion, MZRW improved bowel movement in FC by down-regulating oleamide, possibly by enhancing FAAH-mediated degradation. Our findings suggest a novel therapeutic strategy for FC.
Collapse
Affiliation(s)
- Tao Huang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Ling Zhao
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Cheng-Yuan Lin
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong.,YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming, China
| | - Lin Lu
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zi-Wan Ning
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Dong-Dong Hu
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Linda L D Zhong
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhi-Jun Yang
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhao-Xiang Bian
- Institute of Brain and Gut Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong.,Hong Kong Chinese Medicine Clinical Study Centre, Hong Kong Baptist University, Hong Kong, Hong Kong
| |
Collapse
|
14
|
Kangas BD, Zakarian AS, Vemuri K, Alapafuja SO, Jiang S, Nikas SP, Makriyannis A, Bergman J. Cannabinoid Antagonist Drug Discrimination in Nonhuman Primates. J Pharmacol Exp Ther 2019; 372:119-127. [PMID: 31641018 DOI: 10.1124/jpet.119.261818] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/21/2019] [Indexed: 11/22/2022] Open
Abstract
Despite a growing acceptance that withdrawal symptoms can emerge following discontinuation of cannabis products, especially in high-intake chronic users, there are no Food and Drug Administration (FDA)-approved treatment options. Drug development has been hampered by difficulties studying cannabis withdrawal in laboratory animals. One preclinical approach that has been effective in studying withdrawal from drugs in several pharmacological classes is antagonist drug discrimination. The present studies were designed to examine this paradigm in squirrel monkeys treated daily with the long-acting CB1 agonist AM2389 (0.01 mg/kg) and trained to discriminate the CB1 inverse agonist/antagonist rimonabant (0.3 mg/kg) from saline. The discriminative-stimulus effects of rimonabant were both dose and time dependent and, importantly, could be reproduced by discontinuation of agonist treatment. Antagonist substitution tests with the CB1 neutral antagonists AM4113 (0.03-0.3 mg/kg), AM6527 (0.03-1.0 mg/kg), and AM6545 (0.03-1.0 mg/kg) confirmed that the rimonabant discriminative stimulus also could be reproduced by CB1 antagonists lacking inverse agonist action. Agonist substitution tests with the phytocannabinoid ∆9-tetrahydrocannabinol (0.1-1.0 mg/kg), synthetic CB1 agonists nabilone (0.01-0.1 mg/kg), AM4054 (0.01-0.03 mg/kg), K2/Spice compound JWH-018 (0.03-0.3 mg/kg), FAAH-selective inhibitors AM3506 (0.3-5.6 mg/kg), URB597 (3.0-5.6 mg/kg), and nonselective FAAH/MGL inhibitor AM4302 (3.0-10.0 mg/kg) revealed that only agonists with CB1 affinity were able to reduce the rimonabant-like discriminative stimulus effects of withholding daily agonist treatment. Although the present studies did not document physiologic disturbances associated with withdrawal, the results are consistent with the view that the cannabinoid antagonist drug discrimination paradigm provides a useful screening procedure for examining the ability of candidate medications to attenuate the interoceptive stimuli provoked by cannabis discontinuation. SIGNIFICANCE STATEMENT: Despite a growing acceptance that withdrawal symptoms can emerge following the discontinuation of cannabis products, especially in high-intake chronic users, there are no FDA-approved pharmacotherapies to assist those seeking treatment. The present studies systematically examined cannabinoid antagonist drug discrimination, a preclinical animal model that is designed to appraise the ability of candidate medications to attenuate the interoceptive effects that accompany abrupt cannabis abstinence.
Collapse
Affiliation(s)
- Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Ani S Zakarian
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Kiran Vemuri
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Shakiru O Alapafuja
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Shan Jiang
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Spyros P Nikas
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Alexandros Makriyannis
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| | - Jack Bergman
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts (B.D.K., J.B.); Behavioral Biology Program, McLean Hospital, Belmont, Massachusetts (B.D.K., A.S.Z., J.B.); and Center for Drug Discovery, Northeastern University, Boston, Massachusetts (K.V., S.O.A., S.J., S.P.N., A.M.)
| |
Collapse
|
15
|
Holmes GM, Hubscher CH, Krassioukov A, Jakeman LB, Kleitman N. Recommendations for evaluation of bladder and bowel function in pre-clinical spinal cord injury research. J Spinal Cord Med 2019; 43:165-176. [PMID: 31556844 PMCID: PMC7054945 DOI: 10.1080/10790268.2019.1661697] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective: In order to encourage the inclusion of bladder and bowel outcome measures in preclinical spinal cord injury (SCI) research, this paper identifies and categorizes 1) fundamental, 2) recommended, 3) supplemental and 4) exploratory sets of outcome measures for pre-clinical assessment of bladder and bowel function with broad applicability to animal models of SCI.Methods: Drawing upon the collective research experience of autonomic physiologists and informed in consultation with clinical experts, a critical assessment of currently available bladder and bowel outcome measures (histological, biochemical, in vivo functional, ex vivo physiological and electrophysiological tests) was made to identify the strengths, deficiencies and ease of inclusion for future studies of experimental SCI.Results: Based upon pre-established criteria generated by the Neurogenic Bladder and Bowel Working Group that included history of use in experimental settings, citations in the literature by multiple independent groups, ease of general use, reproducibility and sensitivity to change, three fundamental measures each for bladder and bowel assessments were identified. Briefly defined, these assessments centered upon tissue morphology, voiding efficiency/volume and smooth muscle-mediated pressure studies. Additional assessment measures were categorized as recommended, supplemental or exploratory based upon the balance between technical requirements and potential mechanistic insights to be gained by the study.Conclusion: Several fundamental assessments share reasonable levels of technical and material investment, including some that could assess bladder and bowel function non-invasively and simultaneously. Such measures used more inclusively across SCI studies would advance progress in this high priority area. When complemented with a few additional investigator-selected study-relevant supplemental measures, they are highly recommended for research programs investigating the efficacy of therapeutic interventions in preclinical animal models of SCI that have a bladder and/or bowel focus.
Collapse
Affiliation(s)
- Gregory M. Holmes
- Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA,Correspondence to: Gregory M. Holmes, Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, 500 University Dr., Hershey, PA 17036, USA. ;
| | - Charles H. Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA
| | - Andrei Krassioukov
- ICORD, University of British Columbia, GF Strong Rehabilitation Centre, Vancouver, Canada
| | - Lyn B. Jakeman
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, USA
| | | |
Collapse
|
16
|
Ruiz de Azua I, Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell Mol Life Sci 2019; 76:1341-1363. [PMID: 30599065 PMCID: PMC11105297 DOI: 10.1007/s00018-018-2994-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/22/2018] [Accepted: 12/10/2018] [Indexed: 02/06/2023]
Abstract
The endocannabinoid (eCB) system is widely expressed in many central and peripheral tissues, and is involved in a plethora of physiological processes. Among these, activity of the eCB system promotes energy intake and storage, which, however, under pathophysiological conditions, can favour the development of obesity and obesity-related disorders. It is proposed that eCB signalling is evolutionary beneficial for survival under periods of scarce food resources. Remarkably, eCB signalling is increased both in hunger and in overnutrition conditions, such as obesity and type-2 diabetes. This apparent paradox suggests a role of the eCB system both at initiation and at clinical endpoint of obesity. This review will focus on recent findings about the role of the eCB system controlling whole-body metabolism in mice that are genetically modified selectively in different cell types. The current data in fact support the notion that eCB signalling is not only engaged in the development but also in the maintenance of obesity, whereby specific cell types in central and peripheral tissues are key sites in regulating the entire body's energy homeostasis.
Collapse
MESH Headings
- Adipose Tissue/metabolism
- Animals
- Brain/metabolism
- Endocannabinoids/metabolism
- Energy Metabolism
- Muscle, Skeletal/metabolism
- Obesity/metabolism
- Obesity/pathology
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Cannabinoid, CB2/antagonists & inhibitors
- Receptor, Cannabinoid, CB2/genetics
- Receptor, Cannabinoid, CB2/metabolism
Collapse
Affiliation(s)
- Inigo Ruiz de Azua
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany.
| | - Beat Lutz
- German Resilience Center (DRZ) and Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 5, 55128, Mainz, Germany
| |
Collapse
|
17
|
Enhanced endocannabinoid tone as a potential target of pharmacotherapy. Life Sci 2018; 204:20-45. [PMID: 29729263 DOI: 10.1016/j.lfs.2018.04.054] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/19/2018] [Accepted: 04/28/2018] [Indexed: 12/21/2022]
Abstract
The endocannabinoid system is up-regulated in numerous pathophysiological states such as inflammatory, neurodegenerative, gastrointestinal, metabolic and cardiovascular diseases, pain, and cancer. It has been suggested that this phenomenon primarily serves an autoprotective role in inhibiting disease progression and/or diminishing signs and symptoms. Accordingly, enhancement of endogenous endocannabinoid tone by inhibition of endocannabinoid degradation represents a promising therapeutic approach for the treatment of many diseases. Importantly, this allows for the avoidance of unwanted psychotropic side effects that accompany exogenously administered cannabinoids. The effects of endocannabinoid metabolic pathway modulation are complex, as endocannabinoids can exert their actions directly or via numerous metabolites. The two main strategies for blocking endocannabinoid degradation are inhibition of endocannabinoid-degrading enzymes and inhibition of endocannabinoid cellular uptake. To date, the most investigated compounds are inhibitors of fatty acid amide hydrolase (FAAH), an enzyme that degrades the endocannabinoid anandamide. However, application of FAAH inhibitors (and consequently other endocannabinoid degradation inhibitors) in medicine became questionable due to a lack of therapeutic efficacy in clinical trials and serious adverse effects evoked by one specific compound. In this paper, we discuss multiple pathways of endocannabinoid metabolism, changes in endocannabinoid levels across numerous human diseases and corresponding experimental models, pharmacological strategies for enhancing endocannabinoid tone and potential therapeutic applications including multi-target drugs with additional targets outside of the endocannabinoid system (cyclooxygenase-2, cholinesterase, TRPV1, and PGF2α-EA receptors), and currently used medicines or medicinal herbs that additionally enhance endocannabinoid levels. Ultimately, further clinical and preclinical studies are warranted to develop medicines for enhancing endocannabinoid tone.
Collapse
|
18
|
Hansen HS, Vana V. Non-endocannabinoid N-acylethanolamines and 2-monoacylglycerols in the intestine. Br J Pharmacol 2018; 176:1443-1454. [PMID: 29473944 DOI: 10.1111/bph.14175] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/23/2018] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
This review focuses on recent findings of the physiological and pharmacological role of non-endocannabinoid N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs) in the intestine and their involvement in the gut-brain signalling. Dietary fat suppresses food intake, and much research concerns the known gut peptides, for example, glucagon-like peptide-1 (GLP-1) and cholecystokinin (CCK). NAEs and 2-MAGs represent another class of local gut signals most probably involved in the regulation of food intake. We discuss the putative biosynthetic pathways and targets of NAEs in the intestine as well as their anorectic role and changes in intestinal levels depending on the dietary status. NAEs can activate the transcription factor PPARα, but studies to evaluate the role of endogenous NAEs are generally lacking. Finally, we review the role of diet-derived 2-MAGs in the secretion of anorectic gut peptides via activation of GPR119. Both PPARα and GPR119 have potential as pharmacological targets for the treatment of obesity and the former for treatment of intestinal inflammation. LINKED ARTICLES: This article is part of a themed section on 8th European Workshop on Cannabinoid Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.10/issuetoc.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Vasiliki Vana
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Couch DG, Maudslay H, Doleman B, Lund JN, O'Sullivan SE. The Use of Cannabinoids in Colitis: A Systematic Review and Meta-Analysis. Inflamm Bowel Dis 2018; 24:680-697. [PMID: 29562280 DOI: 10.1093/ibd/izy014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical trials investigating the use of cannabinoid drugs for the treatment of intestinal inflammation are anticipated secondary to preclinical literature demonstrating efficacy in reducing inflammation. METHODS We systematically reviewed publications on the benefit of drugs targeting the endo-cannabinoid system in intestinal inflammation. We collated studies examining outcomes for meta-analysis from EMBASE, MEDLINE and Pubmed until March 2017. Quality was assessed according to mSTAIR and SRYCLE score. RESULTS From 2008 papers, 51 publications examining the effect of cannabinoid compounds on murine colitis and 2 clinical studies were identified. Twenty-four compounds were assessed across 71 endpoints. Cannabidiol, a phytocannabinoid, was the most investigated drug. Macroscopic colitis severity (disease activity index [DAI]) and myeloperoxidase activity (MPO) were assessed throughout publications and were meta-analyzed using random effects models. Cannabinoids reduced DAI in comparison with the vehicle (standard mean difference [SMD] -1.36; 95% CI, -1.62 to-1.09; I2 = 61%). FAAH inhibitor URB597 had the largest effect size (SMD -4.43; 95% CI, -6.32 to -2.55), followed by the synthetic drug AM1241 (SMD -3.11; 95% CI, -5.01 to -1.22) and the endocannabinoid anandamide (SMD -3.03; 95% CI, -4.89 to -1.17; I2 not assessed). Cannabinoids reduced MPO in rodents compared to the vehicle; SMD -1.26; 95% CI, -1.54 to -0.97; I2 = 48.1%. Cannabigerol had the largest effect size (SMD -6.20; 95% CI, -9.90 to -2.50), followed by the synthetic CB1 agonist ACEA (SMD -3.15; 95% CI, -4.75 to -1.55) and synthetic CB1/2 agonist WIN55,212-2 (SMD -1.74; 95% CI, -2.81 to -0.67; I2 = 57%). We found no evidence of reporting bias. No significant difference was found between the prophylactic and therapeutic use of cannabinoid drugs. CONCLUSIONS There is abundant preclinical literature demonstrating the anti-inflammatory effects of cannabinoid drugs in inflammation of the gut. Larger randomised controlled-trials are warranted.
Collapse
Affiliation(s)
- Daniel G Couch
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Henry Maudslay
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Brett Doleman
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Jonathan N Lund
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
20
|
Bashashati M, Fichna J, Piscitelli F, Capasso R, Izzo AA, Sibaev A, Timmermans JP, Cenac N, Vergnolle N, Di Marzo V, Storr M. Targeting fatty acid amide hydrolase and transient receptor potential vanilloid-1 simultaneously to modulate colonic motility and visceral sensation in the mouse: A pharmacological intervention with N-arachidonoyl-serotonin (AA-5-HT). Neurogastroenterol Motil 2017; 29. [PMID: 28695708 DOI: 10.1111/nmo.13148] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/02/2017] [Indexed: 02/08/2023]
Abstract
BACKGROUND Endocannabinoid anandamide (AEA) inhibits intestinal motility and visceral pain, but it may also be proalgesic through transient receptor potential vanilloid-1 (TRPV1). AEA is degraded by fatty acid amide hydrolase (FAAH). This study explored whether dual inhibition of FAAH and TRPV1 reduces diarrhea and abdominal pain. METHODS Immunostaining was performed on myenteric plexus of the mouse colon. The effects of the dual FAAH/TRPV1 inhibitor AA-5-HT on electrically induced contractility, excitatory junction potential (EJP) and fast (f) and slow (s) inhibitory junction potentials (IJP) in the mouse colon, colonic propulsion and visceromotor response (VMR) to rectal distension were studied. The colonic levels of endocannabinoids and fatty acid amides were measured. KEY RESULTS CB1-positive neurons exhibited TRPV1; only some TRPV1 positive neurons did not express CB1. CB1 and FAAH did not colocalize. AA-5-HT (100 nM-10 μM) decreased colonic contractility by ~60%; this effect was abolished by TRPV1 antagonist 5'-IRTX, but not by CB1 antagonist, SR141716. AA-5-HT (1 μM-10 μM) inhibited EJP by ~30% and IJPs by ~50%. The effects of AA-5-HT on junction potentials were reversed by SR141716 and 5`-IRTX. AA-5-HT (20 mg/kg; i.p.) inhibited colonic propulsion by ~30%; SR141716 but not 5`-IRTX reversed this effect. AA-5-HT decreased VMR by ~50%-60%; these effects were not blocked by SR141716 or 5`-IRTX. AA-5-HT increased AEA in the colon. CONCLUSIONS AND INFERENCES The effects of AA-5-HT on visceral sensation and colonic motility are differentially mediated by CB1, TRPV1 and non-CB1/TRPV1 mechanisms, possibly reflecting the distinct neuromodulatory roles of endocannabinoid and endovanilloid FAAH substrates in the mouse intestine.
Collapse
Affiliation(s)
- M Bashashati
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Division of Gastroenterology, Department of Internal Medicine, Texas Tech University Health Sciences Center/Paul L. Foster School of Medicine, El Paso, TX, USA
| | - J Fichna
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - F Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - R Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Portici Italy and Endocannabinoid Research Group, Naples, Italy
| | - A A Izzo
- Department of Pharmacy, University of Naples Federico II and Endocannabinoid Research Group, Naples, Italy
| | - A Sibaev
- Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany
| | - J-P Timmermans
- Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| | - N Cenac
- Inserm, U1220, Toulouse, France.,Institut de Recherche en Sante Digestive (IRSD), Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Department of Pharmacology and Physiology, University of Calgary, Calgary, AB, Canada
| | - N Vergnolle
- Inserm, U1220, Toulouse, France.,Institut de Recherche en Sante Digestive (IRSD), Université de Toulouse, Université Paul Sabatier, Toulouse, France.,Department of Pharmacology and Physiology, University of Calgary, Calgary, AB, Canada
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - M Storr
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada.,Department of Internal Medicine II, Ludwig-Maximilians-University of Munich, Campus Grosshadern, Munich, Germany.,Center of Endoscopy, Starnberg, Germany.,Division of Gastroenterology and Department of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
21
|
Caputi V, Marsilio I, Cerantola S, Roozfarakh M, Lante I, Galuppini F, Rugge M, Napoli E, Giulivi C, Orso G, Giron MC. Toll-Like Receptor 4 Modulates Small Intestine Neuromuscular Function through Nitrergic and Purinergic Pathways. Front Pharmacol 2017. [PMID: 28642706 PMCID: PMC5463746 DOI: 10.3389/fphar.2017.00350] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective: Toll-like receptors (TLRs) play a pivotal role in the homeostatic microflora-host crosstalk. TLR4-mediated modulation of both motility and enteric neuronal survival has been reported mainly for colon with limited information on the role of TLR4 in tuning structural and functional integrity of enteric nervous system (ENS) and in controlling small bowel motility. Methods: Male TLR4 knockout (TLR4-/-, 9 ± 1 weeks old) and sex- and age-matched wild-type (WT) C57BL/6J mice were used for the experiments. Alterations in ENS morphology and neurochemical code were assessed by immunohistochemistry whereas neuromuscular function was evaluated by isometric mechanical activity of ileal preparations following receptor and non-receptor-mediated stimuli and by gastrointestinal transit. Results: The absence of TLR4 induced gliosis and reduced the total number of neurons, mainly nNOS+ neurons, in ileal myenteric plexus. Furthermore, a lower cholinergic excitatory response with an increased inhibitory neurotransmission was found together with a delayed gastrointestinal transit. These changes were dependent on increased ileal non-adrenergic non-cholinergic (NANC) relaxations mediated by a complex neuronal-glia signaling constituted by P2X7 and P2Y1 receptors, and NO produced by nNOS and iNOS. Conclusion: We provide novel evidence that TLR4 signaling is involved in the fine-tuning of P2 receptors controlling ileal contractility, ENS cell distribution, and inhibitory NANC neurotransmission via the combined action of NO and adenosine-5'-triphosphate (ATP). For the first time, this study implicates TLR4 at regulating the crosstalk between glia and neurons in small intestine and helps to define its role in gastrointestinal motor abnormalities during dysbiosis.
Collapse
Affiliation(s)
- Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of PadovaPadova, Italy
| | - Ilaria Marsilio
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of PadovaPadova, Italy
| | - Silvia Cerantola
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of PadovaPadova, Italy.,San Camillo HospitalTreviso, Italy
| | - Mona Roozfarakh
- Medway School of Pharmacy, Universities of Kent and Greenwich at MedwayKent, United Kingdom
| | | | | | - Massimo Rugge
- Department of Medicine, University of PadovaPadova, Italy
| | - Eleonora Napoli
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, DavisCA, United States
| | - Cecilia Giulivi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, DavisCA, United States.,Medical Investigation of Neurodevelopmental Disorders Institute (M.I.N.D.), University of California, Davis, SacramentoCA, United States
| | - Genny Orso
- IRCCS "E. Medea" Bosisio PariniLecco, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, School of Medicine, University of PadovaPadova, Italy
| |
Collapse
|
22
|
Mote RS, Hill NS, Uppal K, Tran VT, Jones DP, Filipov NM. Metabolomics of fescue toxicosis in grazing beef steers. Food Chem Toxicol 2017; 105:285-299. [PMID: 28428084 DOI: 10.1016/j.fct.2017.04.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/25/2017] [Accepted: 04/16/2017] [Indexed: 12/25/2022]
Abstract
Fescue toxicosis (FT) results from consumption of tall fescue (Lolium arundinaceum) infected with an endophyte (Epichloë coenophiala) that produces ergot alkaloids (EA), which are considered key etiological agents of FT. Decreased weight gains, hormonal imbalance, circulating cholesterol disruption, and decreased volatile fatty acid absorption suggest toxic (E+) fescue-induced metabolic perturbations. Employing untargeted high-resolution metabolomics (HRM) to analyze E+ grazing-induced plasma and urine metabolome changes, fescue-naïve Angus steers were placed on E+ or non-toxic (Max-Q) fescue pastures and plasma and urine were sampled before, 1, 2, 14, and 28 days after pasture assignment. Plasma and urine catecholamines and urinary EA concentrations were also measured. In E+ steers, urinary EA appeared early and peaked at 14 days. 13,090 urinary and 20,908 plasma HRM features were detected; the most significant effects were observed earlier (2 days) in the urine and later (≥14 days) in the plasma. Alongside EA metabolite detection, tryptophan and lipid metabolism disruption were among the main consequences of E+ consumption. The E+ grazing-associated metabolic pathways and signatures described herein may accelerate development of novel early FT detection and treatment strategies.
Collapse
Affiliation(s)
- Ryan S Mote
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA; Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Karan Uppal
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - ViLinh T Tran
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA; Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
23
|
Hasenoehrl C, Taschler U, Storr M, Schicho R. The gastrointestinal tract - a central organ of cannabinoid signaling in health and disease. Neurogastroenterol Motil 2016; 28:1765-1780. [PMID: 27561826 PMCID: PMC5130148 DOI: 10.1111/nmo.12931] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Accepted: 08/01/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND In ancient medicine, extracts of the marijuana plant Cannabis sativa were used against diseases of the gastrointestinal (GI) tract. Today, our knowledge of the ingredients of the Cannabis plant has remarkably advanced enabling us to use a variety of herbal and synthetic cannabinoid (CB) compounds to study the endocannabinoid system (ECS), a physiologic entity that controls tissue homeostasis with the help of endogenously produced CBs and their receptors. After many anecdotal reports suggested beneficial effects of Cannabis in GI disorders, it was not surprising to discover that the GI tract accommodates and expresses all the components of the ECS. Cannabinoid receptors and their endogenous ligands, the endocannabinoids, participate in the regulation of GI motility, secretion, and the maintenance of the epithelial barrier integrity. In addition, other receptors, such as the transient receptor potential cation channel subfamily V member 1 (TRPV1), the peroxisome proliferator-activated receptor alpha (PPARα) and the G-protein coupled receptor 55 (GPR55), are important participants in the actions of CBs in the gut and critically determine the course of bowel inflammation and colon cancer. PURPOSE The following review summarizes important and recent findings on the role of CB receptors and their ligands in the GI tract with emphasis on GI disorders, such as irritable bowel syndrome, inflammatory bowel disease, and colon cancer.
Collapse
Affiliation(s)
- Carina Hasenoehrl
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Ulrike Taschler
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| | - Martin Storr
- Department of Medicine, Ludwig-Maximilians University, Munich, Germany and Zentrum für Endoskopie, Starnberg, Germany
| | - Rudolf Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
24
|
Ligresti A, De Petrocellis L, Di Marzo V. From Phytocannabinoids to Cannabinoid Receptors and Endocannabinoids: Pleiotropic Physiological and Pathological Roles Through Complex Pharmacology. Physiol Rev 2016; 96:1593-659. [DOI: 10.1152/physrev.00002.2016] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Apart from having been used and misused for at least four millennia for, among others, recreational and medicinal purposes, the cannabis plant and its most peculiar chemical components, the plant cannabinoids (phytocannabinoids), have the merit to have led humanity to discover one of the most intriguing and pleiotropic endogenous signaling systems, the endocannabinoid system (ECS). This review article aims to describe and critically discuss, in the most comprehensive possible manner, the multifaceted aspects of 1) the pharmacology and potential impact on mammalian physiology of all major phytocannabinoids, and not only of the most famous one Δ9-tetrahydrocannabinol, and 2) the adaptive pro-homeostatic physiological, or maladaptive pathological, roles of the ECS in mammalian cells, tissues, and organs. In doing so, we have respected the chronological order of the milestones of the millennial route from medicinal/recreational cannabis to the ECS and beyond, as it is now clear that some of the early steps in this long path, which were originally neglected, are becoming important again. The emerging picture is rather complex, but still supports the belief that more important discoveries on human physiology, and new therapies, might come in the future from new knowledge in this field.
Collapse
Affiliation(s)
- Alessia Ligresti
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Luciano De Petrocellis
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, Consiglio Nazionale delle Ricerche, Comprensorio Olivetti, Pozzuoli, Italy
| |
Collapse
|
25
|
Sharkey KA, Wiley JW. The Role of the Endocannabinoid System in the Brain-Gut Axis. Gastroenterology 2016; 151:252-66. [PMID: 27133395 PMCID: PMC4961581 DOI: 10.1053/j.gastro.2016.04.015] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/21/2016] [Accepted: 04/11/2016] [Indexed: 12/17/2022]
Abstract
The actions of cannabis are mediated by receptors that are part of an endogenous cannabinoid system. The endocannabinoid system (ECS) consists of the naturally occurring ligands N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG), their biosynthetic and degradative enzymes, and the cannabinoid (CB) receptors CB1 and CB2. The ECS is a widely distributed transmitter system that controls gut functions peripherally and centrally. It is an important physiologic regulator of gastrointestinal motility. Polymorphisms in the gene encoding CB1 (CNR1) have been associated with some forms of irritable bowel syndrome. The ECS is involved in the control of nausea and vomiting and visceral sensation. The homeostatic role of the ECS also extends to the control of intestinal inflammation. We review the mechanisms by which the ECS links stress and visceral pain. CB1 in sensory ganglia controls visceral sensation, and transcription of CNR1 is modified through epigenetic processes under conditions of chronic stress. These processes might link stress with abdominal pain. The ECS is also involved centrally in the manifestation of stress, and endocannabinoid signaling reduces the activity of hypothalamic-pituitary-adrenal pathways via actions in specific brain regions, notably the prefrontal cortex, amygdala, and hypothalamus. Agents that modulate the ECS are in early stages of development for treatment of gastrointestinal diseases. Increasing our understanding of the ECS will greatly advance our knowledge of interactions between the brain and gut and could lead to new treatments for gastrointestinal disorders.
Collapse
Affiliation(s)
- Keith A. Sharkey
- Hotchkiss Brain Institute and Snyder Institute of Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 4N1, Canada,Corresponding author: Dr. Keith Sharkey, Department of Physiology and Pharmacology, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada, , Tel: 403-220-4601
| | - John W. Wiley
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Cannabinoid Receptors in Regulating the GI Tract: Experimental Evidence and Therapeutic Relevance. Handb Exp Pharmacol 2016; 239:343-362. [PMID: 28161834 DOI: 10.1007/164_2016_105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Cannabinoid receptors are fundamentally involved in all aspects of intestinal physiology, such as motility, secretion, and epithelial barrier function. They are part of a broader entity, the so-called endocannabinoid system which also includes their endocannabinoid ligands and the ligands' synthesizing/degrading enzymes. The system has a strong impact on the pathophysiology of the gastrointestinal tract and is believed to maintain homeostasis in the gut by controlling hypercontractility and by promoting regeneration after injury. For instance, genetic knockout of cannabinoid receptor 1 leads to inflammation and cancer of the intestines. Derivatives of Δ9-tetrahydrocannabinol, such as nabilone and dronabinol, activate cannabinoid receptors and have been introduced into the clinic to treat chemotherapy-induced emesis and loss of appetite; however, they may cause many psychotropic side effects. New drugs that interfere with endocannabinoid degradation to raise endocannabinoid levels circumvent this obstacle and could be used in the future to treat emesis, intestinal inflammation, and functional disorders associated with visceral hyperalgesia.
Collapse
|
27
|
Trautmann SM, Sharkey KA. The Endocannabinoid System and Its Role in Regulating the Intrinsic Neural Circuitry of the Gastrointestinal Tract. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2015; 125:85-126. [PMID: 26638765 DOI: 10.1016/bs.irn.2015.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Endocannabinoids are important neuromodulators in the central nervous system. They regulate central transmission through pre- and postsynaptic actions on neurons and indirectly through effects on glial cells. Cannabinoids (CBs) also regulate neurotransmission in the enteric nervous system (ENS) of the gastrointestinal (GI) tract. The ENS consists of intrinsic primary afferent neurons, interneurons, and motor neurons arranged in two ganglionated plexuses which control all the functions of the gut. Increasing evidence suggests that endocannabinoids are potent neuromodulators in the ENS. In this review, we will highlight key observations on the localization of CB receptors and molecules involved in the synthesis and degradation of endocannabinoids in the ENS. We will discuss endocannabinoid signaling mechanisms, endocannabinoid tone and concepts of CB receptor metaplasticity in the ENS. We will also touch on some examples of enteric neural signaling in relation neuromuscular, secretomotor, and enteroendocrine transmission in the ENS. Finally, we will briefly discuss some key future directions.
Collapse
Affiliation(s)
- Samantha M Trautmann
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
28
|
Taschler U, Eichmann TO, Radner FPW, Grabner GF, Wolinski H, Storr M, Lass A, Schicho R, Zimmermann R. Monoglyceride lipase deficiency causes desensitization of intestinal cannabinoid receptor type 1 and increased colonic μ-opioid receptor sensitivity. Br J Pharmacol 2015; 172:4419-29. [PMID: 26075589 PMCID: PMC4556478 DOI: 10.1111/bph.13224] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 05/12/2015] [Accepted: 06/03/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND AND PURPOSE Monoglyceride lipase (MGL) degrades 2-arachidonoyl glycerol (2-AG), an endogenous agonist of cannabinoid receptors (CB1/2 ). Because the CB1 receptor is involved in the control of gut function, we investigated the effects of pharmacological inhibition and genetic deletion of MGL on intestinal motility. Furthermore, we determined whether defective 2-AG degradation affects μ-opioid receptor (μ receptor) signalling, a parallel pathway regulating gut motility. EXPERIMENTAL APPROACH Gut motility was investigated by monitoring Evans Blue transit and colonic bead propulsion in response to MGL inhibition and CB1 receptor or μ receptor stimulation. Ileal contractility was investigated by electrical field stimulation. CB1 receptor expression in ileum and colon was assessed by immunohistochemical analyses. KEY RESULTS Pharmacological inhibition of MGL slowed down whole gut transit in a CB1 receptor-dependent manner. Conversely, genetic deletion of MGL did not affect gut transit despite increased 2-AG levels. Notably, MGL deficiency caused complete insensitivity to CB1 receptor agonist-mediated inhibition of whole gut transit and ileal contractility suggesting local desensitization of CB1 receptors. Accordingly, immunohistochemical analyses of myenteric ganglia of MGL-deficient mice revealed that CB1 receptors were trapped in endocytic vesicles. Finally, MGL-deficient mice displayed accelerated colonic propulsion and were hypersensitive to μ receptor agonist-mediated inhibition of colonic motility. This phenotype was reproduced by chronic pharmacological inhibition of MGL. CONCLUSION AND IMPLICATIONS Constantly elevated 2-AG levels induce severe desensitization of intestinal CB1 receptors and increased sensitivity to μ receptor-mediated inhibition of colonic motility. These changes should be considered when cannabinoid-based drugs are used in the therapy of gastrointestinal diseases.
Collapse
MESH Headings
- Animals
- Asialoglycoproteins/deficiency
- Cannabinoids/pharmacology
- Colon/drug effects
- Colon/metabolism
- Gastrointestinal Motility/physiology
- Ileum/metabolism
- Lectins, C-Type/deficiency
- Male
- Membrane Proteins/deficiency
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Culture Techniques
- Receptor, Cannabinoid, CB1/agonists
- Receptor, Cannabinoid, CB1/antagonists & inhibitors
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- U Taschler
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - T O Eichmann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - F P W Radner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - G F Grabner
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - H Wolinski
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - M Storr
- Department of Medicine, Division of Gastroenterology, Ludwig Maximilians University of MunichMunich, Germany
| | - A Lass
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| | - R Schicho
- Institute of Experimental and Clinical Pharmacology, Medical University of GrazGraz, Austria
| | - R Zimmermann
- Institute of Molecular Biosciences, University of GrazGraz, Austria
| |
Collapse
|
29
|
Bashashati M, Nasser Y, Keenan CM, Ho W, Piscitelli F, Nalli M, Mackie K, Storr MA, Di Marzo V, Sharkey KA. Inhibiting endocannabinoid biosynthesis: a novel approach to the treatment of constipation. Br J Pharmacol 2015; 172:3099-111. [PMID: 25684407 DOI: 10.1111/bph.13114] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Endocannabinoids are a family of lipid mediators involved in the regulation of gastrointestinal (GI) motility. The expression, localization and function of their biosynthetic enzymes in the GI tract are not well understood. Here, we examined the expression, localization and function of the enzyme diacylglycerol lipase-α (DAGLα), which is involved in biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG). EXPERIMENTAL APPROACH Cannabinoid CB1 receptor-deficient, wild-type control and C3H/HeJ mice, a genetically constipated strain, were used. The distribution of DAGLα in the enteric nervous system was examined by immunohistochemistry. Effects of the DAGL inhibitors, orlistat and OMDM-188 on pharmacologically induced GI hypomotility were assessed by measuring intestinal contractility in vitro and whole gut transit or faecal output in vivo. Endocannabinoid levels were measured by mass spectrometry. KEY RESULTS DAGLα was expressed throughout the GI tract. In the intestine, unlike DAGLβ, DAGLα immunoreactivity was prominently expressed in the enteric nervous system. In the myenteric plexus, it was colocalized with the vesicular acetylcholine transporter in cholinergic nerves. In normal mice, inhibiting DAGL reversed both pharmacologically reduced intestinal contractility and pharmacologically prolonged whole gut transit. Moreover, inhibiting DAGL normalized faecal output in constipated C3H/HeJ mice. In colons incubated with scopolamine, 2-AG was elevated while inhibiting DAGL normalized 2-AG levels. CONCLUSIONS AND IMPLICATIONS DAGLα was expressed in the enteric nervous system of mice and its inhibition reversed slowed GI motility, intestinal contractility and constipation through 2-AG and CB1 receptor-mediated mechanisms. Our data suggest that DAGLα inhibitors may be promising candidates for the treatment of constipation.
Collapse
Affiliation(s)
- M Bashashati
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Y Nasser
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada
| | - C M Keenan
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - W Ho
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - F Piscitelli
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - M Nalli
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - K Mackie
- Department of Psychological and Brain Sciences, Gill Center for Biomolecular Science, Indiana University, Bloomington, IN, USA
| | - M A Storr
- Division of Gastroenterology, Department of Medicine, University of Calgary, Calgary, AB, Canada.,II Medical Department, Klinikum Groshadern, Ludwig Maximilians University of Munich, Munich, Germany
| | - V Di Marzo
- Endocannabinoid Research Group, Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Pozzuoli, Italy
| | - K A Sharkey
- Hotchkiss Brain Institute and Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
30
|
Maccarrone M, Bab I, Bíró T, Cabral GA, Dey SK, Di Marzo V, Konje JC, Kunos G, Mechoulam R, Pacher P, Sharkey KA, Zimmer A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol Sci 2015; 36:277-96. [PMID: 25796370 DOI: 10.1016/j.tips.2015.02.008] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 12/19/2022]
Abstract
In 1964, the psychoactive ingredient of Cannabis sativa, Δ(9)-tetrahydrocannabinol (THC), was isolated. Nearly 30 years later the endogenous counterparts of THC, collectively termed endocannabinoids (eCBs), were discovered: N-arachidonoylethanolamine (anandamide) (AEA) in 1992 and 2-arachidonoylglycerol (2-AG) in 1995. Since then, considerable research has shed light on the impact of eCBs on human health and disease, identifying an ensemble of proteins that bind, synthesize, and degrade them and that together form the eCB system (ECS). eCBs control basic biological processes including cell choice between survival and death and progenitor/stem cell proliferation and differentiation. Unsurprisingly, in the past two decades eCBs have been recognized as key mediators of several aspects of human pathophysiology and thus have emerged to be among the most widespread and versatile signaling molecules ever discovered. Here some of the pioneers of this research field review the state of the art of critical eCB functions in peripheral organs. Our community effort is aimed at establishing consensus views on the relevance of the peripheral ECS for human health and disease pathogenesis, as well as highlighting emerging challenges and therapeutic hopes.
Collapse
Affiliation(s)
- Mauro Maccarrone
- Center of Integrated Research, Campus Bio-Medico University, Rome, Italy; Center for Brain Research, Santa Lucia Foundation IRCCS, Rome, Italy.
| | - Itai Bab
- Bone Laboratory, Hebrew University Medical Faculty, Jerusalem, Israel; Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Tamás Bíró
- DE-MTA 'Lendület' Cellular Physiology Research Group, Department of Physiology, Medical Faculty, University of Debrecen, Debrecen, Hungary
| | - Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Sudhansu K Dey
- Division of Reproductive Sciences, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Council of Research, Pozzuoli, Italy
| | - Justin C Konje
- Department of Obstetrics and Gynaecology, Sidra Medical and Research Center, Doha, Qatar
| | - George Kunos
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Raphael Mechoulam
- Institute for Drug Research, Hebrew University Medical Faculty, Jerusalem, Israel
| | - Pal Pacher
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| |
Collapse
|
31
|
Narayanan A, Jones LH. Sulfonyl fluorides as privileged warheads in chemical biology. Chem Sci 2015; 6:2650-2659. [PMID: 28706662 PMCID: PMC5489032 DOI: 10.1039/c5sc00408j] [Citation(s) in RCA: 369] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/16/2015] [Indexed: 01/10/2023] Open
Abstract
The use of sulfonyl fluoride probes in chemical biology is reviewed.
Sulfonyl fluoride electrophiles have found significant utility as reactive probes in chemical biology and molecular pharmacology. As warheads they possess the right balance of biocompatibility (including aqueous stability) and protein reactivity. Their functionality is privileged in this regard as they are known to modify not only reactive serines (resulting in their common use as protease inhibitors), but also context-specific threonine, lysine, tyrosine, cysteine and histidine residues. This review describes the application of sulfonyl fluoride probes across various areas of research and explores new approaches that could further enhance the chemical biology toolkit. We believe that sulfonyl fluoride probes will find greater utility in areas such as covalent enzyme inhibition, target identification and validation, and the mapping of enzyme binding sites, substrates and protein–protein interactions.
Collapse
Affiliation(s)
- Arjun Narayanan
- Chemical Biology Group , BioTherapeutics Chemistry , WorldWide Medicinal Chemistry , Pfizer , 610 Main Street , Cambridge , MA 02139 , USA .
| | - Lyn H Jones
- Chemical Biology Group , BioTherapeutics Chemistry , WorldWide Medicinal Chemistry , Pfizer , 610 Main Street , Cambridge , MA 02139 , USA .
| |
Collapse
|
32
|
Keenan CM, Storr MA, Thakur GA, Wood JT, Wager-Miller J, Straiker A, Eno MR, Nikas SP, Bashashati M, Hu H, Mackie K, Makriyannis A, Sharkey KA. AM841, a covalent cannabinoid ligand, powerfully slows gastrointestinal motility in normal and stressed mice in a peripherally restricted manner. Br J Pharmacol 2015; 172:2406-18. [PMID: 25572435 DOI: 10.1111/bph.13069] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/19/2014] [Accepted: 01/02/2015] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid (CB) ligands have been demonstrated to have utility as novel therapeutic agents for the treatment of pain, metabolic conditions and gastrointestinal (GI) disorders. However, many of these ligands are centrally active, which limits their usefulness. Here, we examine a unique novel covalent CB receptor ligand, AM841, to assess its potential for use in physiological and pathophysiological in vivo studies. EXPERIMENTAL APPROACH The covalent nature of AM841 was determined in vitro using electrophysiological and receptor internalization studies on isolated cultured hippocampal neurons. Mouse models were used for behavioural analysis of analgesia, hypothermia and hypolocomotion. The motility of the small and large intestine was assessed in vivo under normal conditions and after acute stress. The brain penetration of AM841 was also determined. KEY RESULTS AM841 behaved as an irreversible CB1 receptor agonist in vitro. AM841 potently reduced GI motility through an action on CB1 receptors in the small and large intestine under physiological conditions. AM841 was even more potent under conditions of acute stress and was shown to normalize accelerated GI motility under these conditions. This compound behaved as a peripherally restricted ligand, showing very little brain penetration and no characteristic centrally mediated CB1 receptor-mediated effects (analgesia, hypothermia or hypolocomotion). CONCLUSIONS AND IMPLICATIONS AM841, a novel peripherally restricted covalent CB1 receptor ligand that was shown to be remarkably potent, represents a new class of potential therapeutic agents for the treatment of functional GI disorders.
Collapse
Affiliation(s)
- C M Keenan
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Alberta, Canada; Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The Potential of Inhibitors of Endocannabinoid Metabolism for Drug Development: A Critical Review. Handb Exp Pharmacol 2015; 231:95-128. [PMID: 26408159 DOI: 10.1007/978-3-319-20825-1_4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The endocannabinoids anandamide and 2-arachidonoylglycerol are metabolised by both hydrolytic enzymes (primarily fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MGL)) and oxygenating enzymes (e.g. cyclooxygenase-2, COX-2). In the present article, the in vivo data for compounds inhibiting endocannabinoid metabolism have been reviewed, focussing on inflammation and pain. Potential reasons for the failure of an FAAH inhibitor in a clinical trial in patients with osteoarthritic pain are discussed. It is concluded that there is a continued potential for compounds inhibiting endocannabinoid metabolism in terms of drug development, but that it is wise not to be unrealistic in terms of expectations of success.
Collapse
|
34
|
Nasser Y, Bashashati M, Andrews CN. Toward modulation of the endocannabinoid system for treatment of gastrointestinal disease: FAAHster but not "higher". Neurogastroenterol Motil 2014; 26:447-54. [PMID: 24641009 DOI: 10.1111/nmo.12329] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 02/17/2014] [Indexed: 02/08/2023]
Abstract
Cannabis has been used to treat various afflictions throughout the centuries, including nausea, vomiting, and pain. It has also been used recreationally for its psychotropic properties, which can include a pleasurable 'high' feeling and a decrease in anxiety and tension; however, other may experience dysphoria. Changes in cognition and psychomotor performance are also well-known with cannabis use. In recent years, our understanding of the endocannabinoid system (ECS) has progressed dramatically; the objective of identifying agents which may allow modulation of the ECS without significant psychotropic side effects may be possible. Inhibition of fatty acid amide hydrolase (FAAH), an important enzyme for the degradation of anandamide and other endogenous cannabinoids, is a promising target to achieve this goal. In this issue of Neurogastroenterology and Motility, Fichna and colleagues report on a novel selective FAAH inhibitor, PF-3845, with potent antinociceptive and antidiarrheal effects in a mouse model. In this context, we briefly review the components of the ECS, discuss pharmacologic targets for indirect cannabinoid receptor stimulation, and describe recent research with cannabinoids for gut disorders.
Collapse
Affiliation(s)
- Y Nasser
- Division of Gastroenterology, Queen's University, Kingston, ON, Canada
| | | | | |
Collapse
|
35
|
Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res 2014; 86:18-25. [PMID: 24681513 DOI: 10.1016/j.phrs.2014.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/17/2014] [Accepted: 03/18/2014] [Indexed: 02/06/2023]
Abstract
Anandamide is a well-known agonist for the cannabinoid receptors. Along with endogenous anandamide other non-endocannabinoid N-acylethanolamines are also formed, apparently in higher amounts. These include mainly oleoylethanolamide (OEA), palmitoyelethanolamide (PEA) and linoleoylethanolamide (LEA), and they have biological activity by themselves being anorectic and anti-inflammatory. It appears that the major effect of dietary fat on the level of these molecules is in the gastrointestinal system, where OEA, PEA and LEA in the enterocytes may function as homeostatic signals, which are decreased by prolonged consumption of a high-fat diet. These lipid amides appear to mediate their signaling activity via activation of PPARα in the enterocyte followed by activation of afferent vagal fibers leading to the brain. Through this mechanism OEA, PEA and LEA may both reduce the consumption of a meal as well as increase the reward value of the food. Thus, they may function as homeostatic intestinal signals involving hedonic aspects that contribute to the regulation of the amounts of dietary fat to be ingested.
Collapse
Affiliation(s)
- Harald S Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
36
|
Zhang SC, Wang WL, Su PJ, Jiang KL, Yuan ZW. Decreased enteric fatty acid amide hydrolase activity is associated with colonic inertia in slow transit constipation. J Gastroenterol Hepatol 2014; 29:276-83. [PMID: 23926887 DOI: 10.1111/jgh.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2013] [Indexed: 01/30/2023]
Abstract
BACKGROUND Constipation is one of the most common chronic digestive complaints. Gastrointestinal transit studies have divided it into three patterns: normal transit, slow transit constipation (STC), and outlet obstruction. It has been demonstrated that STC patients respond poorly to standard therapies, and the etiology of STC remains poorly understood. Animal studies have also shown that fatty acid amide hydrolase (FAAH) controls intestinal motility through its putative receptors or non-receptor-mediated pathways. However, the role of FAAH in STC has not been elaborated. METHODS A case series was carried out on thirty-two STC patients fulfilling the Rome II criteria and on 24 controls. All of the subjects underwent a laparotomy in Shengjing Hospital. Colonic specimens were obtained and used for FAAH expression analysis, enzyme activity assay, and cannabinoid detection. RESULTS FAAH immunoreactivity occurred in the enteric neurons and in the surface epithelial and glands. The expression level and enzyme activity of FAAH in the STC group were both significantly lower than those in the control group (P < 0.05). The amounts of anandamide, 2-arachidonylglycerol, and palmitoylethanolamide, which are negatively correlated with enzyme activity, were significantly higher in the constipation group than that in the control group. In the STC group, cannabinoid receptor type 1 immunoreactivity occurred predominantly in the submucosal and myenteric fibers that were obviously strong and wave-like in their appearance. Enteric ganglions decreased or disappeared. CONCLUSIONS The tone of the enteric cannabinoids system is disturbed in STC, and the decreased enteric FAAH activity contributes to colonic inertia in STC.
Collapse
Affiliation(s)
- Shu-Cheng Zhang
- Department of Pediatric Surgery, Major Laboratory of Chinese Health Ministry for Congenital Malformations, Shengjing Hospital of China Medical University, Shenyang, China
| | | | | | | | | |
Collapse
|
37
|
Elevating endocannabinoid levels: pharmacological strategies and potential therapeutic applications. Proc Nutr Soc 2013; 73:96-105. [DOI: 10.1017/s0029665113003649] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The endocannabinoid system consists of cannabinoid CB1 and CB2 receptors, of endogenous agonists for these receptors known as ‘endocannabinoids’, and of processes responsible for endocannabinoid biosynthesis, cellular uptake and metabolism. There is strong evidence first, that this system up-regulates in certain disorders as indicated by an increased release of endocannabinoids onto their receptors and/or by increases in the expression levels or coupling efficiency of these receptors, and second, that this up-regulation often appears to reduce or abolish unwanted effects of these disorders or to slow their progression. This discovery has raised the possibility of developing a medicine that enhances up-regulation of the endocannabinoid system associated with these disorders by inhibiting the cellular uptake or intracellular metabolism of an endocannabinoid following its ‘autoprotective’ endogenous release. For inhibition of endocannabinoid metabolism, research has focused particularly on two highly investigated endocannabinoids, anandamide and 2-arachidonoyl glycerol, and hence on inhibitors of the main anandamide-metabolising enzyme, fatty acid amide hydrolase (FAAH), and of the main 2-arachidonoyl glycerol-metabolising enzyme, monoacylglycerol (MAG) lipase. The resulting data have provided strong preclinical evidence that selective FAAH and MAG lipase inhibitors would ameliorate the unwanted effects of several disorders, when administered alone or with a cyclooxygenase inhibitor, and that the benefit-to-risk ratio of a FAAH inhibitor would exceed that of a MAG lipase inhibitor or dual inhibitor of FAAH and MAG lipase. Promising preclinical data have also been obtained with inhibitors of endocannabinoid cellular uptake. There is now an urgent need for clinical research with these enzyme and uptake inhibitors.
Collapse
|
38
|
Gunduz-Cinar O, MacPherson KP, Cinar R, Gamble-George J, Sugden K, Williams B, Godlewski G, Ramikie TS, Gorka AX, Alapafuja SO, Nikas SP, Makriyannis A, Poulton R, Patel S, Hariri AR, Caspi A, Moffitt TE, Kunos G, Holmes A. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry 2013; 18:813-23. [PMID: 22688188 PMCID: PMC3549323 DOI: 10.1038/mp.2012.72] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 03/28/2012] [Accepted: 04/25/2012] [Indexed: 11/09/2022]
Abstract
Endocannabinoids are released 'on-demand' on the basis of physiological need, and can be pharmacologically augmented by inhibiting their catabolic degradation. The endocannabinoid anandamide is degraded by the catabolic enzyme fatty acid amide hydrolase (FAAH). Anandamide is implicated in the mediation of fear behaviors, including fear extinction, suggesting that selectively elevating brain anandamide could modulate plastic changes in fear. Here we first tested this hypothesis with preclinical experiments employing a novel, potent and selective FAAH inhibitor, AM3506 (5-(4-hydroxyphenyl)pentanesulfonyl fluoride). Systemic AM3506 administration before extinction decreased fear during a retrieval test in a mouse model of impaired extinction. AM3506 had no effects on fear in the absence of extinction training, or on various non-fear-related measures. Anandamide levels in the basolateral amygdala were increased by extinction training and augmented by systemic AM3506, whereas application of AM3506 to amygdala slices promoted long-term depression of inhibitory transmission, a form of synaptic plasticity linked to extinction. Further supporting the amygdala as effect-locus, the fear-reducing effects of systemic AM3506 were blocked by intra-amygdala infusion of a CB1 receptor antagonist and were fully recapitulated by intra-amygdala infusion of AM3506. On the basis of these preclinical findings, we hypothesized that variation in the human FAAH gene would predict individual differences in amygdala threat-processing and stress-coping traits. Consistent with this, carriers of a low-expressing FAAH variant (385A allele; rs324420) exhibited quicker habituation of amygdala reactivity to threat, and had lower scores on the personality trait of stress-reactivity. Our findings show that augmenting amygdala anandamide enables extinction-driven reductions in fear in mouse and may promote stress-coping in humans.
Collapse
Affiliation(s)
- O Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, Section on Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
- Center for Neuroscience and Regenerative Medicine at the Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - KP MacPherson
- Laboratory of Behavioral and Genomic Neuroscience, Section on Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| | - R Cinar
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - J Gamble-George
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - K Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - B Williams
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - G Godlewski
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - TS Ramikie
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - AX Gorka
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - SO Alapafuja
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - SP Nikas
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - A Makriyannis
- Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - R Poulton
- Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - S Patel
- Department of Psychiatry and Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - AR Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
| | - A Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - TE Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC, USA
- Social, Genetic, and Developmental Psychiatry Research Centre, Institute of Psychiatry, King's College London, London, UK
| | - G Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, Section on Behavioral and Genomic Neuroscience, National Institute on Alcoholism and Alcohol Abuse, NIH, Bethesda, MD, USA
| |
Collapse
|
39
|
Bisogno T, Maccarrone M. Latest advances in the discovery of fatty acid amide hydrolase inhibitors. Expert Opin Drug Discov 2013; 8:509-22. [PMID: 23488865 DOI: 10.1517/17460441.2013.780021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Fatty acid amide hydrolase (FAAH) is the major catabolic enzyme of the endocannabinoid N-arachidonoylethanolamine (anandamide) that, with different degrees of efficiency, also hydrolyzes other endogenous fatty acid ethanolamides. FAAH is increasingly being considered a relevant therapeutic target, especially in models of inflammatory pain. The opportunity to selectively increase the endocannabinoid tone only in those tissues where such an enhancement can be beneficial might result in a therapeutic benefit with more limited side effects, compared to the use of direct agonists of anandamide-binding receptors. Thus the research for selective FAAH inhibitors has become a hot topic in current drug discovery. AREAS COVERED This review highlights the advances in the development of different compounds belonging to different chemical families that have been proposed as FAAH inhibitors. Several classes of inhibitors have been reported so far, and they may be classified into two major classes: reversible and irreversible compounds. These inhibitors are reviewed herein with an emphasis on their potency and selectivity. EXPERT OPINION In recent years, tremendous efforts have been made to develop the FAAH inhibitors, and consequently many novel chemical templates have been discovered. It is still a major challenge to identify the first inhibitor of FAAH suitable for clinical exploitation that satisfies the requirements of potency, selectivity versus proteins related to anandamide activity as well as other potential off-targets, reversibility versus irreversibility, and efficacy toward rat versus human FAAH.
Collapse
Affiliation(s)
- Tiziana Bisogno
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry/Consiglio Nazionale delle Ricerche, 80078 Pozzuoli, Italy
| | | |
Collapse
|
40
|
Sun Y, Chen JD. Rimonabant, gastrointestinal motility and obesity. Curr Neuropharmacol 2013; 10:212-8. [PMID: 23449551 PMCID: PMC3468875 DOI: 10.2174/157015912803217297] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 06/04/2012] [Accepted: 07/09/2012] [Indexed: 01/09/2023] Open
Abstract
Background: Obesity and overweight affect more than half of the US population and are associated with a number of diseases. Rimonabant, a cannabinoid receptor 1 blocker in the endocannabinoid (EC) system, was indicated in Europe for the treatment of obesity and overweight patients with associated risk factors but withdrawn on Jan, 2009 because of side effects. Many studies have reported the effects of rimonabant on gastrointestinal (GI) motility and food intake. The aims of this review are:
to review the relationship of EC system with GI motility and food intake; to review the
studies of rimonabant on GI motility, food intake and obesity; and to report the tolerance and side effects of rimonabant. Methods: the literature (Pubmed database) was searched using keywords: rimonabant, obesity and GI motility. Results: GI motility is related with appetite, food intake and nutrients absorption. The EC system inhibits GI motility, reduces emesis and increases food intake; Rimonabant accelerates gastric emptying and intestinal transition but decreases energy metabolism and food intake. There is rapid onset of tolerance to the prokinetic effect of rimonabant. The main side effects of rimonabant are depression and GI symptoms. Conclusions: Rimonabant has significant effects on energy metabolism and food intake, probably mediated via its effects on GI motility.
Collapse
Affiliation(s)
- Yan Sun
- Veterans Research and Education Foundation, VA Medical Center, Oklahoma City, OK
| | | |
Collapse
|
41
|
Alapafuja SO, Nikas SP, Bharathan IT, Shukla VG, Nasr ML, Bowman AL, Zvonok N, Li J, Shi X, Engen JR, Makriyannis A. Sulfonyl fluoride inhibitors of fatty acid amide hydrolase. J Med Chem 2012; 55:10074-89. [PMID: 23083016 DOI: 10.1021/jm301205j] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfonyl fluorides are known to inhibit esterases. Early work from our laboratory has identified hexadecyl sulfonylfluoride (AM374) as a potent in vitro and in vivo inhibitor of fatty acid amide hydrolase (FAAH). We now report on later generation sulfonyl fluoride analogs that exhibit potent and selective inhibition of FAAH. Using recombinant rat and human FAAH, we show that 5-(4-hydroxyphenyl)pentanesulfonyl fluoride (AM3506) has similar inhibitory activity for both the rat and the human enzyme, while rapid dilution assays and mass spectrometry analysis suggest that the compound is a covalent modifier for FAAH and inhibits its action in an irreversible manner. Our SAR results are highlighted by molecular docking of key analogs.
Collapse
Affiliation(s)
- Shakiru O Alapafuja
- Center for Drug Discovery and Departments of Chemistry and Chemical Biology and Pharmaceutical Sciences, Northeastern University , Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Izzo AA, Capasso R, Aviello G, Borrelli F, Romano B, Piscitelli F, Gallo L, Capasso F, Orlando P, Di Marzo V. Inhibitory effect of cannabichromene, a major non-psychotropic cannabinoid extracted from Cannabis sativa, on inflammation-induced hypermotility in mice. Br J Pharmacol 2012; 166:1444-60. [PMID: 22300105 DOI: 10.1111/j.1476-5381.2012.01879.x] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND AND PURPOSE Cannabichromene (CBC) is a major non-psychotropic phytocannabinoid that inhibits endocannabinoid inactivation and activates the transient receptor potential ankyrin-1 (TRPA1). Both endocannabinoids and TRPA1 may modulate gastrointestinal motility. Here, we investigated the effect of CBC on mouse intestinal motility in physiological and pathological states. EXPERIMENTAL APPROACH Inflammation was induced in the mouse small intestine by croton oil. Endocannabinoid (anandamide and 2-arachidonoyl glycerol), palmitoylethanolamide and oleoylethanolamide levels were measured by liquid chromatography-mass spectrometry; TRPA1 and cannabinoid receptors were analysed by quantitative RT-PCR; upper gastrointestinal transit, colonic propulsion and whole gut transit were evaluated in vivo; contractility was evaluated in vitro by stimulating the isolated ileum, in an organ bath, with ACh or electrical field stimulation (EFS). KEY RESULTS Croton oil administration was associated with decreased levels of anandamide (but not 2-arachidonoyl glycerol) and palmitoylethanolamide, up-regulation of TRPA1 and CB₁ receptors and down-regulation of CB₂ receptors. Ex vivo CBC did not change endocannabinoid levels, but it altered the mRNA expression of TRPA1 and cannabinoid receptors. In vivo, CBC did not affect motility in control mice, but normalized croton oil-induced hypermotility. In vitro, CBC reduced preferentially EFS- versus ACh-induced contractions. Both in vitro and in vivo, the inhibitory effect of CBC was not modified by cannabinoid or TRPA1 receptor antagonists. CONCLUSION AND IMPLICATIONS CBC selectively reduces inflammation-induced hypermotility in vivo in a manner that is not dependent on cannabinoid receptors or TRPA1.
Collapse
Affiliation(s)
- Angelo A Izzo
- Department of Experimental Pharmacology, University of Naples Federico II, Naples, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alhouayek M, Muccioli GG. The endocannabinoid system in inflammatory bowel diseases: from pathophysiology to therapeutic opportunity. Trends Mol Med 2012; 18:615-25. [PMID: 22917662 DOI: 10.1016/j.molmed.2012.07.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 07/14/2012] [Accepted: 07/24/2012] [Indexed: 11/18/2022]
Abstract
Crohn's disease and ulcerative colitis are two major forms of inflammatory bowel diseases (IBD), which are chronic inflammatory disorders of the gastrointestinal tract. These pathologies are currently under investigation to both unravel their etiology and find novel treatments. Anandamide and 2-arachidonoylglycerol are endogenous bioactive lipids that bind to and activate the cannabinoid receptors, and together with the enzymes responsible for their biosynthesis and degradation [fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL)] constitute the endocannabinoid system (ECS). The ECS is implicated in gut homeostasis, modulating gastrointestinal motility, visceral sensation, and inflammation, as well as being recently implicated in IBD pathogenesis. Numerous subsequent studies investigating the effects of cannabinoid agonists and endocannabinoid degradation inhibitors in rodent models of IBD have identified a potential therapeutic role for the ECS.
Collapse
Affiliation(s)
- Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Av. E. Mounier, 72, B1.72.01, 1200 Bruxelles, Belgium
| | | |
Collapse
|
44
|
Abalo R, Vera G, López-Pérez AE, Martínez-Villaluenga M, Martín-Fontelles MI. The Gastrointestinal Pharmacology of Cannabinoids: Focus on Motility. Pharmacology 2012; 90:1-10. [DOI: 10.1159/000339072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 01/15/2023]
|
45
|
Wong BS, Camilleri M, Eckert D, Carlson P, Ryks M, Burton D, Zinsmeister AR. Randomized pharmacodynamic and pharmacogenetic trial of dronabinol effects on colon transit in irritable bowel syndrome-diarrhea. Neurogastroenterol Motil 2012; 24:358-e169. [PMID: 22288893 PMCID: PMC3775711 DOI: 10.1111/j.1365-2982.2011.01874.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Genetic variation in endocannabinoid metabolism is associated with colonic transit in irritable bowel syndrome (IBS) with diarrhea (IBS-D). The nonselective cannabinoid (CB) receptor agonist, dronabinol (DRO), reduced fasting colonic motility in nonconstipated IBS. FAAH and CNR1 variants influenced DRO's effects on colonic motility. Our aims were: (i) to compare dose-related effects of DRO to placebo (PLA) on gut transit in IBS-D, and (ii) to examine influence of genetic variations in CB mechanisms on DRO’s transit effects. METHODS Thirty-six IBS-D volunteers were randomized (double-blind, concealed allocation) to twice per day PLA (n = 13), DRO 2.5 mg (n = 10), or DRO 5 mg (n = 13) for 2 days. We assessed gastric, small bowel, and colonic transit by validated radioscintigraphy and genotyped the single nucleotide polymorphisms CNR1 rs806378 and FAAH rs324420. Data analysis utilized a dominant genetic model. KEY RESULTS Overall treatment effects of DRO on gastric, small bowel, or colonic transit were not detected. CNR1 rs806378 CT/TT was associated with a modest delay in colonic transit at 24 h compared with CC (P = 0.13 for differential treatment effects on postminus pretreatment changes in colonic transit by genotype). No significant interaction of treatment with FAAH rs324420 was detected. CONCLUSIONS & INFERENCES Overall, DRO 2.5 or 5 mg twice per day for 2 days had no effect on gut transit in IBS-D. There appears to be a treatment-by-genotype effect, whereby DRO preferentially delays colonic transit in those with the CNR1 rs806378 CT/TT genotypes. Further study of CB pharmacogenetics may help identify a subset of IBS-D patients most likely to benefit from CB agonist therapy.
Collapse
Affiliation(s)
- Banny S. Wong
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Deborah Eckert
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Paula Carlson
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Ryks
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Duane Burton
- Clinical Enteric Neuroscience Translational and Epidemiological Research (CENTER), Mayo Clinic, Rochester, Minnesota, USA
| | - Alan R. Zinsmeister
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
46
|
Cytokines and irritable bowel syndrome: where do we stand? Cytokine 2011; 57:201-9. [PMID: 22178716 DOI: 10.1016/j.cyto.2011.11.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2011] [Revised: 11/19/2011] [Accepted: 11/22/2011] [Indexed: 12/13/2022]
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder, which presents with one or more gastrointestinal symptoms without any structural or organic abnormality. The etiology and pathophysiological mechanisms of IBS remain uncertain. Residual or reactivated inflammation at the molecular level is considered the underlying mechanism of post-infectious IBS. On the other hand, genetic variations in the immunological components of the body, including cytokine gene polymorphisms, are proposed as a potential mechanism of IBS even in patients without previous gastrointestinal infection. Several studies have suggested imbalanced cytokine signaling as an etiology for IBS. In this review, recent findings on cytokine profiles and cytokine gene polymorphisms in patients with IBS are described and the role of cytokines in animal models of IBS is discussed.
Collapse
|
47
|
[Esthetic-preventive conservation of first molars in mixed dentition]. Handb Exp Pharmacol 1990; 231:423-47. [PMID: 2640817 DOI: 10.1007/978-3-319-20825-1_15] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|