1
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chen X, Ji X, Lao Z, Pan B, Qian Y, Yang W. Role of YAP/TAZ in bone diseases: A transductor from mechanics to biology. J Orthop Translat 2025; 51:13-23. [PMID: 39902099 PMCID: PMC11787699 DOI: 10.1016/j.jot.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 02/05/2025] Open
Abstract
Wolff's Law and the Mechanostat Theory elucidate how bone tissues detect and convert mechanical stimuli into biological signals, crucial for maintaining bone equilibrium. Abnormal mechanics can lead to diseases such as osteoporosis, osteoarthritis, and nonunion fractures. However, the detailed molecular mechanisms by which mechanical cues are transformed into biological responses in bone remain underexplored. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of bone homeostasis, are instrumental in this process. Emerging research highlights bone cells' ability to sense various mechanical stimuli and relay these signals intracellularly. YAP/TAZ are central in receiving these mechanical cues and converting them into signals that influence bone cell behavior. Abnormal YAP/TAZ activity is linked to several bone pathologies, positioning these proteins as promising targets for new treatments. Thus, this review aims to provide an in-depth examination of YAP/TAZ's critical role in the interpretation of mechanical stimuli to biological signals, with a special emphasis on their involvement in bone cell mechanosensing, mechanotransduction, and mechanoresponse. The translational potential of this article: Clinically, appropriate stress stimulation promotes fracture healing, while bed rest can lead to disuse osteoporosis and excessive stress can cause osteoarthritis or bone spurs. Recent advancements in the understanding of YAP/TAZ-mediated mechanobiological signal transduction in bone diseases have been significant, yet many aspects remain unknown. This systematic review summarizes current research progress, identifies unaddressed areas, and highlights potential future research directions. Advancements in this field facilitate a deeper understanding of the molecular mechanisms underlying bone mechanics regulation and underscore the potential of YAP/TAZ as therapeutic targets for bone diseases such as fractures, osteoporosis, and osteoarthritis.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Xing Ji
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, Department of Clinical Medicine, School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, 310006, China
| |
Collapse
|
3
|
Lin S, Meng Z, Wang M, Ye Z, Long M, Zhang Y, Liu F, Chen H, Li M, Qin J, Liu H. Icariin modulates osteogenic and adipogenic differentiation in ADSCs via the Hippo-YAP/TAZ pathway: a novel therapeutic strategy for osteoporosis. Front Pharmacol 2025; 15:1510561. [PMID: 39872056 PMCID: PMC11770256 DOI: 10.3389/fphar.2024.1510561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 12/23/2024] [Indexed: 01/29/2025] Open
Abstract
Background Adipose-derived stem cell (ADSC) transplantation presents a promising approach for osteoporosis (OP) treatment. However, the therapeutic efficacy of ADSCs is hindered by low post-transplantation survival rates and limited capacities for adhesion, migration, and differentiation. Icariin (ICA), the primary active compound of Epimedium, has been shown to promote cell proliferation and induce osteogenic differentiation; however, its specific effects on ADSC osteogenesis and the mechanisms by which ICA enhances osteoporosis treatment through cell transplantation remain inadequately understood. Purpose This study investigates the effects of different concentrations of ICA on the osteogenic and adipogenic differentiation of rat ADSCs, aiming to elucidate the underlying mechanisms. ADSCs were isolated from female SPF-grade SD rats, with surface markers identified through flow cytometry. Osteogenic and adipogenic differentiation were assessed using Alizarin Red and Oil Red O staining, respectively. Third-generation ADSCs were divided into five groups: control, resveratrol (100 μmol/L), and four ICA treatment groups (1, 10, 50, and 100 μmol/L). Western blotting was performed to analyze the expression of factors associated with the Hippo-YAP/TAZ signaling pathway and the adipogenic marker PPARγ. Additionally, ADSCs were labeled with lentiviruses carrying enhanced green fluorescent protein (EGFP) and 5-bromo-2-deoxyuridine (BrdU) to assess their in vivo distribution, survival, proliferation, and differentiation of ADSCs post-ICA intervention. Results In vitro, ICA significantly inhibited the Hippo pathway, reducing YAP and TAZ phosphorylation and enhancing their transcriptional activity, while simultaneously suppressing PPARγ. This promoted osteogenesis and inhibited adipogenesis in ADSCs. In vivo, ICA-treated ADSCs demonstrated effective distribution, survival, and osteogenic differentiation following subcutaneous injection into allogeneic rats. Conclusion Our study demonstrates that ICA significantly enhances the osteogenic differentiation of ADSCs while inhibiting adipogenesis, providing novel insights and therapeutic strategies for osteoporosis and related conditions.
Collapse
Affiliation(s)
- Shaozi Lin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zuyu Meng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Mei Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zixuan Ye
- Huizhou Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Mengsha Long
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yiyao Zhang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Fang Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Hongling Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Menghan Li
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jiajia Qin
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Haiquan Liu
- Huizhou Hospital, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
4
|
Han J, Zhang J, Zhang X, Luo W, Liu L, Zhu Y, Liu Q, Zhang XA. Emerging role and function of Hippo-YAP/TAZ signaling pathway in musculoskeletal disorders. Stem Cell Res Ther 2024; 15:386. [PMID: 39468616 PMCID: PMC11520482 DOI: 10.1186/s13287-024-04011-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
Hippo pathway is an evolutionarily conservative key pathway that regulates organ size and tissue regeneration by regulating cell proliferation, differentiation and apoptosis. Yes-associated protein 1 (YAP)/ WW domain-containing transcription regulator 1 (TAZ) serves as a pivotal transcription factor within the Hippo signaling pathway, which undergoes negative regulation by the Hippo pathway. The expression of YAP/TAZ affects various biological processes, including differentiation of osteoblasts (OB) and osteoclasts (OC), cartilage homeostasis, skeletal muscle development, regeneration and quality maintenance. At the same time, the dysregulation of the Hippo pathway can concurrently contribute to the development of various musculoskeletal disorders, including bone tumors, osteoporosis (OP), osteoarthritis (OA), intervertebral disc degeneration (IDD), muscular dystrophy, and rhabdomyosarcoma (RMS). Therefore, targeting the Hippo pathway has emerged as a promising therapeutic strategy for the treatment of musculoskeletal disorders. The focus of this review is to elucidate the mechanisms by which the Hippo pathway maintains homeostasis in bone, cartilage, and skeletal muscle, while also providing a comprehensive summary of the pivotal role played by core components of this pathway in musculoskeletal diseases. The efficacy and feasibility of Hippo pathway-related drugs for targeted therapy of musculoskeletal diseases are also discussed in our study. These endeavors offer novel insights into the application of Hippo signaling in musculoskeletal disorders, providing effective therapeutic targets and potential drug candidates for treating such conditions.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Jiale Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Xiaoyi Zhang
- College of Second Clinical Medical, China Medical University, Shenyang, 110122, China
| | - Wenxin Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Lifei Liu
- Department of Rehabilitation, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Yuqing Zhu
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China
| | - Qingfeng Liu
- Department of General Surgery, Jinqiu Hospital of Liaoning Province, Shenyang, 110016, China
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang, 110100, China.
| |
Collapse
|
5
|
Ye J, Wang J, Zhao J, Xia M, Wang H, Sun L, Zhang WB. RhoA/ROCK-TAZ Axis regulates bone formation within calvarial trans-sutural distraction osteogenesis. Cell Signal 2024; 121:111300. [PMID: 39004327 DOI: 10.1016/j.cellsig.2024.111300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/29/2024] [Accepted: 07/11/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.
Collapse
Affiliation(s)
- Junjie Ye
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Jialu Wang
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Institute of Stomatology, Nanjing University, Nanjing 210000, China
| | - Jing Zhao
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Meng Xia
- Changsha Stomatological Hospital, Changsha, Hunan 410000, China
| | - Hua Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China
| | - Lian Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China.
| | - Wei-Bing Zhang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; The Fourth Affiliated Hospital of Soochow University, Medical Center of Soochow University, Suzhou 215000, China.
| |
Collapse
|
6
|
Mokhtari RB, Ashayeri N, Baghaie L, Sambi M, Satari K, Baluch N, Bosykh DA, Szewczuk MR, Chakraborty S. The Hippo Pathway Effectors YAP/TAZ-TEAD Oncoproteins as Emerging Therapeutic Targets in the Tumor Microenvironment. Cancers (Basel) 2023; 15:3468. [PMID: 37444578 DOI: 10.3390/cancers15133468] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Various cancer cell-associated intrinsic and extrinsic inputs act on YAP/TAZ proteins to mediate the hyperactivation of the TEAD transcription factor-based transcriptome. This YAP/TAZ-TEAD activity can override the growth-limiting Hippo tumor-suppressor pathway that maintains normal tissue homeostasis. Herein, we provide an integrated summary of the contrasting roles of YAP/TAZ during normal tissue homeostasis versus tumor initiation and progression. In addition to upstream factors that regulate YAP/TAZ in the TME, critical insights on the emerging functions of YAP/TAZ in immune suppression and abnormal vasculature development during tumorigenesis are illustrated. Lastly, we discuss the current methods that intervene with the YAP/TAZ-TEAD oncogenic signaling pathway and the emerging applications of combination therapies, gut microbiota, and epigenetic plasticity that could potentiate the efficacy of chemo/immunotherapy as improved cancer therapeutic strategies.
Collapse
Affiliation(s)
- Reza Bayat Mokhtari
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Neda Ashayeri
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Leili Baghaie
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Manpreet Sambi
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Kosar Satari
- Division of Hematology and Oncology, Department of Pediatrics, Ali-Asghar Children Hospital, Iran University of Medical Science, Tehran 1449614535, Iran
| | - Narges Baluch
- Department of Immunology and Allergy, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Dmitriy A Bosykh
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Myron R Szewczuk
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Sayan Chakraborty
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
7
|
Tsui L. Adipocyte-based high throughput screening for anti-obesity drug discovery: Current status and future perspectives. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:375-383. [PMID: 35948270 DOI: 10.1016/j.slasd.2022.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/15/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Drug discovery for obesity treatment, particularly bodily slimming, is a topic of timely importance that requires continued investigation, as the current therapies have limited efficacy with many adverse effects. Obesity is associated with adipose tissue expansion, where the size and number of adipocytes increase. Over the past few decades, high-throughput/content screening (HTS/HCS) has been carried out on morphological changes in adipose tissues and adipocytes for the development of anti-obesity therapies. Increased understating of current adipocyte-based HTS/HCS technology will facilitate drug screening for obesity and weight control.
Collapse
Affiliation(s)
- Leo Tsui
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| |
Collapse
|
8
|
Jeong MG, Kim HK, Lee G, Won HY, Yoon DH, Hwang ES. TAZ promotes PDX1-mediated insulinogenesis. Cell Mol Life Sci 2022; 79:186. [PMID: 35279781 PMCID: PMC11071806 DOI: 10.1007/s00018-022-04216-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/30/2022]
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) is a key mediator of the Hippo signaling pathway and regulates structural and functional homeostasis in various tissues. TAZ activation is associated with the development of pancreatic cancer in humans, but it is unclear whether TAZ directly affects the structure and function of the pancreas. So we sought to identify the TAZ function in the normal pancreas. TAZ defect caused structural changes in the pancreas, particularly islet cell shrinkage and decreased insulin production and β-cell markers expression, leading to hyperglycemia. Interestingly, TAZ physically interacted with the pancreatic and duodenal homeobox 1 (PDX1), a key insulin transcription factor, through the N-terminal domain of TAZ and the homeodomain of PDX1. TAZ deficiency decreased the DNA-binding and transcriptional activity of PDX1, whereas TAZ overexpression promoted PDX1 activity and increased insulin production even in a low glucose environment. Indeed, high glucose increased insulin production by turning off the Hippo pathway and inducing TAZ activation in pancreatic β-cells. Ectopic TAZ overexpression along with PDX1 activation was sufficient to produce insulin in non-β-cells. TAZ deficiency impaired the mesenchymal stem cell differentiation into insulin-producing cells (IPCs), whereas TAZ recovery restored normal IPCs differentiation. Compared to WT control, body weight increased in TAZ-deficient mice with age and even more with a high-fat diet (HFD). TAZ deficiency significantly exacerbated HFD-induced glucose intolerance and insulin resistance. Therefore, TAZ deficiency impaired pancreatic insulin production, causing hyperglycemia and exacerbating HFD-induced insulin resistance, indicating that TAZ may have a beneficial effect in treating insulin deficiency in diabetes.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Gibbeum Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Hee Yeon Won
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Da Hye Yoon
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science Building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, South Korea.
| |
Collapse
|
9
|
Jeong MG, Kim HK, Hwang ES. The essential role of TAZ in normal tissue homeostasis. Arch Pharm Res 2021; 44:253-262. [PMID: 33770379 PMCID: PMC8009801 DOI: 10.1007/s12272-021-01322-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023]
Abstract
Transcriptional coactivator with PDZ-binding motif (TAZ) has been extensively characterized in organ development, tissue regeneration, and tumor progression. In particular, TAZ functions as a Hippo mediator that regulates organ size, tumor growth and migration. It is highly expressed in various types of human cancer, and has been reported to be associated with tumor metastasis and poor outcomes in cancer patients, suggesting that TAZ is an oncogenic regulator. Yes-associated protein (YAP) has 60% similarity in amino acid sequence to TAZ and plays redundant roles with TAZ in the regulation of cell proliferation and migration of cancer cells. Therefore, TAZ and YAP, which are encoded by paralogous genes, are referred to as TAZ/YAP and are suggested to be functionally equivalent. Despite its similarity to YAP, TAZ can be clearly distinguished from YAP based on its genetic, structural, and functional aspects. In addition, targeting superabundant TAZ can be a promising therapeutic strategy for cancer treatment; however, persistent TAZ inactivation may cause failure of tissue homeostatic control. This review focuses primarily on TAZ, not YAP, discusses its structural features and physiological functions in the regulation of tissue homeostasis, and provides new insights into the drug development targeting TAZ to control reproductive and musculoskeletal disorders.
Collapse
Affiliation(s)
- Mi Gyeong Jeong
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Hyo Kyeong Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea
| | - Eun Sook Hwang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, C206 Science building, 52 Ewhayeodae-Gil, Seodaemun-Gu, Seoul, 03760, Korea.
| |
Collapse
|
10
|
Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, Fussenegger M, Deng X. Role of YAP/TAZ in Cell Lineage Fate Determination and Related Signaling Pathways. Front Cell Dev Biol 2020; 8:735. [PMID: 32850847 PMCID: PMC7406690 DOI: 10.3389/fcell.2020.00735] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/15/2020] [Indexed: 12/11/2022] Open
Abstract
The penultimate effectors of the Hippo signaling pathways YAP and TAZ, are transcriptional co-activator proteins that play key roles in many diverse biological processes, ranging from cell proliferation, tumorigenesis, mechanosensing and cell lineage fate determination, to wound healing and regeneration. In this review, we discuss the regulatory mechanisms by which YAP/TAZ control stem/progenitor cell differentiation into the various major lineages that are of interest to tissue engineering and regenerative medicine applications. Of particular interest is the key role of YAP/TAZ in maintaining the delicate balance between quiescence, self-renewal, proliferation and differentiation of endogenous adult stem cells within various tissues/organs during early development, normal homeostasis and regeneration/healing. Finally, we will consider how increasing knowledge of YAP/TAZ signaling might influence the trajectory of future progress in regenerative medicine.
Collapse
Affiliation(s)
- Boon C. Heng
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
- Faculty of Science and Technology, Sunway University, Subang Jaya, Malaysia
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
| | - Dominique Aubel
- IUTA Department Genie Biologique, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Wei
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH-Zürich, Basel, Switzerland
| | - Xuliang Deng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
11
|
Characterization of a novel compound that promotes myogenesis via Akt and transcriptional co-activator with PDZ-binding motif (TAZ) in mouse C2C12 cells. PLoS One 2020; 15:e0231265. [PMID: 32267872 PMCID: PMC7141682 DOI: 10.1371/journal.pone.0231265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/19/2020] [Indexed: 11/19/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in the regulation of cell proliferation and differentiation. TAZ activity changes in response to the cellular environment such as mechanic and nutritional stimuli, osmolarity, and hypoxia. To understand the physiological roles of TAZ, chemical compounds that activate TAZ in cells are useful as experimental reagents. Kaempferol, TM-25659, and ethacridine are reported as TAZ activators. However, as each TAZ activator has a distinct property in cellular functions, additional TAZ activators are awaiting. We screened for TAZ activators and previously reported IB008738 as a TAZ activator that promotes myogenesis in C2C12 cells. In this study, we have characterized IBS004735 that was obtained in the same screening. IBS004735 also promotes myogenesis in C2C12 cells, but is not similar to IBS008738 in the structure. IBS004735 activates TAZ via Akt and has no effect on TAZ phosphorylation, which is the well-described key modification to regulate TAZ activity. Thus, we introduce IBS004735 as a novel TAZ activator that regulates TAZ in a yet unidentified mechanism.
Collapse
|
12
|
Li W, Zhao J, Wang J, Sun L, Xu H, Sun W, Pan Y, Wang H, Zhang WB. ROCK-TAZ signaling axis regulates mechanical tension-induced osteogenic differentiation of rat cranial sagittal suture mesenchymal stem cells. J Cell Physiol 2020; 235:5972-5984. [PMID: 31970784 DOI: 10.1002/jcp.29522] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 01/10/2020] [Indexed: 12/14/2022]
Abstract
Mechanical force across sutures is able to promote suture osteogenesis. Orthodontic clinics often use this biological characteristic of sutures to treat congenital cranio-maxillofacial malformations. However, the underlying mechanisms still remain poorly understood. Craniofacial sutures provide a special growth source and support primary sites of osteogenesis. Here, we isolated rat sagittal suture cells (rSAGs), which had mesenchymal stem cell characteristics and differentiating abilities. Cells were then subjected to mechanical tension (5% elongation, 0.5 Hz; sinusoidal waveforms) showing that mechanical tension could enhance osteogenic differentiation but hardly affect proliferation of rSAGs. Besides, mechanical tension could increase Rho-associated kinase (ROCK) expression and enhance transcriptional coactivator with PDZ-binding motif (TAZ) nuclear translocation. Inhibiting ROCK expression could suppress tension-induced osteogenesis and block tension-induced upregulation of nuclear TAZ. In addition, our results indicated that TAZ had direct combination sites with runt-related transcription factor 2 (Runx2) in rSAGs, and knock-downed TAZ simultaneously decreased the expression of Runx2 no matter with or without mechanical tension. In summary, our findings demonstrated that the multipotency of rSAGs in vitro could give rise to early osteogenic differentiation under mechanical tension, which was mediated by ROCK-TAZ signal axis.
Collapse
Affiliation(s)
- Wenlei Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jing Zhao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Jialu Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Haiyang Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yongchu Pan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wei-Bing Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Wang N, Li Y, Li Z, Liu C, Xue P. Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis through MEK-ERK pathway. J Cell Mol Med 2019; 23:3683-3695. [PMID: 30907511 PMCID: PMC6484321 DOI: 10.1111/jcmm.14272] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/12/2019] [Indexed: 12/14/2022] Open
Abstract
Salvianolic acid B (Sal B), a major bioactive component of Chinese herb, was identified as a mediator for bone metabolism recently. The aim of this study is to investigate the underlying mechanisms by which Sal B regulates osteogenesis and adipogenesis. We used MC3T3-E1 and 3T3-L1 as the study model to explore the changes of cell differentiation induced by Sal B. The results indicated that Sal B at different concentrations had no obvious toxicity effects on cell proliferation during differentiation. Furthermore, Sal B facilitated osteogenesis but inhibited adipogenesis by increasing the expression of transcriptional co-activator with PDZ-binding motif (TAZ). Accordingly, TAZ knock-down offset the effects of Sal B on cell differentiation into osteoblasts or adipocytes. Notably, the Sal B induced up-expression of TAZ was blocked by U0126 (the MEK-ERK inhibitor), rather than LY294002 (the PI3K-Akt inhibitor). Moreover, Sal B increased the p-ERK/ERK ratio to regulate the TAZ expression as well as the cell differentiation. In summary, this study suggests for the first time that Sal B targets TAZ to facilitate osteogenesis and reduce adipogenesis by activating MEK-ERK signalling pathway, which provides evidence for Sal B to be used as a potential therapeutic agent for the management of bone diseases.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Yukun Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Ziyi Li
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Chang Liu
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| | - Peng Xue
- Department of Endocrinology, Hebei Medical University, Third Affiliated Hospital, Shijiazhuang, PR China.,Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, PR China
| |
Collapse
|
14
|
Wang N, Li Y, Li Z, Ma J, Wu X, Pan R, Wang Y, Gao L, Bao X, Xue P. IRS-1 targets TAZ to inhibit adipogenesis of rat bone marrow mesenchymal stem cells through PI3K-Akt and MEK-ERK pathways. Eur J Pharmacol 2019; 849:11-21. [PMID: 30716312 DOI: 10.1016/j.ejphar.2019.01.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 01/07/2023]
Abstract
Gene modification of mesenchymal stem cells (MSCs) offers a promising approach for clinical stem cell therapy. Transcriptional co-activator with PDZ-binding motif (TAZ) plays a vital role in MSCs' differentiation. We aim to explore the interaction of insulin receptor substrate-1 (IRS-1) with TAZ to regulate MSCs' adipogenesis in this study. Initially, IRS-1 and TAZ followed similar decreasing expression pattern at the early stage of adipogenesis. And, overexpression of IRS-1 decreased the CCAAT/enhancer binding protein β (C/EBPβ) and peroxi-some proliferator-activated receptor gamma (PPARγ) expression with TAZ upregulation. Accordingly, knockdown of IRS-1 induced the upexpression of C/EBPβ and PPARγ with TAZ downregulation. Indeed, IRS-1 targeted TAZ to downregulate the C/EBPβ and PPARγ expression, while knockdown of TAZ attenuated the IRS-1 inhibited adipogenesis. Furthermore, both LY294002 (the PI3K-Akt inhibitor) and U0126 (the MEK-ERK inhibitor) blocked the regulation of IRS-1 on TAZ during adipogenesis. Additionally, IRS-1 and TAZ influenced the cell proliferation in the above process. Taken together, this study suggests for the first time that IRS-1 is a key regulator of the MSCs' adipogenesis and may serve as a potential therapeutic target for differential alterations in bone marrow.
Collapse
Affiliation(s)
- Na Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Ziyi Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Jianxia Ma
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Xuelun Wu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Runzhou Pan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Yan Wang
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Xiaoxue Bao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China; Key Orthopaedic Biomechanics Laboratory of Hebei Province, 139 Ziqiang Road, Shijiazhuang 050051, Hebei Province, PR China.
| |
Collapse
|
15
|
Xing Y, Zhang Y, Jia L, Xu X. Lipopolysaccharide from Escherichia coli stimulates osteogenic differentiation of human periodontal ligament stem cells through Wnt/β-catenin-induced TAZ elevation. Mol Oral Microbiol 2018; 34. [PMID: 30387555 DOI: 10.1111/omi.12249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022]
Abstract
Human periodontal ligament stem cells (PDLSCs), a type of dental tissue-derived mesenchymal stem cells (MSCs), can be clinically applied in periodontal tissue regeneration to treat periodontitis, which is initiated and sustained by bacteria. Lipopolysaccharide (LPS), the major component of the outer membrane of gram-negative bacteria, is a pertinent deleterious factor in the oral microenvironment. The aim of this study was to investigate the effect of LPS on the proliferation and osteogenic differentiation of PDLSCs, as well as the mechanisms involved. Proliferation and osteogenic differentiation of PDLSCs were detected under the stimulation of Escherichia coli-derived LPS. The data showed that E. coli-derived LPS did not affect the proliferation, viability, and cell cycle of PDLSCs. Furthermore, it promoted osteogenic differentiation with the activation of TAZ. Lentivirus-mediated depletion of TAZ (transcriptional activator with a PDZ motif) was used to determine the role of TAZ on LPS-induced enhancement of osteogenesis. PDLSCs cultured in osteogenic media with or without LPS and DKK1 (Wnt/β-catenin pathway inhibitor) were used to determine the regulatory effect of Wnt signaling. We found that TAZ depletion offset LPS-induced enhancement of osteogenesis. Moreover, treatment with DKK1 offset LPS-induced TAZ elevation and osteogenic promotion. In conclusion, E. coli-derived LPS promoted osteogenic differentiation of PDLSCs by fortifying TAZ activity. The elevation and activation of TAZ were mostly mediated by the Wnt/β-catenin pathway. PDLSC-governed alveolar bone tissue regeneration was not necessarily reduced under bacterial conditions and could be modulated by Wnt and TAZ.
Collapse
Affiliation(s)
- Yixiao Xing
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yunpeng Zhang
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Linglu Jia
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Xin Xu
- Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University, Jinan, Shandong, China.,School of Stomatology, Shandong University, Jinan, Shandong, China
| |
Collapse
|
16
|
Kamura K, Shin J, Kiyonari H, Abe T, Shioi G, Fukuhara A, Sasaki H. Obesity in Yap transgenic mice is associated with TAZ downregulation. Biochem Biophys Res Commun 2018; 505:951-957. [DOI: 10.1016/j.bbrc.2018.10.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 01/18/2023]
|
17
|
Ji Y, Zhang P, Xing Y, Jia L, Zhang Y, Jia T, Wu X, Zhao B, Xu X. Effect of 1α, 25-dihydroxyvitamin D3 on the osteogenic differentiation of human periodontal ligament stem cells and the underlying regulatory mechanism. Int J Mol Med 2018; 43:167-176. [PMID: 30365053 PMCID: PMC6257868 DOI: 10.3892/ijmm.2018.3947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
1α, 25-dihydroxyvitamin D3 (1,25-D3), an active vitamin D metabolite, is a well-known regulator of osteogenic differentiation. However, how 1,25-D3 regulates osteogenic differentiation in human periodontal ligament stem cells (hPDLSCs) remains to be fully elucidated. The present study aimed to clarify this issue through well-controlled in vitro experiments. After hPDLSCs were treated with 1,25-D3, immunofluorescence and western blotting were used to detect the expression of vitamin D receptor; Cell Counting Kit-8 and western blotting were used to assay the cell proliferation ability. Alkaline phosphatase staining, Alizarin Red staining and western blotting were used to detect the osteogenic differentiation. It was found that treating hPDLSCs with 1,25-D3: i) Inhibited cell proliferation; ii) promoted osteogenic differentiation; iii) upregulated the expression of transcriptional coactivator with PDZ-binding motif (TAZ), an important downstream effector of Hippo signaling that has been demonstrated to be involved in the osteogenic differentiation of stem/progenitor cells; and iv) that co-treatment of TAZ-overexpressing hPDLSCs with 1,25-D3 synergistically stimulated the expression of osteogenic markers. These results suggested that the induction of osteogenic differentiation promoted by 1,25-D3 in hPDLSCs involves, at least in part, the action of TAZ.
Collapse
Affiliation(s)
- Yawen Ji
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Panpan Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yixiao Xing
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Linglu Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yunpeng Zhang
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Tingting Jia
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xuan Wu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bin Zhao
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
18
|
Pharmacological activation of TAZ enhances osteogenic differentiation and bone formation of adipose-derived stem cells. Stem Cell Res Ther 2018. [PMID: 29514703 PMCID: PMC5842656 DOI: 10.1186/s13287-018-0799-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background Adipose-derived stem cells (ADSCs) are an attractive cell source for bone tissue engineering and have great potential for bone regeneration and defect repair. The transcriptional coactivator with PDZ-binding motif (TAZ) has been demonstrated to modulate osteogenic and adipogenic differentiation of mesenchymal stem cells. However, its roles during ADSC differentiation and therapeutic potentials for bone regeneration have as yet not been well established. Methods TAZ expression was measured during osteogenic differentiation of ADSCs in vitro. Both loss-of-function and gain-of-function approaches by TAZ knockdown or enforced overexpression were utilized to determine its functions during osteogenic differentiation of ADSCs. TM-25659, a chemical activator of TAZ, was used to determine whether pharmacological activation of TAZ in ADSCs enhanced osteogenic differentiation in vitro and bone formation in animal models. The molecular mechanisms underlying TAZ in promoting osteogenesis of ADSCs were also explored. Results Increased TAZ expression was observed during osteogenic differentiation of human ADSCs. TAZ knockdown resulted in compromised osteogenic differentiation and enhanced adipogenic differentiation of ADSCs. In contrast, enforced TAZ overexpression yielded increased osteogenic differentiation and bone regeneration in vivo, and impaired adipogenic differentiation of ADSCs. Pharmacological activation of TAZ by its chemical activator TM-25659 facilitated osteogenic differentiation of ADSCs. Noticeably, transient treatment of ADSCs with TM-25659 or intraperitoneal injection of TM-25659 significantly enhanced bone regeneration of ADSCs loaded with porous β-TCP in vivo. Mechanistically, TM-25659 exposure significantly promoted TAZ phosphorylation and nuclear translocation, and potentiated the assembly of the TAZ-Runx2 complex. Subsequently, the TAZ-Runx2 complex was further recruited to the promoter of osteocalcin and in turn enhanced its transcription. Conclusions Our findings indicate that TAZ is a key mediator that promotes ADSC commitment to the osteoblast lineage. Pharmacological activation of TAZ in ADSCs might become a feasible and promising approach to enhance bone regeneration and repair. Electronic supplementary material The online version of this article (10.1186/s13287-018-0799-z) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Yang W, Han W, Qin A, Wang Z, Xu J, Qian Y. The emerging role of Hippo signaling pathway in regulating osteoclast formation. J Cell Physiol 2018; 233:4606-4617. [PMID: 29219182 DOI: 10.1002/jcp.26372] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 12/01/2017] [Indexed: 12/14/2022]
Abstract
A delicate balance between osteoblastic bone formation and osteoclastic bone resorption is crucial for bone homeostasis. This process is regulated by the Hippo signaling pathway including key regulatory molecules RASSF2, NF2, MST1/2, SAV1, LATS1/2, MOB1, YAP, and TAZ. It is well established that the Hippo signaling pathway plays an important part in regulating osteoblast differentiation, but its role in osteoclast formation and activation remains poorly understood. In this review, we discuss the emerging role of Hippo-signaling pathway in osteoclast formation and bone homeostasis. It is revealed that specific molecules of the Hippo-signaling pathway take part in a stage specific regulation in pre-osteoclast proliferation, osteoclast differentiation and osteoclast apoptosis and survival. Upon activation, MST and LAST, transcriptional co-activators YAP and TAZ bind to the members of the TEA domain (TEAD) family transcription factors, and influence osteoclast differentiation via regulating the expression of downstream target genes such as connective tissue growth factor (CTGF/CCN2) and cysteine-rich protein 61 (CYR61/CCN1). In addition, through interacting or cross talking with RANKL-mediated signaling cascades including NF-κB, MAPKs, AP1, and NFATc1, Hippo-signaling molecules such as YAP/TAZ/TEAD complex, RASSF2, MST2, and Ajuba could also potentially modulate osteoclast differentiation and function. Elucidating the roles of the Hippo-signaling pathway in osteoclast development and specific molecules involved is important for understanding the mechanism of bone homeostasis and diseases.
Collapse
Affiliation(s)
- Wanlei Yang
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - Weiqi Han
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| | - An Qin
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ziyi Wang
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Yu Qian
- Department of Orthopaedics, Shaoxing People's Hospital (Shaoxing Hospital of Zhejiang University), Shaoxing, Zhejiang, P. R. China
| |
Collapse
|
20
|
Münz F, Lopez Perez R, Trinh T, Sisombath S, Weber KJ, Wuchter P, Debus J, Saffrich R, Huber PE, Nicolay NH. Human mesenchymal stem cells lose their functional properties after paclitaxel treatment. Sci Rep 2018; 8:312. [PMID: 29321693 PMCID: PMC5762916 DOI: 10.1038/s41598-017-18862-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/18/2017] [Indexed: 01/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are an integral part of the bone marrow niche and aid in the protection, regeneration and proliferation of hematopoietic stem cells after exposure to myelotoxic taxane anti-cancer agents, but the influence of taxane compounds on MSCs themselves remains incompletely understood. Here, we show that bone marrow-derived MSCs are highly sensitive even to low concentrations of the prototypical taxane compound paclitaxel. While MSCs remained metabolically viable, they were strongly impaired regarding both their proliferation and their functional capabilities after exposure to paclitaxel. Paclitaxel treatment resulted in reduced cell migration, delays in cellular adhesion and significant dose-dependent inhibition of the stem cells’ characteristic multi-lineage differentiation potential. Cellular morphology and expression of the defining surface markers remained largely unaltered. Paclitaxel only marginally increased apoptosis in MSCs, but strongly induced premature senescence in these stem cells, thereby explaining the preservation of the metabolic activity of functionally inactivated MSCs. The reported sensitivity of MSC function to paclitaxel treatment may help to explain the severe bone marrow toxicities commonly caused by taxane-based anti-cancer treatments.
Collapse
Affiliation(s)
- Franziska Münz
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ramon Lopez Perez
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thuy Trinh
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sonevisay Sisombath
- Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Klaus-Josef Weber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Patrick Wuchter
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Friedrich-Ebert-Str. 107, 68167, Mannheim, Germany
| | - Jürgen Debus
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Rainer Saffrich
- Institute of Transfusion Medicine and Immunology, German Red Cross Blood Service Baden-Württemberg - Hessen, Medical Faculty Mannheim, Friedrich-Ebert-Str. 107, 68167, Mannheim, Germany.,Department of Hematology and Oncology, Heidelberg University Hospital, Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Peter E Huber
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Nils H Nicolay
- Heidelberg Institute for Radiation Oncology (HIRO), National Center for Radiation Research in Oncology, Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Molecular and Radiation Oncology, German Cancer Research Center (dkfz), Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,Department of Radiation Oncology, Heidelberg University Hospital, Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| |
Collapse
|
21
|
Novel anti-adipogenic activity of anti-malarial amodiaquine through suppression of PPARγ activity. Arch Pharm Res 2017; 40:1336-1343. [PMID: 29071567 DOI: 10.1007/s12272-017-0965-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/26/2017] [Indexed: 01/17/2023]
Abstract
Amodiaquine (AQ) was developed as a selective drug against Plasmodium falciparum malaria infection and has received increasing attention as a therapeutic agent for the treatment of rheumatoid arthritis, Parkinson's disease, and cancer due to its anti-inflammatory, anti-proliferative, and autophagic-lysosomal blockade properties. As autophagy activation is involved in promoting adipogenic differentiation, we examined whether anti-autophagic AQ affected adipocyte differentiation of 3T3-L1 pre-adipocytes. AQ dose-dependently and significantly suppressed adipocyte differentiation in conjunction with decreases in lipid droplet formation and expression of adipogenic markers including adiponectin, adipocyte fatty acid-binding protein 2 (aP2), resistin, and leptin. Although peroxisome proliferator-activated receptor γ (PPARγ) decreases by inhibition of autophagy, AQ treatment did not induce PPARγ degradation despite the suppression of autophagolysosomal degradation. Instead, AQ suppressed the PPARγ activity to transcriptionally activate the aP2 gene transcription through the selective prevention of nuclear localization of PPARγ. These results demonstrated the novel anti-adipogenic activity of AQ and identified its underlying mechanism that AQ suppressed adipogenic gene expression and lipid formation by inhibiting nuclear localization of PPARγ in an autophagy-independent manner. AQ is recommended as a safe and effective anti-obesity drug for controlling overweight and obesity.
Collapse
|
22
|
Wei Q, He M, Chen M, Chen Z, Yang F, Wang H, Zhang J, He W. Icariin stimulates osteogenic differentiation of rat bone marrow stromal stem cells by increasing TAZ expression. Biomed Pharmacother 2017; 91:581-589. [DOI: 10.1016/j.biopha.2017.04.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022] Open
|
23
|
CBMG, a novel derivative of mansonone G suppresses adipocyte differentiation via suppression of PPARγ activity. Chem Biol Interact 2017. [PMID: 28625492 DOI: 10.1016/j.cbi.2017.06.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mansorins and mansonones have been isolated from Mansonia gagei heartwoods, a traditional herbal medicine used to treat heart failure, and characterized to have anti-oxidant, anti-bacterial, anti-tumor, and anti-estrogenic activities. However, there is as yet no information on their effects on adipogenesis and lipid storage associated with heart disease. In this study, we investigated the effects of naturally occurring compounds on adipogenic differentiation and sought to develop more potent anti-adipogenic compound. We found that mansonone G (MG) suppressed adipocyte differentiation of 3T3-L1 cells, with a 40% decrease in lipid accumulation at 10 μM. MG derivatives including ether and ester analogues were then synthesized and assayed for their ability to suppress adipogenesis. A novel MG derivative, chlorobenzoyl MG (CBMG) most potently suppressed adipocyte differentiation with the decreased level of aP2 and adiponectin. Interestingly, CBMG treatment decreased the expression of CCAAT enhancer binding protein-α (C/EBPα) and peroxisome proliferator-activated receptor-γ (PPARγ). Further analysis confirmed that CBMG suppressed both the expression and activity of PPARγ, a master regulator of adipogenesis, and subsequently led to decreases in transcription of C/EBPα, aP2, and adiponectin in adipogenesis, thereby attenuating adipocyte differentiation. Our results suggest that a novel MG derivative, CBMG may have beneficial applications in the control of obesity through the suppression of PPARγ-induced adipocyte differentiation and lipid accumulation.
Collapse
|
24
|
Zou R, Li D, Wang G, Zhang M, Zhao Y, Yang Z. TAZ Activator Is Involved in IL-10-Mediated Muscle Responses in an Animal Model of Traumatic Brain Injury. Inflammation 2017; 40:100-105. [PMID: 27718096 DOI: 10.1007/s10753-016-0457-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The transcriptional coactivator with PDZ-binding motif (TAZ) functions as a downstream regulatory target in the Hippo signaling pathway that plays various roles. We previously developed a cell-based assay and identified the TAZ activator IBS008738 as a potential therapeutic target for glucocorticoid-induced atrophy. To further explore the application of IBS008738 in various muscle-related diseases, we examined the function of IBS008738 in inflammatory cytokine-mediated mouse muscle responses after traumatic brain injury (TBI). Preliminary screening suggested that IBS008738 treatments increased the levels of IL-10 in C2C12 cells. In TBI and sham control mice, we compared the effect of IBS008738 treatments on TNF α, IL-6, and IL-10 mRNA levels, muscle morphologic changes, and macrophage phenotype changes. Our findings support that the TAZ activator IBS008738 decreases muscle wasting by upregulating IL-10 and inhibiting TNF α and IL-6, and this process is implemented by changing the macrophage phenotypes. These results indicate a new mechanism of the TAZ activator as a potential therapy for atrophy.
Collapse
Affiliation(s)
- Ruyi Zou
- Department of Neurosurgery, General Hospital of Benxi Iron and Steel CO. LTD, Benxi, 117000, China
| | - Da Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Gang Wang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Mo Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Yili Zhao
- Department of Obstetrics and Gynecology, Eastern Virginia Medical School, Norfolk, 23507, VA, USA
| | - Zeyu Yang
- Department of Ultrasound, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang, 110004, China.
| |
Collapse
|
25
|
Ye Y, Jing X, Li N, Wu Y, Li B, Xu T. Icariin promotes proliferation and osteogenic differentiation of rat adipose-derived stem cells by activating the RhoA-TAZ signaling pathway. Biomed Pharmacother 2017; 88:384-394. [PMID: 28122303 DOI: 10.1016/j.biopha.2017.01.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/02/2017] [Accepted: 01/12/2017] [Indexed: 12/18/2022] Open
Abstract
Icariin, the main active flavonoid glucoside isolated from Herba epimedii, has been demonstrated to be a potential alternative therapy to prevent postmenopausal osteoporosis. Icariin has also been shown to regulate the proliferation and osteogenic differentiation of rat bone marrow stromal cells (rBMSCs). However, the detailed molecular mechanism of icariin has remained largely unknown. Besides, no investigation has focused on the relevance of icariin in the regulation of rat adipose-derived stem cells (rASCs) proliferation and osteogenic differentiation. In the present study, we detected that icariin promotes proliferation and osteogenic differentiation of rASCs in a concentration range from 10-8M to 10-6M, with 10-7M to be the optimal concentration. We found that 10-7M icariin significantly increased active RhoA protein expression and ROCK substrate molecule p-MYPT1 expression in rASCs. C3 (the RhoA inhibitor) treatment abrogated the increased proliferation and osteogenic differentiation of rASCs induced by icariin. Interestingly, we also found that C3 abrogated the activation of TAZ induced by icariin. Depletion of TAZ by siRNA transfection significantly blocked icariin promoted proliferation and osteogenic differentiation of rASCs. However, icariin induced active RhoA protein expression was not affected by TAZ specific siRNA transfection, suggesting that RhoA lies upstream of TAZ. Taken together, our data indicate that icariin promotes proliferation and osteogenic differentiation of rASCs by activating the RhoA-TAZ signaling pathway.
Collapse
Affiliation(s)
- Yaping Ye
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xingzhi Jing
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Na Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yingxing Wu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bingbing Li
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
26
|
Mesenchymal stem cells are sensitive to bleomycin treatment. Sci Rep 2016; 6:26645. [PMID: 27215195 PMCID: PMC4877675 DOI: 10.1038/srep26645] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/06/2016] [Indexed: 12/31/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been shown to attenuate pulmonary damage induced by bleomycin-based anticancer treatments, but the influence of bleomycin on the stem cells themselves remains largely unknown. Here, we demonstrate that human bone marrow-derived MSCs are relatively sensitive to bleomycin exposure compared to adult fibroblasts. MSCs revealed increased levels of apoptosis after bleomycin treatment, while cellular morphology, stem cell surface marker expression and the ability for adhesion and migration remained unchanged. Bleomycin treatment also resulted in a reduced adipogenic differentiation potential of these stem cells. MSCs were found to efficiently repair DNA double strand breaks induced by bleomycin, mostly through non-homologous end joining repair. Low mRNA and protein expression levels of the inactivating enzyme bleomycin hydrolase were detected in MSCs that may contribute to the observed bleomycin-sensitive phenotype of these cells. The sensitivity of MSCs against bleomycin needs to be taken into consideration for ongoing and future treatment protocols investigating these stem cells as a potential treatment option for bleomycin-induced pulmonary damage in the clinic.
Collapse
|
27
|
Nagashima S, Maruyama J, Kawano S, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Nishina H, Hata Y. Validation of chemical compound library screening for transcriptional co-activator with PDZ-binding motif inhibitors using GFP-fused transcriptional co-activator with PDZ-binding motif. Cancer Sci 2016; 107:791-802. [PMID: 27009852 PMCID: PMC4968592 DOI: 10.1111/cas.12936] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/26/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Transcriptional co-activator with PDZ-binding motif (TAZ) plays versatile roles in cell proliferation and differentiation. It is phosphorylated by large tumor suppressor kinases, the core kinases of the tumor-suppressive Hippo pathway. Phosphorylation induces the cytoplasmic accumulation of TAZ and its degradation. In human cancers, the deregulation of the Hippo pathway and gene amplification enhance TAZ activity. TAZ interacts with TEA domain family members (TEAD), and upregulates genes implicated in epithelial-mesenchymal transition. It also confers stemness to cancer cells. Thus, TAZ activation provides cancer cells with malignant properties and worsens the clinical prognosis. Therefore, TAZ attracts attention as a therapeutic target in cancer therapy. We applied 18 606 small chemical compounds to human osteosarcoma U2OS cells expressing GFP-fused TAZ (GFP-TAZ), monitored the subcellular localization of GFP-TAZ, and selected 33 compounds that shifted GFP-TAZ to the cytoplasm. Unexpectedly, only a limited number of compounds suppressed TAZ-mediated enhancement of TEAD-responsive reporter activity. Moreover, the compounds that weakened TEAD reporter activity did not necessarily decrease the unphosphorylated TAZ. In this study, we focused on three compounds that decreased both TEAD reporter activity and unphosphorylated TAZ, and treated several human cancer cells with these compounds. One compound did not show a remarkable effect, whereas the other two compounds compromised the cell viability in certain cancer cells. In conclusion, the GFP-TAZ-based assay can be used as the first screening for compounds that inhibit TAZ and show anticancer properties. To develop anticancer drugs, we need additional assays to select the compounds.
Collapse
Affiliation(s)
- Shunta Nagashima
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shodai Kawano
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mari Ishigami-Yuasa
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Tokyo Medical and Dental University, Tokyo, Japan.,Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
28
|
Jung JG, Yi SA, Choi SE, Kang Y, Kim TH, Jeon JY, Bae MA, Ahn JH, Jeong H, Hwang ES, Lee KW. TM-25659-Induced Activation of FGF21 Level Decreases Insulin Resistance and Inflammation in Skeletal Muscle via GCN2 Pathways. Mol Cells 2015; 38:1037-43. [PMID: 26537193 PMCID: PMC4696994 DOI: 10.14348/molcells.2015.0100] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 11/27/2022] Open
Abstract
The TAZ activator 2-butyl-5-methyl-6-(pyridine-3-yl)-3-[2'-(1H-tetrazole-5-yl)-biphenyl-4-ylmethyl]-3H-imidazo[4,5-b]pyridine] (TM-25659) inhibits adipocyte differentiation by interacting with peroxisome proliferator-activated receptor gamma. TM-25659 was previously shown to decrease weight gain in a high fat (HF) diet-induced obesity (DIO) mouse model. However, the fundamental mechanisms underlying the effects of TM-25659 remain unknown. Therefore, we investigated the effects of TM-25659 on skeletal muscle functions in C2 myotubes and C57BL/6J mice. We studied the molecular mechanisms underlying the contribution of TM-25659 to palmitate (PA)-induced insulin resistance in C2 myotubes. TM-25659 improved PA-induced insulin resistance and inflammation in C2 myotubes. In addition, TM-25659 increased FGF21 mRNA expression, protein levels, and FGF21 secretion in C2 myotubes via activation of GCN2 pathways (GCN2-phosphoeIF2α-ATF4 and FGF21). This beneficial effect of TM-25659 was diminished by FGF21 siRNA. C57BL/6J mice were fed a HF diet for 30 weeks. The HF-diet group was randomly divided into two groups for the next 14 days: the HF-diet and HF-diet + TM-25659 groups. The HF diet + TM-25659-treated mice showed improvements in their fasting blood glucose levels, insulin sensitivity, insulin-stimulated Akt phosphorylation, and inflammation, but neither body weight nor food intake was affected. The HF diet + TM-25659-treated mice also exhibited increased expression of both FGF21 mRNA and protein. These data indicate that TM-25659 may be beneficial for treating insulin resistance by inducing FGF21 in models of PA-induced insulin resistance and HF diet-induced insulin resistance.
Collapse
Affiliation(s)
- Jong Gab Jung
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 443-749,
Korea
| | - Sang-A Yi
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 443-749,
Korea
| | - Sung-E Choi
- Department of Physiology, Ajou University School of Medicine, Suwon 443-749,
Korea
| | - Yup Kang
- Department of Physiology, Ajou University School of Medicine, Suwon 443-749,
Korea
| | - Tae Ho Kim
- Division of Endocrine and Metabolism, Department of Internal Medicine, Seoul Medical Center, Seoul 138-160,
Korea
| | - Ja Young Jeon
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 443-749,
Korea
| | - Myung Ae Bae
- Korea Research Institute of Chemical Technology, University of Science & Technology, Daejeon 305-600,
Korea
| | - Jin Hee Ahn
- Korea Research Institute of Chemical Technology, University of Science & Technology, Daejeon 305-600,
Korea
| | - Hana Jeong
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top5 Research Program, Ewha Womans University, Seoul 120-750,
Korea
| | - Eun Sook Hwang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top5 Research Program, Ewha Womans University, Seoul 120-750,
Korea
| | - Kwan-Woo Lee
- Department of Endocrinology and Metabolism, Ajou University School of Medicine, Suwon 443-749,
Korea
| |
Collapse
|
29
|
Youssef J, Badr M. Peroxisome Proliferator-Activated Receptors Features, Functions, and Future. NUCLEAR RECEPTOR RESEARCH 2015. [DOI: 10.11131/2015/101188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
30
|
Jing D, Hao J, Shen Y, Tang G, Li ML, Huang SH, Zhao ZH. The role of microRNAs in bone remodeling. Int J Oral Sci 2015. [PMID: 26208037 PMCID: PMC4582559 DOI: 10.1038/ijos.2015.22] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Bone remodeling is balanced by bone formation and bone resorption as well as by alterations in the quantities and functions of seed cells, leading to either the maintenance or deterioration of bone status. The existing evidence indicates that microRNAs (miRNAs), known as a family of short non-coding RNAs, are the key post-transcriptional repressors of gene expression, and growing numbers of novel miRNAs have been verified to play vital roles in the regulation of osteogenesis, osteoclastogenesis, and adipogenesis, revealing how they interact with signaling molecules to control these processes. This review summarizes the current knowledge of the roles of miRNAs in regulating bone remodeling as well as novel applications for miRNAs in biomaterials for therapeutic purposes.
Collapse
Affiliation(s)
- Dian Jing
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jin Hao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Shen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ge Tang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mei-Le Li
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Hu Huang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong, China
| | - Zhi-He Zhao
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
31
|
Deel MD, Li JJ, Crose LES, Linardic CM. A Review: Molecular Aberrations within Hippo Signaling in Bone and Soft-Tissue Sarcomas. Front Oncol 2015; 5:190. [PMID: 26389076 PMCID: PMC4557106 DOI: 10.3389/fonc.2015.00190] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/10/2015] [Indexed: 12/14/2022] Open
Abstract
The Hippo signaling pathway is an evolutionarily conserved developmental network vital for the regulation of organ size, tissue homeostasis, repair and regeneration, and cell fate. The Hippo pathway has also been shown to have tumor suppressor properties. Hippo transduction involves a series of kinases and scaffolding proteins that are intricately connected to proteins in developmental cascades and in the tissue microenvironment. This network governs the downstream Hippo transcriptional co-activators, YAP and TAZ, which bind to and activate the output of TEADs, as well as other transcription factors responsible for cellular proliferation, self-renewal, differentiation, and survival. Surprisingly, there are few oncogenic mutations within the core components of the Hippo pathway. Instead, dysregulated Hippo signaling is a versatile accomplice to commonly mutated cancer pathways. For example, YAP and TAZ can be activated by oncogenic signaling from other pathways, or serve as co-activators for classical oncogenes. Emerging evidence suggests that Hippo signaling couples cell density and cytoskeletal structural changes to morphogenic signals and conveys a mesenchymal phenotype. While much of Hippo biology has been described in epithelial cell systems, it is clear that dysregulated Hippo signaling also contributes to malignancies of mesenchymal origin. This review will summarize the known molecular alterations within the Hippo pathway in sarcomas and highlight how several pharmacologic compounds have shown activity in modulating Hippo components, providing proof-of-principle that Hippo signaling may be harnessed for therapeutic application in sarcomas.
Collapse
Affiliation(s)
- Michael D Deel
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Jenny J Li
- Duke University School of Medicine , Durham, NC , USA
| | - Lisa E S Crose
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA
| | - Corinne M Linardic
- Division of Hematology-Oncology, Department of Pediatrics, Duke University School of Medicine , Durham, NC , USA ; Department of Pharmacology and Cancer Biology, Duke University School of Medicine , Durham, NC , USA
| |
Collapse
|
32
|
Kawano S, Maruyama J, Nagashima S, Inami K, Qiu W, Iwasa H, Nakagawa K, Ishigami-Yuasa M, Kagechika H, Nishina H, Hata Y. A cell-based screening for TAZ activators identifies ethacridine, a widely used antiseptic and abortifacient, as a compound that promotes dephosphorylation of TAZ and inhibits adipogenesis in C3H10T1/2 cells. J Biochem 2015; 158:413-23. [PMID: 25979969 DOI: 10.1093/jb/mvv051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
Transcriptional co-activator with PSD-95/Dlg-A/ZO-1 (PDZ)-binding motif (TAZ) regulates in cell proliferation and differentiation. In mesenchymal stem cells it promotes osteogenesis and myogenesis, and suppresses adipogenesis. TAZ activators are expected to prevent osteoporosis, obesity and muscle atrophy. TAZ activation induces epithelial-mesenchymal transition, confers stemness to cancer cells and leads to poor clinical prognosis in cancer patients. In this point of view, TAZ inhibitors should contribute to cancer therapy. Thus, TAZ attracts attention as a two-faced drug target. We screened for TAZ modulators by using human lung cancer A549 cells expressing the fluorescent reporter. Through this assay, we obtained TAZ activator candidates. We unexpectedly found that ethacridine, a widely used antiseptic and abortifacient, enhances the interaction of TAZ and protein phosphatases and increases unphosphorylated and nuclear TAZ. Ethacridine inhibits adipogenesis in mesenchymal C3H10T1/2 cells through the activation of TAZ. This finding suggests that ethacridine is a bona fide TAZ activator and supports that our assay is useful to discover TAZ activators.
Collapse
Affiliation(s)
- Shodai Kawano
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Junichi Maruyama
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shunta Nagashima
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kazutoshi Inami
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Wenzhe Qiu
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hiroaki Iwasa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Kentaro Nakagawa
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | | | - Hiroyuki Kagechika
- Chemical Biology Screening Center, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Japan
| | - Hiroshi Nishina
- Department of Developmental and Regenerative Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan; and
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan; Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519, Japan
| |
Collapse
|
33
|
Park GH, Jeong H, Jeong MG, Jang EJ, Bae MA, Lee YL, Kim NJ, Hong JH, Hwang ES. Novel TAZ modulators enhance myogenic differentiation and muscle regeneration. Br J Pharmacol 2015; 171:4051-61. [PMID: 24821191 DOI: 10.1111/bph.12755] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 04/02/2014] [Accepted: 04/24/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The transcriptional co-activator with PDZ-binding motif (TAZ) is a key controller of mesenchymal stem cell differentiation through its nuclear localization and subsequent interaction with master transcription factors. In particular, TAZ directly associates with myoblast determining protein D (MyoD) and activates MyoD-induced myogenic gene expression, thereby enhancing myogenic differentiation. Here, we have synthesized and characterized low MW compounds modulating myogenic differentiation via induction of TAZ nuclear localization. EXPERIMENTAL APPROACH COS7 cells stably transfected with GFP-TAZ were used in a high content imaging screen for compounds specifically enhancing nuclear localization of TAZ. We then studied the effects of such TAZ modulators on myocyte differentiation of C2C12 cells and myogenic transdifferentiation of mouse embryonic fibroblast cells in vitro and muscle regeneration in vivo. KEY RESULTS We identified two TAZ modulators, TM-53, and its structural isomer, TM-54. Each compound strongly enhanced nuclear localization of TAZ by reducing S89-phosphorylation and dose-dependently augmented myogenic differentiation and MyoD-mediated myogenic transdifferentiation through an activation of MyoD-TAZ interaction. The myogenic stimulatory effects of TM-53 and TM-54 were impaired in the absence of TAZ, but retrieved by the restoration of TAZ. In addition, administration of TM-53 and TM-54 enhanced injury-induced muscle regeneration in vivo and attenuated myofiber injury in vitro. CONCLUSIONS AND IMPLICATIONS The novel TAZ modulators TM-53 and TM-54 accelerated myogenic differentiation and improved muscle regeneration and function after injury, demonstrating that low MW compounds targeting the nuclear localization of TAZ have beneficial effects in skeletal muscle regeneration and in recovery from muscle degenerative diseases.
Collapse
Affiliation(s)
- Gun Hwa Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, and Global Top5 Research Program, Ewha Womans University, Seoul, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Kodaka M, Hata Y. The mammalian Hippo pathway: regulation and function of YAP1 and TAZ. Cell Mol Life Sci 2015; 72:285-306. [PMID: 25266986 PMCID: PMC11113917 DOI: 10.1007/s00018-014-1742-9] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/08/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The Hippo pathway was originally identified as the signaling that controls organ size in Drosophila, with the core architecture conserved in mammals. In the mammalian Hippo pathway, mammalian Ste20-like kinases (MST1/2) and large tumor suppressor kinases (LATS1/2) regulate transcriptional co-activators, Yes-associated protein (YAP1) and Transcriptional co-activator with a PDZ-binding motif (TAZ). The Hippo pathway was initially thought to be quite straightforward; however, the identification of additional components has revealed its inherent complexity. Regulation of YAP1 and TAZ is not always dependent on MST1/2 and LATS1/2. MST1/2 and LATS1/2 play various YAP1/TAZ-independent roles, while YAP1 and TAZ cross-talk with other signaling pathways. In this review we focus on YAP1 and TAZ and discuss their regulation, function, and the consequences of their dysregulation.
Collapse
Affiliation(s)
- Manami Kodaka
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| | - Yutaka Hata
- Department of Medical Biochemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, 113-8519 Japan
| |
Collapse
|
35
|
Jang EJ, Kim HK, Jeong H, Lee YS, Jeong MG, Bae SJ, Kim S, Lee SK, Hwang ES. Anti-Adipogenic Activity of the Naturally Occurring Phenanthroindolizidine Alkaloid AntofineviaDirect Suppression of PPARγExpression. Chem Biodivers 2014; 11:962-9. [DOI: 10.1002/cbdv.201300365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Indexed: 11/10/2022]
|
36
|
Abstract
Although several methods have been used in bone regeneration medicine, current methods still have many limitations. The tissue used for autogenous bone graft is limited and allograft has weak osteoinductive activity. Tissue engineering provides a good choice for bone regeneration. However, the growth factors needed have a high price and short half-life. Recently, a number of small molecules have been confirmed to have osteoinductive activity and some have been clinically used. Natural small molecules including decalpenic acid, flavonoids, quinones can be extracted from plants and others can be synthesized according to the structure designed or mimicking the structure of natural small molecules. Small molecules can act as co-activator of BMP2 pathway or activate Wnt pathway; others can be the inhibitors of NF-κB signaling pathway. This review gives an overview on the small molecules with osteoinductive activity and discusses the mechanism of the small molecules.
Collapse
|
37
|
Screening with a novel cell-based assay for TAZ activators identifies a compound that enhances myogenesis in C2C12 cells and facilitates muscle repair in a muscle injury model. Mol Cell Biol 2014; 34:1607-21. [PMID: 24550007 DOI: 10.1128/mcb.01346-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The transcriptional coactivator with a PDZ-binding motif (TAZ) cooperates with various transcriptional factors and plays various roles. Immortalized human mammalian epithelial MCF10A cells form spheres when TAZ is overexpressed and activated. We developed a cell-based assay using sphere formation by TAZ-expressing MCF10A cells as a readout to screen 18,458 chemical compounds for TAZ activators. Fifty compounds were obtained, and 47 were confirmed to activate the TAZ-dependent TEAD-responsive reporter activity in HEK293 cells. We used the derived subset of compounds as a TAZ activator candidate minilibrary and searched for compounds that promote myogenesis in mouse C2C12 myoblast cells. In this study, we focused on one compound, IBS008738. IBS008738 stabilizes TAZ, increases the unphosphorylated TAZ level, enhances the association of MyoD with the myogenin promoter, upregulates MyoD-dependent gene transcription, and competes with myostatin in C2C12 cells. TAZ knockdown verifies that the effect of IBS008738 depends on endogenous TAZ in C2C12 cells. IBS008738 facilitates muscle repair in cardiotoxin-induced muscle injury and prevents dexamethasone-induced muscle atrophy. Thus, this cell-based assay is useful to identify TAZ activators with a variety of cellular outputs. Our findings also support the idea that TAZ is a potential therapeutic target for muscle atrophy.
Collapse
|
38
|
Choi MK, Kwon M, Ahn JH, Kim NJ, Bae MA, Song IS. Transport characteristics and transporter-based drug-drug interactions of TM-25659, a novel TAZ modulator. Biopharm Drug Dispos 2013; 35:183-94. [PMID: 24285344 DOI: 10.1002/bdd.1883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/13/2013] [Accepted: 11/19/2013] [Indexed: 01/03/2023]
Abstract
The in vitro metabolic stability and transport mechanism of TM-25659, a novel TAZ modulator, was investigated in human hepatocytes and human liver microsomes (HLMs) based on the preferred hepatobiliary elimination in rats. In addition, the in vitro transport mechanism and transporter-mediated drug-drug interactions were evaluated using oocytes and MDCKII cells overexpressing clinically important drug transporters. After a 1 h incubation in HLMs, 92.9 ± 9.5% and 95.5 ± 11.6% of the initial TM-25659 remained in the presence of NADPH and UDPGA, respectively. Uptake of TM-25659 readily accumulated in human hepatocytes at 37 ºC (i.e. 6.7-fold greater than that at 4 ºC), in which drug transporters such as OATP1B1 and OATP1B3 were involved. TM-25659 had a significantly greater basal to apical transport rate (5.9-fold) than apical to basal transport rate in the Caco-2 cell monolayer, suggesting the involvement of an efflux transport system. Further studies using inhibitors of efflux transporters and overexpressing cells revealed that MRP2 was involved in the transport of TM-25659. These results, taken together, suggested that TM-25659 can be actively influxed into hepatocytes and undergo biliary excretion without substantial metabolism. Additionally, TM-25659 inhibited the transport activities of OATP1B1 and OATP1B3 with IC50 values of 36.3 and 25.9 μm, respectively. TM-25659 (100 μm) increased the accumulation of the probe substrate by 160% and 213%, respectively, through the inhibition of efflux function of P-gp and MRP2. In conclusion, OATP1B1, OATP1B3, P-gp and MRP2 might be major transporters responsible for the pharmacokinetics and drug-drug interaction of TM-25659, although their contribution to in vivo pharmacokinetics needs to be further investigated.
Collapse
Affiliation(s)
- Min-Koo Choi
- College of Pharmacy, Dankook University, Cheonan, Korea
| | | | | | | | | | | |
Collapse
|
39
|
Fakhry M, Hamade E, Badran B, Buchet R, Magne D. Molecular mechanisms of mesenchymal stem cell differentiation towards osteoblasts. World J Stem Cells 2013; 5:136-148. [PMID: 24179602 PMCID: PMC3812518 DOI: 10.4252/wjsc.v5.i4.136] [Citation(s) in RCA: 183] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/01/2013] [Accepted: 09/17/2013] [Indexed: 02/06/2023] Open
Abstract
Bone is a dynamic tissue that is constantly renewed by the coordinated action of two cell types, i.e., the bone-resorbing osteoclasts and the bone-forming osteoblasts. However, in some circumstances, bone regeneration exceeds bone self repair capacities. This is notably often the case after bone fractures, osteolytic bone tumor surgery, or osteonecrosis. In this regard, bone tissue engineering with autologous or allogenic mesenchymal stem cells (MSCs) is been widely developed. MSCs can be isolated from bone marrow or other tissues such as adipose tissue or umbilical cord, and can be implanted in bone defects with or without prior amplification and stimulation. However, the outcome of most pre-clinical studies remains relatively disappointing. A better understanding of the successive steps and molecular mechanisms involved in MSC-osteoblastic differentiation appears to be crucial to optimize MSC-bone therapy. In this review, we first present the important growth factors that stimulate osteoblastogenesis. Then we review the main transcription factors that modulate osteoblast differentiation, and the microRNAs (miRs) that inhibit their expression. Finally, we also discuss articles dealing with the use of these factors and miRs in the development of new bone MSC therapy strategies. We particularly focus on the studies using human MSCs, since significant differences exist between osteoblast differentiation mechanisms in humans and mice for instance.
Collapse
|
40
|
Karagianni M, Brinkmann I, Kinzebach S, Grassl M, Weiss C, Bugert P, Bieback K. A comparative analysis of the adipogenic potential in human mesenchymal stromal cells from cord blood and other sources. Cytotherapy 2013; 15:76-88. [PMID: 23260088 DOI: 10.1016/j.jcyt.2012.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 08/16/2012] [Indexed: 01/04/2023]
Abstract
BACKGROUND AIMS Mesenchymal stromal cells (MSCs) from umbilical cord blood (CB) attract attention by significantly impaired or absent adipogenic differentiation compared with MSCs derived from bone marrow (BM) and adipose tissue (AT). The diverging adipogenic propensity between the developmentally younger CB-MSCs and MSCs of the adult AT and BM resembles the age-dependent process in the BM, where adipose tissue increases with advancing age, accompanied by loss of bone stability. Thus, MSCs appeal as an attractive model to study the adipogenic process with respect to tissue sources and developmental ages. METHODS We followed the expression of main adipogenic transcription factors, genes and protein markers in CB-, BM- and AT-MSCs under adipogenic induction, after silencing of preadipocyte factor 1 (Pref-1, PREF1) and after incubation with CB-plasma supplemented adipogenic media. RESULTS An inverse relation in the expression of adipogenesis-associated markers and PREF1 in CB-MSCs suggested an inhibitory role of Pref-1 toward adipogenesis. However, Pref-1 protein was rarely detected in CB-MSCs, and siRNA silencing of Pref-1 failed to induce adipogenic differentiation in CB-MSCs. Thus, the impaired adipogenic differentiation of CB-MSCs in vitro was unrelated to endogenous Pref-1 protein expression. Nevertheless CB-plasma containing Pref-1 protein revealed an anti-adipogenic effect on AT-MSCs. CONCLUSIONS Because Pref-1 is vastly abundant in CB-plasma and confers anti-adipogenic properties, Pref-1 in association with the ontogenic milieu probably induces long-lasting unresponsiveness toward adipogenic stimuli in CB-MSCs.
Collapse
Affiliation(s)
- Marianna Karagianni
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, Mannheim, Germany
| | | | | | | | | | | | | |
Collapse
|
41
|
Nawa K, Ikeno H, Matsuhashi N, Ogasawara T, Otsuka E. Discovering small molecules that inhibit adipogenesis and promote osteoblastogenesis: unique screening and Oncostatin M-like activity. Differentiation 2013; 86:65-74. [PMID: 23995451 DOI: 10.1016/j.diff.2013.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 06/21/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
Abstract
Oncostatin M (OSM), one of the IL-6 family cytokines, inhibits adipogenic differentiation and stimulates osteoblastogenic differentiation from human bone marrow mesenchymal stem cells (hBMSCs). This functional study of OSM enabled us to develop a two-dimensional small-molecule screen that shifts hBMSC differentiation from adipocyte to osteoblast. Several structurally related compounds (isoxazoles) inhibited the accumulation of intracellular lipid droplets, whereas they promoted alkaline phosphatase activity and extracellular matrix calcification. Isoxazoles also reduced the expression of adipogenic transcription factor PPARγ and increased the levels of osteogenic transcription factors Runx2 and Osterix. They also induced the expression of the Wnt/β-catenin downstream gene and TOPflash reporter; however, the dephosphorylated β-catenin-active form was not significantly increased. Interestingly, the slight modification of the active compound led to a complete reversion of the dual differentiation activities. In summary, we have identified isoxazoles with anti-adipogenic and pro-osteogenic activities that provide a potential new tool for exploring the lineage commitment of mesenchymal stem cells and a possible lead for therapeutic intervention in osteopenia and osteoporosis.
Collapse
Affiliation(s)
- Katsuhiko Nawa
- Frontier Research Laboratories, Daiichi Sankyo Co., Ltd., 1-2-58 Hiromachi, Shinagawa-ku, Tokyo 140-8710, Japan.
| | | | | | | | | |
Collapse
|
42
|
Yang JY, Cho SW, An JH, Jung JY, Kim SW, Kim SY, Kim JE, Shin CS. Osteoblast-targeted overexpression of TAZ increases bone mass in vivo. PLoS One 2013; 8:e56585. [PMID: 23441207 PMCID: PMC3575506 DOI: 10.1371/journal.pone.0056585] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 01/11/2013] [Indexed: 01/28/2023] Open
Abstract
Osteoblasts are derived from mesenchymal progenitors. Differentiation to osteoblasts and adipocytes is reciprocally regulated. Transcriptional coactivator with a PDZ-binding motif (TAZ) is a transcriptional coactivator that induces differentiation of mesenchymal cells into osteoblasts while blocking differentiation into adipocytes. To investigate the role of TAZ on bone metabolism in vivo, we generated transgenic mice that overexpress TAZ under the control of the procollagen type 1 promoter (Col1-TAZ). Whole body bone mineral density (BMD) of 6- to 19-week-old Col-TAZ mice was 4% to 7% higher than that of their wild-type (WT) littermates, whereas no difference was noticed in Col.1-TAZ female mice. Microcomputed tomography analyses of proximal tibiae at 16 weeks of age demonstrated a significant increase in trabecular bone volume (26.7%) and trabecular number (26.6%) with a reciprocal decrease in trabecular spacing (14.2%) in Col1-TAZ mice compared with their WT littermates. In addition, dynamic histomorphometric analysis of the lumbar spine revealed increased mineral apposition rate (42.8%) and the serum P1NP level was also significantly increased (53%) in Col.1-TAZ mice. When primary calvaria cells were cultured in osteogenic medium, alkaline phosphatase (ALP) activity was significantly increased and adipogenesis was significantly suppressed in Col1-TAZ mice compared with their WT littermates. Quantitative real-time polymerase chain reaction analyses showed that expression of collagen type 1, bone sialoprotein, osteocalcin, ALP, osterix, and Runx2 was significantly increased in calvaria cells from Col1-TAZ mice compared to their WT littermates. In vitro, TAZ enhanced Runx2-mediated transcriptional activity while suppressing the peroxisome proliferator-activated receptor gamma signaling pathway. TAZ also enhanced transcriptional activity from 3TP-Lux, which reflects transforming growth factor-beta (TGF-β)-mediated signaling. In addition, TAZ enhanced TGF-β-dependent nuclear translocation of Smad2/3 and Smad4. Taken together, these results suggest that TAZ positively regulates bone formation in vivo, which seems to be mediated by enhancing both Runx2 and TGF-β signaling.
Collapse
Affiliation(s)
- Jae-Yeon Yang
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sun Wook Cho
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jee Hyun An
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ju Yeon Jung
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Wan Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Seong Yeon Kim
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Eun Kim
- Department of Molecular Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chan Soo Shin
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
43
|
Lee KR, Choi SH, Song JS, Kwak EY, Chae YJ, Im SH, Lee BH, Seo H, Cho WK, Kim MS, Kim NJ, Ahn SH, Bae MA. Pharmacokinetic characterization of the novel TAZ modulator TM-25659 using a multicompartment kinetic model in rats and a possibility of its drug–drug interactions in humans. Xenobiotica 2012; 43:193-200. [DOI: 10.3109/00498254.2012.709953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Hiemer SE, Varelas X. Stem cell regulation by the Hippo pathway. Biochim Biophys Acta Gen Subj 2012; 1830:2323-34. [PMID: 22824335 DOI: 10.1016/j.bbagen.2012.07.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 07/03/2012] [Accepted: 07/10/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND The Hippo pathway coordinates cell proliferation, apoptosis, and differentiation, and has emerged as a major regulator of organ development and regeneration. Central to the mammalian Hippo pathway is the action of the transcriptional regulators TAZ (also known as WWTR1) and YAP, which are controlled by a kinase cascade that is sensitive to mechanosensory and cell polarity cues. SCOPE OF REVIEW We review recent studies focused on the Hippo pathway in embryonic and somatic stem cell renewal and differentiation. MAJOR CONCLUSIONS Accurate control of TAZ and YAP is crucial for the self-renewal of stem cells and in guiding distinct cell fate decisions. In vivo studies have implicated YAP as a key regulator of tissue-specific progenitor cell proliferation and tissue regeneration. Misappropriate activation of nuclear TAZ and YAP transcriptional activity drives tissue overgrowth and is implicated in cancer stem cell-like properties that promote tumor initiation. GENERAL SIGNIFICANCE Understanding the activity and regulation of Hippo pathway effectors will offer insight into human pathologies that evolve from the deregulation of stem cell populations. Given the roles of the Hippo pathway in directing cell fate and tissue regeneration, the discernment of Hippo pathway regulatory cues will be essential for the advancement of regenerative medicine. This article is part of a Special Issue entitled Biochemistry of Stem Cells.
Collapse
Affiliation(s)
- Samantha E Hiemer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|