1
|
Jayaraman M, Dutta P, Krishnan S, Arora K, Sivakumar D, Raghavendran HRB. Emerging Promise of Phytochemicals in Ameliorating Neurological Disorders. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 22:CNSNDDT-EPUB-124961. [PMID: 35786341 DOI: 10.2174/1871527321666220701153926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/09/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The field of medicine and synthetic drug development have advanced rapidly over the past few decades. However, research on alternative medicine such as phytochemicals cannot be ignored. The main reason for prominent curiosity about phytochemicals stems from the belief that usage of natural compounds is safer and has lesser detrimental side effects. OBJECTIVE The aim of the present review was to discuss in detail with several phytochemicals that have been studied or are being studied in the context of various neurological disorders including depression, Alzheimer's disease, Huntington's disease and even neuroinflammatory disorders such as encephalitis. METHODS The potential role of phytochemicals in the treatment or management of symptoms associated with neurological disorders have been included in this article. All data included in this paper has been pooled from various databases including Google Scholar, PubMed, Science Direct, Springer and Wiley Online Library. RESULTS Phytochemicals have been widely studied for their therapeutic properties associated with neurological disorders. Using various experimental techniques for both in vivo and in vitro experiments, studies have shown that phytochemicals do have antioxidant, anti-inflammatory and neuroprotective activities which play major roles in the treatment of neurological diseases. CONCLUSION Even though there has been compelling evidence of the therapeutic role of phytochemicals, further research is still required to evaluate the safety and efficacy of these medicines. Using previously published papers as foundation for additional research such as preclinical studies and clinical trials, phytochemicals can become a safer alternative to synthetic drugs for treating a spectrum of neurological diseases.
Collapse
Affiliation(s)
- Megala Jayaraman
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai, Tamil Nadu, India
| | - Parijat Dutta
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai, Tamil Nadu, India
| | - Sabari Krishnan
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai, Tamil Nadu, India
| | - Khyati Arora
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai, Tamil Nadu, India
| | - Diveyaa Sivakumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur-603203, Chennai, Tamil Nadu, India
- School of Dental Sciences, University Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Hanumanth Rao Balaji Raghavendran
- Faculty of Clinical Research, Sri Ramachandra Institute of Higher Education and Research, Central Research Facility, Porur, Chennai-600116, India
| |
Collapse
|
2
|
Lai M, Liu L, Zhu L, Feng W, Luo J, Liu Y, Deng S. Triptolide reverses epithelial-mesenchymal transition in glioma cells via inducing autophagy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1304. [PMID: 34532441 PMCID: PMC8422147 DOI: 10.21037/atm-21-2944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022]
Abstract
Background To observe the effects of triptolide (TP) on the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of glioma cells, and to explore the possible mechanisms of phenotypic changes in EMT. Methods The U87 and U251 glioma cell lines were treated TP. The Cell Counting Kit-8 (CCK-8) method was used to detect the half-maximal inhibitory concentration (IC50) of TP in these two cell lines and the inhibition of cell proliferation at the IC50 concentration. The wound-healing experiment and Transwell invasion assay were used to detect the cells’ migration and invasion abilities, respectively. Using western blot protocol, the expression levels of the EMT markers were analyzed, and the levels of the autophagy markers were also detected. The pEGFP-C2-LC3B plasmid was transfected into glioma cells, and the effect of TP on autophagy was detected by immunofluorescence. A subcutaneous tumor model in nude mice was established to observe the effect of TP on cell proliferation in vivo, and immunohistochemistry (IHC) was used to detect the expression levels of EMT markers in mouse tumor tissues. Results TP significantly inhibited the proliferation of U87 and U251 cells in a dose- and time-dependent manner. TP had a significant inhibitory effect on the migration and invasion of U87 and U251 cells. Western blot showed that TP reversed the process of EMT in glioma cells, which was evidenced by the upregulated expression of the epithelial marker E-cadherin, and the downregulated expression of the mesenchymal markers N-cadherin, Vimentin, ZEB1, Snail, and Slug. TP increased autophagy in glioma cells, increased the LC3B II/I ratio, and upregulated Beclin-1 and Atg-7 expression. Immunofluorescence showed that the number of autophagosomes increased significantly after TP was applied to cells. In the nude mouse subcutaneous tumor model, experiments revealed an inhibitory effect of TP on glioma cell proliferation in vivo. IHC confirmed that the expression of E-cadherin was upregulated in mouse tumor tissues, while the expression levels of N-Cadherin and Vimentin were downregulated. Conclusions TP can inhibit glioma cell proliferation, migration, and invasion, and reverse EMT progression. The possible mechanism of EMT reversal in glioma cells is that TP induces autophagy.
Collapse
Affiliation(s)
- Minfang Lai
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Lili Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Long Zhu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Wenping Feng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Jilai Luo
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| | - Yawei Liu
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengze Deng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang University, Nanchang, China
| |
Collapse
|
3
|
Fang WY, Tseng YT, Lee TY, Fu YC, Chang WH, Lo WW, Lin CL, Lo YC. Triptolide prevents LPS-induced skeletal muscle atrophy via inhibiting NF-κB/TNF-α and regulating protein synthesis/degradation pathway. Br J Pharmacol 2021; 178:2998-3016. [PMID: 33788266 DOI: 10.1111/bph.15472] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/03/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Increasing evidence suggests systemic inflammation-caused skeletal muscle atrophy as a major clinical feature of cachexia. Triptolide obtained from Tripterygium wilfordii Hook F possesses potent anti-inflammatory and immunosuppressive effects. The present study aims to evaluate the protective effects and molecular mechanisms of triptolide on inflammation-induced skeletal muscle atrophy. EXPERIMENTAL APPROACH The effects of triptolide on skeletal muscle atrophy were investigated in LPS-treated C2C12 myotubes and C57BL/6 mice. Protein expressions and mRNA levels were analysed by western blot and qPCR, respectively. Skeletal muscle mass, volume and strength were measured by histological analysis, micro-CT and grip strength, respectively. Locomotor activity was measured using the open field test. KEY RESULTS Triptolide (10-100 fM) up-regulated protein synthesis signals (IGF-1/p-IGF-1R/IRS-1/p-Akt/p-mTOR) and down-regulated protein degradation signal atrogin-1 in C2C12 myotubes. In LPS (100 ng·ml-1 )-treated C2C12 myotubes, triptolide up-regulated MyHC, IGF-1, p-IGF-1R, IRS-1 and p-Akt. Triptolide also down-regulated ubiquitin-proteasome molecules (n-FoxO3a/atrogin-1/MuRF1), proteasome activity, autophagy-lysosomal molecules (LC3-II/LC3-I and Bnip3) and inflammatory mediators (NF-κB, Cox-2, NLRP3, IL-1β and TNF-α). However, AG1024, an IGF-1R inhibitor, suppressed triptolide-mediated effects on MyHC, myotube diameter, MuRF1 and p62 in LPS-treated C2C12 myotubes. In LPS (1 mg·kg-1 , i.p.)-challenged mice, triptolide (5 and 20 μg·kg-1 ·day-1 , i.p.) decreased plasma TNF-α levels and it increased skeletal muscle volume, cross-sectional area of myofibers, weights of the gastrocnemius and tibialis anterior muscles, forelimb grip strength and locomotion. CONCLUSIONS AND IMPLICATIONS These findings reveal that triptolide prevented LPS-induced inflammation and skeletal muscle atrophy and have implications for the discovery of novel agents for preventing muscle wasting.
Collapse
Affiliation(s)
- Wei-Yu Fang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Menzies Health Institute Queensland, Griffith University, Southport, Queensland, Australia
| | - Tzu-Ying Lee
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yin-Chih Fu
- Department of Orthopedic Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Orthopedics, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Wen Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chih-Lung Lin
- Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Neurosurgery, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,School of Pharmacy, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Khan A, Jahan S, Imtiyaz Z, Alshahrani S, Antar Makeen H, Mohammed Alshehri B, Kumar A, Arafah A, Rehman MU. Neuroprotection: Targeting Multiple Pathways by Naturally Occurring Phytochemicals. Biomedicines 2020; 8:E284. [PMID: 32806490 PMCID: PMC7459826 DOI: 10.3390/biomedicines8080284] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 12/16/2022] Open
Abstract
With the increase in the expectancy of the life span of humans, neurodegenerative diseases (NDs) have imposed a considerable burden on the family, society, and nation. In defiance of the breakthroughs in the knowledge of the pathogenesis and underlying mechanisms of various NDs, very little success has been achieved in developing effective therapies. This review draws a bead on the availability of the nutraceuticals to date for various NDs (Alzheimer's disease, Parkinson's disease, Amyotrophic lateral sclerosis, Huntington's disease, vascular cognitive impairment, Prion disease, Spinocerebellar ataxia, Spinal muscular atrophy, Frontotemporal dementia, and Pick's disease) focusing on their various mechanisms of action in various in vivo and in vitro models of NDs. This review is distinctive in its compilation to critically review preclinical and clinical studies of the maximum phytochemicals in amelioration and prevention of almost all kinds of neurodegenerative diseases and address their possible mechanism of action. PubMed, Embase, and Cochrane Library searches were used for preclinical studies, while ClinicalTrials.gov and PubMed were searched for clinical updates. The results from preclinical studies demonstrate the efficacious effects of the phytochemicals in various NDs while clinical reports showing mixed results with promise for phytochemical use as an adjunct to the conventional treatment in various NDs. These studies together suggest that phytochemicals can significantly act upon different mechanisms of disease such as oxidative stress, inflammation, apoptotic pathways, and gene regulation. However, further clinical studies are needed that should include the appropriate biomarkers of NDs and the effect of phytochemicals on them as well as targeting the appropriate population.
Collapse
Affiliation(s)
- Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Sadaf Jahan
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Zuha Imtiyaz
- Clinical Drug Development, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan;
| | - Saeed Alshahrani
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hafiz Antar Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Bader Mohammed Alshehri
- Medical Laboratories Department, College of Applied Medical Sciences, Majmaah University, Majmaah 15341, Saudi Arabia; (S.J.); (B.M.A.)
| | - Ajay Kumar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Sector-64, Mohali 160062, India;
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (A.A.); (M.U.R.)
| |
Collapse
|
5
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy types II and III. Cochrane Database Syst Rev 2020; 1:CD006282. [PMID: 32006461 PMCID: PMC6995983 DOI: 10.1002/14651858.cd006282.pub5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a (point) mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. Children with SMA type II do not develop the ability to walk without support and have a shortened life expectancy, whereas children with SMA type III develop the ability to walk and have a normal life expectancy. This is an update of a review first published in 2009 and previously updated in 2011. OBJECTIVES To evaluate if drug treatment is able to slow or arrest the disease progression of SMA types II and III, and to assess if such therapy can be given safely. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. In October 2018, we also searched two trials registries to identify unpublished trials. SELECTION CRITERIA We sought all randomised or quasi-randomised trials that examined the efficacy of drug treatment for SMA types II and III. Participants had to fulfil the clinical criteria and have a homozygous deletion or hemizygous deletion in combination with a point mutation in the second allele of the SMN1 gene (5q11.2-13.2) confirmed by genetic analysis. The primary outcome measure was change in disability score within one year after the onset of treatment. Secondary outcome measures within one year after the onset of treatment were change in muscle strength, ability to stand or walk, change in quality of life, time from the start of treatment until death or full-time ventilation and adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1-replacement with viral vectors are out of the scope of this review, but a summary is given in Appendix 1. Drug treatment for SMA type I is the topic of a separate Cochrane Review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS The review authors found 10 randomised, placebo-controlled trials of treatments for SMA types II and III for inclusion in this review, with 717 participants. We added four of the trials at this update. The trials investigated creatine (55 participants), gabapentin (84 participants), hydroxyurea (57 participants), nusinersen (126 participants), olesoxime (165 participants), phenylbutyrate (107 participants), somatotropin (20 participants), thyrotropin-releasing hormone (TRH) (nine participants), valproic acid (33 participants), and combination therapy with valproic acid and acetyl-L-carnitine (ALC) (61 participants). Treatment duration was from three to 24 months. None of the studies investigated the same treatment and none was completely free of bias. All studies had adequate blinding, sequence generation and reporting of primary outcomes. Based on moderate-certainty evidence, intrathecal nusinersen improved motor function (disability) in children with SMA type II, with a 3.7-point improvement in the nusinersen group on the Hammersmith Functional Motor Scale Expanded (HFMSE; range of possible scores 0 to 66), compared to a 1.9-point decline on the HFMSE in the sham procedure group (P < 0.01; n = 126). On all motor function scales used, higher scores indicate better function. Based on moderate-certainty evidence from two studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: creatine (median change 1 higher, 95% confidence interval (CI) -1 to 2; on the Gross Motor Function Measure (GMFM), scale 0 to 264; n = 40); and combination therapy with valproic acid and carnitine (mean difference (MD) 0.64, 95% CI -1.1 to 2.38; on the Modified Hammersmith Functional Motor Scale (MHFMS), scale 0 to 40; n = 61). Based on low-certainty evidence from other single studies, the following interventions had no clinically important effect on motor function scores in SMA types II or III (or both) in comparison to placebo: gabapentin (median change 0 in the gabapentin group and -2 in the placebo group on the SMA Functional Rating Scale (SMAFRS), scale 0 to 50; n = 66); hydroxyurea (MD -1.88, 95% CI -3.89 to 0.13 on the GMFM, scale 0 to 264; n = 57), phenylbutyrate (MD -0.13, 95% CI -0.84 to 0.58 on the Hammersmith Functional Motor Scale (HFMS) scale 0 to 40; n = 90) and monotherapy of valproic acid (MD 0.06, 95% CI -1.32 to 1.44 on SMAFRS, scale 0 to 50; n = 31). Very low-certainty evidence suggested that the following interventions had little or no effect on motor function: olesoxime (MD 2, 95% -0.25 to 4.25 on the Motor Function Measure (MFM) D1 + D2, scale 0 to 75; n = 160) and somatotropin (median change at 3 months 0.25 higher, 95% CI -1 to 2.5 on the HFMSE, scale 0 to 66; n = 19). One small TRH trial did not report effects on motor function and the certainty of evidence for other outcomes from this trial were low or very low. Results of nine completed trials investigating 4-aminopyridine, acetyl-L-carnitine, CK-2127107, hydroxyurea, pyridostigmine, riluzole, RO6885247/RG7800, salbutamol and valproic acid were awaited and not available for analysis at the time of writing. Various trials and studies investigating treatment strategies other than nusinersen (e.g. SMN2-augmentation by small molecules), are currently ongoing. AUTHORS' CONCLUSIONS Nusinersen improves motor function in SMA type II, based on moderate-certainty evidence. Creatine, gabapentin, hydroxyurea, phenylbutyrate, valproic acid and the combination of valproic acid and ALC probably have no clinically important effect on motor function in SMA types II or III (or both) based on low-certainty evidence, and olesoxime and somatropin may also have little to no clinically important effect but evidence was of very low-certainty. One trial of TRH did not measure motor function.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
6
|
Wadman RI, van der Pol WL, Bosboom WMJ, Asselman F, van den Berg LH, Iannaccone ST, Vrancken AFJE. Drug treatment for spinal muscular atrophy type I. Cochrane Database Syst Rev 2019; 12:CD006281. [PMID: 31825542 PMCID: PMC6905354 DOI: 10.1002/14651858.cd006281.pub5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Spinal muscular atrophy (SMA) is caused by a homozygous deletion of the survival motor neuron 1 (SMN1) gene on chromosome 5, or a heterozygous deletion in combination with a point mutation in the second SMN1 allele. This results in degeneration of anterior horn cells, which leads to progressive muscle weakness. By definition, children with SMA type I are never able to sit without support and usually die or become ventilator dependent before the age of two years. There have until very recently been no drug treatments to influence the course of SMA. We undertook this updated review to evaluate new evidence on emerging treatments for SMA type I. The review was first published in 2009 and previously updated in 2011. OBJECTIVES To assess the efficacy and safety of any drug therapy designed to slow or arrest progression of spinal muscular atrophy (SMA) type I. SEARCH METHODS We searched the Cochrane Neuromuscular Specialised Register, CENTRAL, MEDLINE, Embase, and ISI Web of Science conference proceedings in October 2018. We also searched two trials registries to identify unpublished trials (October 2018). SELECTION CRITERIA We sought all randomised controlled trials (RCTs) or quasi-RCTs that examined the efficacy of drug treatment for SMA type I. Included participants had to fulfil clinical criteria and have a genetically confirmed deletion or mutation of the SMN1 gene (5q11.2-13.2). The primary outcome measure was age at death or full-time ventilation. Secondary outcome measures were acquisition of motor milestones, i.e. head control, rolling, sitting or standing, motor milestone response on disability scores within one year after the onset of treatment, and adverse events and serious adverse events attributable to treatment during the trial period. Treatment strategies involving SMN1 gene replacement with viral vectors are out of the scope of this review. DATA COLLECTION AND ANALYSIS We followed standard Cochrane methodology. MAIN RESULTS We identified two RCTs: one trial of intrathecal nusinersen in comparison to a sham (control) procedure in 121 randomised infants with SMA type I, which was newly included at this update, and one small trial comparing riluzole treatment to placebo in 10 children with SMA type I. The RCT of intrathecally-injected nusinersen was stopped early for efficacy (based on a predefined Hammersmith Infant Neurological Examination-Section 2 (HINE-2) response). At the interim analyses after 183 days of treatment, 41% (21/51) of nusinersen-treated infants showed a predefined improvement on HINE-2, compared to 0% (0/27) of participants in the control group. This trial was largely at low risk of bias. Final analyses (ranging from 6 months to 13 months of treatment), showed that fewer participants died or required full-time ventilation (defined as more than 16 hours daily for 21 days or more) in the nusinersen-treated group than the control group (hazard ratio (HR) 0.53, 95% confidence interval (CI) 0.32 to 0.89; N = 121; a 47% lower risk; moderate-certainty evidence). A proportion of infants in the nusinersen group and none of 37 infants in the control group achieved motor milestones: 37/73 nusinersen-treated infants (51%) achieved a motor milestone response on HINE-2 (risk ratio (RR) 38.51, 95% CI 2.43 to 610.14; N = 110; moderate-certainty evidence); 16/73 achieved head control (RR 16.95, 95% CI 1.04 to 274.84; moderate-certainty evidence); 6/73 achieved independent sitting (RR 6.68, 95% CI 0.39 to 115.38; moderate-certainty evidence); 7/73 achieved rolling over (RR 7.70, 95% CI 0.45 to 131.29); and 1/73 achieved standing (RR 1.54, 95% CI 0.06 to 36.92; moderate-certainty evidence). Seventy-one per cent of nusinersen-treated infants versus 3% of infants in the control group were responders on the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders (CHOP INTEND) measure of motor disability (RR 26.36, 95% CI 3.79 to 183.18; N = 110; moderate-certainty evidence). Adverse events and serious adverse events occurred in the majority of infants but were no more frequent in the nusinersen-treated group than the control group (RR 0.99, 95% CI 0.92 to 1.05 and RR 0.70, 95% CI 0.55 to 0.89, respectively; N = 121; moderate-certainty evidence). In the riluzole trial, three of seven children treated with riluzole were still alive at the ages of 30, 48, and 64 months, whereas all three children in the placebo group died. None of the children in the riluzole or placebo group developed the ability to sit, which was the only milestone reported. There were no adverse effects. The certainty of the evidence for all measured outcomes from this study was very low, because the study was too small to detect or rule out an effect, and had serious limitations, including baseline differences. This trial was stopped prematurely because the pharmaceutical company withdrew funding. Various trials and studies investigating treatment strategies other than nusinersen, such as SMN2 augmentation by small molecules, are ongoing. AUTHORS' CONCLUSIONS Based on the very limited evidence currently available regarding drug treatments for SMA type 1, intrathecal nusinersen probably prolongs ventilation-free and overall survival in infants with SMA type I. It is also probable that a greater proportion of infants treated with nusinersen than with a sham procedure achieve motor milestones and can be classed as responders to treatment on clinical assessments (HINE-2 and CHOP INTEND). The proportion of children experiencing adverse events and serious adverse events on nusinersen is no higher with nusinersen treatment than with a sham procedure, based on evidence of moderate certainty. It is uncertain whether riluzole has any effect in patients with SMA type I, based on the limited available evidence. Future trials could provide more high-certainty, longer-term evidence to confirm this result, or focus on comparing new treatments to nusinersen or evaluate them as an add-on therapy to nusinersen.
Collapse
Affiliation(s)
- Renske I Wadman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - W Ludo van der Pol
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Wendy MJ Bosboom
- Onze Lieve Vrouwe Gasthuis locatie WestDepartment of NeurologyAmsterdamNetherlands
| | - Fay‐Lynn Asselman
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Leonard H van den Berg
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | - Susan T Iannaccone
- University of Texas Southwestern Medical CenterDepartment of Pediatrics5323 Harry Hines BoulevardDallasTexasUSA75390
| | - Alexander FJE Vrancken
- University Medical Center Utrecht, Brain Center Rudolf MagnusDepartment of NeurologyHeidelberglaan 100UtrechtNetherlands3584 CX
| | | |
Collapse
|
7
|
Tseng YT, Hsu HT, Lee TY, Chang WH, Lo YC. Naringenin, a dietary flavanone, enhances insulin-like growth factor 1 receptor-mediated antioxidant defense and attenuates methylglyoxal-induced neurite damage and apoptotic death. Nutr Neurosci 2019; 24:71-81. [PMID: 30900959 DOI: 10.1080/1028415x.2019.1594554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Objectives: Recent studies revealed the neuroprotective effects of naringenin (NGEN), a common dietary bioflavonoid contained in citrus fruits. However, there are limited data on its protection against methylglyoxal (MG), the most potent precursor of advanced glycation end-products. The present study was to investigate the protection of NGEN on MG-induced neurotoxicity and the involvement of insulin-like growth factor 1 receptor (IGF-1R) signaling. Methods: NSC34 motor neuron-like cells was used. Cell viability was measured by MTT assay. Protein expressions were analyzed by western blots. Morphological changes of neurites were observed by an inverted microscope. Reactive oxygen species (ROS) production and apoptotic cell numbers were measured by flow cytometer. Glutathione (GSH) level and superoxide dismutase (SOD) activity were measured by ELISA. Results: >NGEN attenuated ROS production and increased GSH level, SOD activity and nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear expression in MG-treated NSC34 cells. NGEN also increased neurite length and enhanced IGF-1R and p-Akt in MG-treated NSC34 cells. Furthermore, NGEN attenuated MG-induced apoptotic death accompanied with down-regulation of cleaved-poly (ADP-ribose) polymerase (PARP) and up-regulation of B-cell lymphoma-2 (Bcl-2). However, AG1024, an IGF-1R antagonist, attenuated the anti-oxidative and anti-apoptotic effects of NGEN in MG-treated cells. Discussion: The present results demonstrated that NGEN decreased neuronal apoptosis and improved antioxidant defense in MG-treated NSC34 cells. Moreover, IGF-1R-mediated antioxidant defense plays an important role in this protective mechanism. These findings suggest the potential benefits of NGEN on the prevention of MG-induced or diabetes/hyperglycemia-related neurotoxicity. In vivo studies are needed for further confirmation on NGEN-mediated neuroprotection.
Collapse
Affiliation(s)
- Yu-Ting Tseng
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hung-Te Hsu
- Faculty of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesia, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Tzu-Ying Lee
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-Ching Lo
- Department of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
8
|
Tseng YT, Chen CS, Jong YJ, Chang FR, Lo YC. Loganin possesses neuroprotective properties, restores SMN protein and activates protein synthesis positive regulator Akt/mTOR in experimental models of spinal muscular atrophy. Pharmacol Res 2016; 111:58-75. [DOI: 10.1016/j.phrs.2016.05.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022]
|
9
|
Lin TL, Chen TH, Hsu YY, Cheng YH, Juang BT, Jong YJ. Selective Neuromuscular Denervation in Taiwanese Severe SMA Mouse Can Be Reversed by Morpholino Antisense Oligonucleotides. PLoS One 2016; 11:e0154723. [PMID: 27124114 PMCID: PMC4849667 DOI: 10.1371/journal.pone.0154723] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 04/18/2016] [Indexed: 11/27/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease caused by deficiency of the survival of motor neuron (SMN) protein, which leads to synaptic defects and spinal motor neuron death. Neuromuscular junction (NMJ) abnormalities have been found to be involved in SMA pathogenesis in the SMNΔ7 SMA mouse model. However, whether similar NMJ pathological findings present in another commonly used mouse model, the Taiwanese SMA mouse, has not been fully investigated. To examine the NMJs of the Taiwanese severe SMA mouse model (Smn-/-; SMN2tg/0), which is characterized by severe phenotype and death before postnatal day (P) 9, we investigated 25 axial and appendicular muscles from P1 to P9. We labelled the muscles with anti-neurofilament and anti-synaptophysin antibodies for nerve terminals and α-bungarotoxin for acetylcholine receptors (AChRs). We found that severe NMJ denervation (<50% fully innervated endplates) selectively occurred in the flexor digitorum brevis 2 and 3 (FDB-2/3) muscles from P5, and an increased percentage of fully denervated endplates correlated with SMA progression. Furthermore, synaptophysin signals were absent at the endplate compared to control littermate mice, suggesting that vesicle transport might only be affected at the end stage. Subsequently, we treated the Taiwanese severe SMA mice with morpholino (MO) antisense oligonucleotides (80 μg/g) via subcutaneous injection at P0. We found that MO significantly reversed the NMJ denervation in FDB-2/3 muscles and extended the survival of Taiwanese severe SMA mice. We conclude that early NMJ denervation in the FDB-2/3 muscles of Taiwanese severe SMA mice can be reversed by MO treatment. The FDB-2/3 muscles of Taiwanese severe SMA mice provide a very sensitive platform for assessing the effectiveness of drug treatments in SMA preclinical studies.
Collapse
Affiliation(s)
- Te-Lin Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tai-Heng Chen
- Division of Pediatric Emergency, Department of Emergency, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Yun Hsu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hua Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Bi-Tzen Juang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Yuh-Jyh Jong
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Molecular Medicine and Bioengineering, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Departments of Pediatrics and Laboratory Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- * E-mail: ;
| |
Collapse
|
10
|
TRPP2 modulates ryanodine- and inositol-1,4,5-trisphosphate receptors-dependent Ca2+ signals in opposite ways in cerebral arteries. Cell Calcium 2015; 58:467-75. [DOI: 10.1016/j.ceca.2015.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/17/2015] [Accepted: 07/27/2015] [Indexed: 12/12/2022]
|
11
|
Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Future Med Chem 2015; 7:1793-808. [PMID: 26381381 DOI: 10.4155/fmc.15.101] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a major neurodegenerative disorder of children and infants. SMA is primarily caused by low levels of SMN protein owing to deletions or mutations of the SMN1 gene. SMN2, a nearly identical copy of SMN1, fails to compensate for the loss of the production of the functional SMN protein due to predominant skipping of exon 7. Several compounds, including antisense oligonucleotides (ASOs) that elevate SMN protein from SMN2 hold the promise for treatment. An ASO-based drug currently under Phase III clinical trial employs intronic splicing silencer N1 (ISS-N1) as its target. Cumulative studies on ISS-N1 reveal a wealth of information with significance to the overall therapeutic development for SMA. Here, the authors summarize the mechanistic principles behind various antisense targets currently available for SMA therapy.
Collapse
|
12
|
Cheung So E, Lo YC, Chen LT, Kao CA, Wu SN. High effectiveness of triptolide, an active diterpenoid triepoxide, in suppressing Kir-channel currents from human glioma cells. Eur J Pharmacol 2014; 738:332-41. [DOI: 10.1016/j.ejphar.2014.05.059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/17/2022]
|
13
|
Wynne GM, Russell AJ. Drug Discovery Approaches for Rare Neuromuscular Diseases. ORPHAN DRUGS AND RARE DISEASES 2014. [DOI: 10.1039/9781782624202-00257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Rare neuromuscular diseases encompass many diverse and debilitating musculoskeletal disorders, ranging from ultra-orphan conditions that affect only a few families, to the so-called ‘common’ orphan diseases like Duchenne muscular dystrophy (DMD) and spinal muscular atrophy (SMA), which affect several thousand individuals worldwide. Increasingly, pharmaceutical and biotechnology companies, in an effort to improve productivity and rebuild dwindling pipelines, are shifting their business models away from the formerly popular ‘blockbuster’ strategy, with rare diseases being an area of increased focus in recent years. As a consequence of this paradigm shift, coupled with high-profile campaigns by not-for-profit organisations and patient advocacy groups, rare neuromuscular diseases are attracting considerable attention as new therapeutic areas for improved drug therapy. Much pioneering work has taken place to elucidate the underlying pathological mechanisms of many rare neuromuscular diseases. This, in conjunction with the availability of new screening technologies, has inspired the development of several truly innovative therapeutic strategies aimed at correcting the underlying pathology. A survey of medicinal chemistry approaches and the resulting clinical progress for new therapeutic agents targeting this devastating class of degenerative diseases is presented, using DMD and SMA as examples. Complementary strategies using small-molecule drugs and biological agents are included.
Collapse
Affiliation(s)
- Graham M. Wynne
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| | - Angela J. Russell
- Chemistry Research Laboratory, University of Oxford 12 Mansfield Road Oxford OX1 3TA UK
| |
Collapse
|
14
|
Sai K, Li WY, Chen YS, Wang J, Guan S, Yang QY, Guo CC, Mou YG, Li WP, Chen ZP. Triptolide Synergistically Enhances Temozolomide-Induced Apoptosis and Potentiates Inhibition of NF-κB Signaling in Glioma Initiating Cells. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:485-503. [DOI: 10.1142/s0192415x14500323] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a lethal solid cancer in adults. Temozolomide (TMZ) is a first-line chemotherapeutic agent but the efficacy is limited by intrinsic and acquired resistance in GBM. Triptolide (TPL), a derivative from traditional Chinese medicine, demonstrated anti-tumor activity. In this study, we explored the interaction of TPL and TMZ in glioma-initiating cells (GICs) and the potential mechanism. A GIC line (GIC-1) was successfully established. Cell viability of GIC-1 after treatment was measured using a CCK-8 assay. The interaction between TPL and TMZ was calculated from Chou–Talalay equations and isobologram. Self-renewal was evaluated with tumor sphere formation assay. Apoptosis was assessed with flow cytometry and western blot. Luciferase assay was employed to measure NF-κB transcriptional activity. The expression of NF-κB downstream genes, NF-κB nuclear translocalization and phoshorylation of IκBα and p65 were evaluated using western blot. We found that GIC-1 cells were resistant to TMZ, with the expected IC50 of 705.7 μmol/L. Co-treatment with TPL yielded a more than three-fold dose reduction of TMZ. TPL significantly increased the percentage of apoptotic cells and suppressed the tumor sphere formation when combined with TMZ. Phosphorylation of IκBα and p65 coupled with NF-κB nuclear translocalization were notably inhibited after a combined treatment. Co-incubation synergistically repressed NF-κB transcriptional activity and downstream gene expression. TPL sensitizes GICs to TMZ by synergistically enhancing apoptosis, which is likely resulting from the augmented repression of NF-κB signaling. TPL is therefore a potential chemosensitizer in the treatment of GBM.
Collapse
Affiliation(s)
- Ke Sai
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wen-Yu Li
- Guangzhou Medical University, Guangzhou 510182, China
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen 518029, China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Jian Wang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Su Guan
- School of Bioscience and Bioengineering, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, China
| | - Qun-Ying Yang
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Cheng-Cheng Guo
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Yong-Gao Mou
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Wei-Ping Li
- Guangzhou Medical University, Guangzhou 510182, China
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen 518029, China
| | - Zhong-Ping Chen
- Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
- State Key Laboratory of Oncology in South China, Guangzhou, China
| |
Collapse
|
15
|
Nurputra DK, Lai PS, Harahap NIF, Morikawa S, Yamamoto T, Nishimura N, Kubo Y, Takeuchi A, Saito T, Takeshima Y, Tohyama Y, Tay SKH, Low PS, Saito K, Nishio H. Spinal muscular atrophy: from gene discovery to clinical trials. Ann Hum Genet 2013; 77:435-63. [PMID: 23879295 DOI: 10.1111/ahg.12031] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 04/26/2013] [Indexed: 12/25/2022]
Abstract
Spinal muscular atrophy (SMA) is a common neuromuscular disorder with autosomal recessive inheritance, resulting in the degeneration of motor neurons. The incidence of the disease has been estimated at 1 in 6000-10,000 newborns with a carrier frequency of 1 in 40-60. SMA is caused by mutations of the SMN1 gene, located on chromosome 5q13. The gene product, survival motor neuron (SMN) plays critical roles in a variety of cellular activities. SMN2, a homologue of SMN1, is retained in all SMA patients and generates low levels of SMN, but does not compensate for the mutated SMN1. Genetic analysis demonstrates the presence of homozygous deletion of SMN1 in most patients, and allows screening of heterozygous carriers in affected families. Considering high incidence of carrier frequency in SMA, population-wide newborn and carrier screening has been proposed. Although no effective treatment is currently available, some treatment strategies have already been developed based on the molecular pathophysiology of this disease. Current treatment strategies can be classified into three major groups: SMN2-targeting, SMN1-introduction, and non-SMN targeting. Here, we provide a comprehensive and up-to-date review integrating advances in molecular pathophysiology and diagnostic testing with therapeutic developments for this disease including promising candidates from recent clinical trials.
Collapse
Affiliation(s)
- Dian K Nurputra
- Department of Community Medicine and Social Health Care, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Wysocki M, Preuss S, Stratz P, Bennewitz J. Investigating gene expression differences in two chicken groups with variable propensity to feather pecking. Anim Genet 2013; 44:773-7. [DOI: 10.1111/age.12050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2013] [Indexed: 12/01/2022]
Affiliation(s)
- Michal Wysocki
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - Siegfried Preuss
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - Patrick Stratz
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| | - Jörn Bennewitz
- Institute of Animal Husbandry and Breeding; University of Hohenheim; D-70599 Stuttgart Germany
| |
Collapse
|
17
|
Dobrowolski SF, Pham HT, Downes FP, Prior TW, Naylor EW, Swoboda KJ. Newborn screening for spinal muscular atrophy by calibrated short-amplicon melt profiling. Clin Chem 2012; 58:1033-9. [PMID: 22490618 DOI: 10.1373/clinchem.2012.183038] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND The management options for the autosomal recessive neurodegenerative disorder spinal muscular atrophy (SMA) are evolving; however, their efficacy may require presymptom diagnosis and continuous treatment. To identify presymptomatic SMA patients, we created a DNA-based newborn screening assay to identify the homozygous deletions of the SMN1 (survival of motor neuron 1, telomeric) gene observed in 95%-98% of affected patients. METHODS We developed primers that amplify a 52-bp PCR product from homologous regions in the SMN1 and SMN2 (survival of motor neuron 2, centromeric) genes that flank a divergent site at site c.840. Post-PCR high-resolution melt profiling assessed the amplification product, and we used a unique means of melt calibration to normalize profiles. Samples that we had previously characterized for the numbers of SMN1 and SMN2 copies established genotypes associated with particular profiles. The system was evaluated with approximately 1000 purified DNA samples, 100 self-created dried blood spots, and >1200 dried blood spots from newborn screening tests. RESULTS Homozygous deletion of SMN1 exon 7 produced a distinctive melt profile that identified SMA patients. Samples with different numbers of SMN1 and SMN2 copies were resolved by their profiles. All samples with homozygous deletions were unambiguously recognized, and no normal sample was misidentified as a positive. CONCLUSIONS This assay has characteristics suitable for population-based screening. A reliable screening test will facilitate the identification of an SMA-affected cohort to receive early intervention to maximize the benefit from treatment. A prospective screening trial will allow the efficacy of treatment options to be assessed, which may justify the inclusion of SMA as a target for population screening.
Collapse
Affiliation(s)
- Steven F Dobrowolski
- Department of Pathology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.
| | | | | | | | | | | |
Collapse
|