1
|
Nazari S, Poustforoosh A, Paul PR, Kukreti R, Tavakkoli M, Saso L, Firuzi O, Moosavi F. c-MET tyrosine kinase inhibitors reverse drug resistance mediated by the ATP-binding cassette transporter B1 (ABCB1) in cancer cells. 3 Biotech 2025; 15:2. [PMID: 39650809 PMCID: PMC11618280 DOI: 10.1007/s13205-024-04162-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 11/10/2024] [Indexed: 12/11/2024] Open
Abstract
This study investigated the potential of MET kinase inhibitors, cabozantinib, crizotinib, and PHA665752, in reversing multidrug resistance (MDR) mediated by ABCB1 in cancer cells. The accumulation of the fluorescent probe, Rhodamine 123, was assessed using flow cytometry and fluorescence microscopy in MDR MES-SA/DX5 and parental cells. The growth inhibitory activity of MET inhibitors as monotherapies and in combination with chemotherapeutic drugs was evaluated by MTT assay. CalcuSyn software was used to analyze the combination index (CI) as an index of drug-drug interaction in combination treatments. Results showed that at concentrations of 5, and 25 μM, c-MET inhibitors significantly increased Rhodamine 123 accumulation in MDR cells, with ratios up to 17.8 compared to control cells, while exhibiting no effect in parental cells. Additionally, the combination of c-MET inhibitors with the chemotherapeutic agent doxorubicin synergistically enhanced cytotoxicity in MDR cells, as evidenced by combination index (CI) values of 0.54 ± 0.08, 0.69 ± 0.1, and 0.85 ± 0.07 for cabozantinib, crizotinib, and PHA665752, respectively. While all three c-MET inhibitors stimulated ABCB1 ATPase activity in different manners at certain concentrations, PHA-665752 suppressed it at high concentration. In silico analysis also suggested that the transmembrane domains (TMD) of ABCB1 transporters could be considered potential target for these agents. Our results suggest that c-MET inhibitors can serve as promising MDR reversal agents in ABCB1-medicated drug-resistant cancer cells.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Marjan Tavakkoli
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Zhou X, Zhou Z, Qin X, Cheng J, Fu Y, Wang Y, Wang J, Qin P, Zhang D. Amino Acid Metabolism Subtypes in Neuroblastoma Identifying Distinct Prognosis and Therapeutic Vulnerabilities. J Proteome Res 2024. [PMID: 39442086 DOI: 10.1021/acs.jproteome.4c00554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Although amino acid (AA) metabolism is linked to tumor progression and could serve as an attractive intervention target, its association with neuroblastoma (NB) is unknown. Based on AA metabolism-related genes, we established three NB subtypes associated with distinct prognoses and specific functions, with C1 and C2 having better outcomes. The C1 displayed enhanced metabolic activity and recruited metabolism-associated cells. The C2 exhibited an activated immune microenvironment and was more vulnerable to immunotherapy. The C3, characterized by cell cycle peculiarity, possessed a dismal prognosis and high frequency of gene mutations and was susceptible to chemotherapy. Furthermore, single-cell RNA sequencing analysis revealed that the C3-associated Scissor+ cell subpopulation was characterized by notorious functional states and orchestrated an immunosuppressive microenvironment. Additionally, we identified that ALK and BIRC5 contributed to the shorter lifespan of C3 and their corresponding inhibitors were potential interventions. In conclusion, we identified three distinct subtypes of NB, which help us foster individualized therapeutic strategies to improve the prognosis of NB.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xiaohan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jian Cheng
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yongcheng Fu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuanyuan Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jingyue Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Pan Qin
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Da Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| |
Collapse
|
3
|
Liu D, Tian Z, Tusong K, Mamat H, Luo Y. Expression, purification and characterization of CTP synthase PyrG in Staphylococcusaureus. Protein Expr Purif 2024; 221:106520. [PMID: 38833752 DOI: 10.1016/j.pep.2024.106520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/06/2024]
Abstract
Staphylococcus aureus (S. aureus) presents a significant challenge in both nosocomial and community settings due to its pathogenicity. The emergence of drug-resistant strains exacerbates S. aureus infections, leading to increased mortality rates. PyrG, a member of the cytidine triphosphate (CTP) synthase family, serves as a crucial therapeutic target against S. aureus due to the pivotal role of CTP in cellular metabolism. However, the structural and mechanistic details of S. aureus PyrG remains unknown. Here, we successfully expressed and purified monomeric PyrG. Mutational experiments were conducted based on the results of molecular docking. Based on the results of the molecular docking, we carried out mutation experiments and found that Q386A dramatically decreased the CTP synthase activity compared to the wild-type protein, while Y54A almost completely abolished the activity. Exposure of S. aureus to the kinase inhibitor crizotinib increased expression of gene pyrG. Our results identify the two key sites on PyrG for the CTP synthase activity, and present PyrG gene expression increased during the treatment of crizotinib, which may eventually provide valuable guidance for the development of new drugs against S. aureus infections.
Collapse
Affiliation(s)
- Dafeng Liu
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China; School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, China.
| | - Zhu Tian
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Kuerban Tusong
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Hayrinsa Mamat
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| | - Yihan Luo
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, College of Biological Sciences and Technology, Yili Normal University, Yining, 835000, Xinjiang, China
| |
Collapse
|
4
|
Musa S, Amara N, Selawi A, Wang J, Marchini C, Agbarya A, Mahajna J. Overcoming Chemoresistance in Cancer: The Promise of Crizotinib. Cancers (Basel) 2024; 16:2479. [PMID: 39001541 PMCID: PMC11240740 DOI: 10.3390/cancers16132479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Chemoresistance is a major obstacle in cancer treatment, often leading to disease progression and poor outcomes. It arises through various mechanisms such as genetic mutations, drug efflux pumps, enhanced DNA repair, and changes in the tumor microenvironment. These processes allow cancer cells to survive despite chemotherapy, underscoring the need for new strategies to overcome resistance and improve treatment efficacy. Crizotinib, a first-generation multi-target kinase inhibitor, is approved by the FDA for the treatment of ALK-positive or ROS1-positive non-small cell lung cancer (NSCLC), refractory inflammatory (ALK)-positive myofibroblastic tumors (IMTs) and relapsed/refractory ALK-positive anaplastic large cell lymphoma (ALCL). Crizotinib exists in two enantiomeric forms: (R)-crizotinib and its mirror image, (S)-crizotinib. It is assumed that the R-isomer is responsible for the carrying out various processes reviewed here The S-isomer, on the other hand, shows a strong inhibition of MTH1, an enzyme important for DNA repair mechanisms. Studies have shown that crizotinib is an effective multi-kinase inhibitor targeting various kinases such as c-Met, native/T315I Bcr/Abl, and JAK2. Its mechanism of action involves the competitive inhibition of ATP binding and allosteric inhibition, particularly at Bcr/Abl. Crizotinib showed synergistic effects when combined with the poly ADP ribose polymerase inhibitor (PARP), especially in ovarian cancer harboring BRCA gene mutations. In addition, crizotinib targets a critical vulnerability in many p53-mutated cancers. Unlike its wild-type counterpart, the p53 mutant promotes cancer cell survival. Crizotinib can cause the degradation of the p53 mutant, sensitizing these cancer cells to DNA-damaging substances and triggering apoptosis. Interestingly, other reports demonstrated that crizotinib exhibits anti-bacterial activity, targeting Gram-positive bacteria. Also, it is active against drug-resistant strains. In summary, crizotinib exerts anti-tumor effects through several mechanisms, including the inhibition of kinases and the restoration of drug sensitivity. The potential of crizotinib in combination therapies is emphasized, particularly in cancers with a high prevalence of the p53 mutant, such as triple-negative breast cancer (TNBC) and high-grade serous ovarian cancer (HGSOC).
Collapse
Affiliation(s)
- Sanaa Musa
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Noor Amara
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Adan Selawi
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Abed Agbarya
- Oncology Department, Bnai Zion MC, Haifa 31048, Israel
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal-Galilee Research Institute, Kiryat Shmona 11016, Israel
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 11016, Israel
| |
Collapse
|
5
|
Khatir ZZ, Di Sotto A, Percaccio E, Tuylu Kucukkilinc T, Ercan A, Chippindale AM, Valipour M, Irannejad H. 4-{3-[(Pyridin-4-ylmethyl)amino]-[1,2,4]triazolo[4,3-b][1,2,4]triazin-6-yl}phenol: An improved anticancer agent in hepatocellular carcinoma and a selective MDR1/MRP modulator. Arch Pharm (Weinheim) 2024; 357:e2300704. [PMID: 38442326 DOI: 10.1002/ardp.202300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Hepatocellular carcinoma is the most common type of primary liver cancer. However, multidrug resistance (MDR) is a major obstacle to the effective chemotherapy of cancer cells. This report documents the rational design, synthesis, and biological evaluation of a novel series of triazolotriazines substituted with CH2NH-linked pyridine for use as dual c-Met/MDR inhibitors. Compound 12g with IC50 of 3.06 μM on HepG2 cells showed more potency than crizotinib (IC50 = 5.15 μM) in the MTT assay. In addition, 12g inhibited c-Met kinase at a low micromolar level (IC50 = 0.052 μM). 12g significantly inhibited P-gp and MRP1/2 efflux pumps in both cancerous HepG2 and BxPC3 cells starting from the lower concentrations of 3 and 0.3 µM, respectively. 12g did not inhibit MDR1 and MRP1/2 in noncancerous H69 cholangiocytes up to the concentration of 30 and 60 µM, respectively. Current results highlighted that cancerous cells were more susceptible to the effect of 12g than normal cells, in which the inhibition occurred only at the highest concentrations, suggesting a further interest in 12g as a selective anticancer agent. Overall, 12g, as a dual c-Met and P-gp/MRP inhibitor, is a promising lead compound for developing a new generation of anticancer agents.
Collapse
Affiliation(s)
- Zahra Zakeri Khatir
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology "V. Erspamer", Sapienza University of Rome, Rome, Italy
| | - Tuba Tuylu Kucukkilinc
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | - Ayse Ercan
- Department of Biochemistry, Faculty of Pharmacy, Hacettepe University, Sihhiye, Ankara, Turkey
| | | | - Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
6
|
Nazari S, Mosaffa F, Poustforoosh A, Mortazavi M, Saso L, Firuzi O, Moosavi F. Foretinib, a c-MET receptor tyrosine kinase inhibitor, tackles multidrug resistance in cancer cells by inhibiting ABCB1 and ABCG2 transporters. Toxicol Appl Pharmacol 2024; 484:116866. [PMID: 38367674 DOI: 10.1016/j.taap.2024.116866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/19/2024]
Abstract
BACKGROUND ABC transporter-mediated multidrug resistance (MDR) remains a major obstacle for cancer pharmacological treatment. Some tyrosine kinase inhibitors (TKIs) have been shown to reverse MDR. The present study was designed to evaluate for the first time whether foretinib, a multitargeted TKI, can circumvent ABCB1 and ABCG2-mediated MDR in treatment-resistant cancer models. METHODS Accumulation of fluorescent substrates of ABCB1 and ABCG2 in ABCB1-overexpressing MES-SA/DX5 and ABCG2-overexpressing MCF-7/MX and their parenteral cells was evaluated by flow cytometry. The growth inhibitory activity of single and combination therapy of foretinib and chemotherapeutic drugs on MDR cells was examined by MTT assay. Analysis of combined interaction effects was performed using CalcuSyn software. RESULTS It was firstly proved that foretinib increased the intracellular accumulation of rhodamine 123 and mitoxantrone in MES-SA/DX5 and MCF-7/MX cancer cells, with accumulation ratios of 12 and 2.2 at 25 μM concentration, respectively. However, it did not affect the accumulation of fluorescent substrates in the parental cells. Moreover, foretinib synergistically improved the cytotoxic effects of doxorubicin and mitoxantrone. The means of combination index (CI) values at fraction affected (Fa) values of 0.5, 0.75, and 0.9 were 0.64 ± 0.08 and 0.47 ± 0.09, in MES-SA/DX5 and MCF-7/MX cancer cells, respectively. In silico analysis also suggested that the drug-binding domain of ABCB1 and ABCG2 transporters could be considered as potential target for foretinib. CONCLUSION Overall, our results suggest that foretinib can target MDR-linked ABCB1 and ABCG2 transporters in clinical cancer therapy.
Collapse
Affiliation(s)
- Somayeh Nazari
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Mosaffa
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Poustforoosh
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Motahareh Mortazavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Wu CP, Hsiao SH, Wu YS. Perspectives on drug repurposing to overcome cancer multidrug resistance mediated by ABCB1 and ABCG2. Drug Resist Updat 2023; 71:101011. [PMID: 37865067 DOI: 10.1016/j.drup.2023.101011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/23/2023]
Abstract
The overexpression of the human ATP-binding cassette (ABC) transporters in cancer cells is a common mechanism involved in developing multidrug resistance (MDR). Unfortunately, there are currently no approved drugs specifically designed to treat multidrug-resistant cancers, making MDR a significant obstacle to successful chemotherapy. Despite over two decades of research, developing transporter-specific inhibitors for clinical use has proven to be a challenging endeavor. As an alternative approach, drug repurposing has gained traction as a more practical method to discover clinically effective modulators of drug transporters. This involves exploring new indications for already-approved drugs, bypassing the lengthy process of developing novel synthetic inhibitors. In this context, we will discuss the mechanisms of ABC drug transporters ABCB1 and ABCG2, their roles in cancer MDR, and the inhibitors that have been evaluated for their potential to reverse MDR mediated by these drug transporters. Our focus will be on providing an up-to-date report on approved drugs tested for their inhibitory activities against these drug efflux pumps. Lastly, we will explore the challenges and prospects of repurposing already approved medications for clinical use to overcome chemoresistance in patients with high tumor expression of ABCB1 and/or ABCG2.
Collapse
Affiliation(s)
- Chung-Pu Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Molecular Medicine Research Center, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; Department of Obstetrics and Gynecology, Taipei Chang Gung Memorial Hospital, Taipei 10507, Taiwan.
| | - Sung-Han Hsiao
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Shan Wu
- Department of Chemistry, Tunghai University, Taichung 40704, Taiwan.
| |
Collapse
|
8
|
Lu S, Pan H, Wu L, Yao Y, He J, Wang Y, Wang X, Fang Y, Zhou Z, Wang X, Cai X, Yu Y, Ma Z, Min X, Yang Z, Cao L, Yang H, Shu Y, Zhuang W, Cang S, Fang J, Li K, Yu Z, Cui J, Zhang Y, Li M, Wen X, Zhang J, Li W, Shi J, Xu X, Zhong D, Wang T, Zhu J. Efficacy, safety and pharmacokinetics of Unecritinib (TQ-B3101) for patients with ROS1 positive advanced non-small cell lung cancer: a Phase I/II Trial. Signal Transduct Target Ther 2023; 8:249. [PMID: 37385995 PMCID: PMC10310851 DOI: 10.1038/s41392-023-01454-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 04/20/2023] [Indexed: 07/01/2023] Open
Abstract
This phase I/II trial characterized the tolerability, safety, and antitumor activities of unecritinib, a novel derivative of crizotinib and a multi-tyrosine kinase inhibitor targeting ROS1, ALK, and c-MET, in advanced tumors and ROS1 inhibitor-naive advanced or metastatic non-small cell lung cancer (NSCLC) harboring ROS1 rearrangements. Eligible patients received unecritinib 100, 200, and 300 mg QD, and 200, 250, 300, and 350 mg BID in a 3 + 3 design during dose escalation and 300 and 350 mg BID during expansion. Phase II trial patients received unecritinib 300 mg BID in continuous 28-day cycles until disease progression or unacceptable toxicity. The primary endpoint was the objective response rate (ORR) per independent review committee (IRC). Key secondary endpoints included intracranial ORR and safety. The ORR of 36 efficacy evaluable patients in the phase I trial was 63.9% (95% CI 46.2%, 79.2%). In the phase II trial, 111 eligible patients in the main study cohort received unecritinib. The ORR per IRC was 80.2% (95% CI 71.5%, 87.1%) and the median progression-free survival (PFS) per IRC was 16.5 months (95% CI 10.2, 27.0). Additionally, 46.9% of the patients who received recommended phase II dose of 300 mg BID experienced grade 3 or higher treatment-related adverse events. Treatment-related ocular disorders and neurotoxicity occurred in 28.1% and 34.4% of patients, respectively, but none was grade 3 or higher. Unecritinib is efficacious and safe for ROS1 inhibitor-naive patients with ROS1-positive advanced NSCLC, particularly patients with brain metastases at baseline, strongly supporting that unecritinib should become one of the standards of care for ROS1-positive NSCLC.ClinicalTrials.gov identifier: NCT03019276 and NCT03972189.
Collapse
Affiliation(s)
- Shun Lu
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China.
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China.
| | - Lin Wu
- Department of Thoracic Medical Oncology, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University (Hunan Cancer Hospital), 410031, Changsha, China
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, 710061, Xian, China
| | - Jianxing He
- Department of Thoracic Surgery, The First Affiliated Hospital of Guangzhou Medical University, 510120, Guangzhou, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China
| | - Xiuwen Wang
- Department of Oncology, Qilu Hospital of Shandong University, 250012, Jinan, China
| | - Yong Fang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, 310016, Hangzhou, China
| | - Zhen Zhou
- Department of Medical Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, 200030, Shanghai, China
| | - Xicheng Wang
- Department of Oncology, The First Affiliated Hospital/School of Clinical Medicine of Guangdong Pharmaceutical University, 510699, Guangzhou, China
| | - Xiuyu Cai
- Department of Medical Oncology, Sun Yat-sen University Cancer Center, 510060, Guangzhou, China
| | - Yan Yu
- Department of Respiratory Medicine, Harbin Medical University Cancer Hospital, 150081, Harbin, China
| | - Zhiyong Ma
- Department of Medical Oncology, Henan Tumor Hospital, 450003, Zhengzhou, China
| | - Xuhong Min
- Department of Oncology Radiotherapy, Anhui Chest Hospital, 230022, Hefei, China
| | - Zhixiong Yang
- Department of Cancer Center, Affiliated Hospital of Guangdong Medical University, 524000, Zhanjiang, China
| | - Lejie Cao
- Department of Respiratory Medicine, The First Affiliated Hospital of the University of Science and Technology of China, Anhui Provincial Hospital, 230031, Hefei, China
| | - Huaping Yang
- Department of Respiratory and Critical Care Medicine, Xiangya Hospital Central South University, 410008, Changsha, China
| | - Yongqian Shu
- Department of Cancer Center, Jiangsu Province Hospital, 210029, Nanjing, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Cancer Hospital and Fujian Medical University Cancer Hospital, 350014, Fuzhou, China
| | - Shundong Cang
- Department of Medical Oncology, Henan Province People's Hospital, 450003, Zhengzhou, China
| | - Jian Fang
- Department of Thoracic Oncology, Peking University Cancer Hospital, 100142, Beijing, China
| | - Kai Li
- Department of Pulmonary Oncology, Tianjin Medical University Cancer Institute and Hospital, 300060, Tianjin, China
| | - Zhuang Yu
- Department of Oncology, The Affiliated Hospital of Qingdao University, 266000, Qingdao, China
| | - Jiuwei Cui
- Department of Oncology, The First Hospital of Jilin University, 130061, Changchun, China
| | - Yang Zhang
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Man Li
- Department of Medical Oncology, The Second Hospital of Dalian Medical University, 116023, Dalian, China
| | - Xinxuan Wen
- Department of Oncology, Xiangyang No. 1 People's Hospital, 441011, Xiangyang, China
| | - Jie Zhang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, 130041, Changchun, China
| | - Weidong Li
- Department of Medical Oncology, Affiliated Cancer Hospital and Institute of Guangdong Medical University, 510095, Guangzhou, China
| | - Jianhua Shi
- Department of Oncology, Linyi Cancer Hospital, 276002, Linyi, China
| | - Xingxiang Xu
- Department of Respiratory and Critical Care Medicine, Northern Jiangsu People's Hospital, 225001, Yangzhou, China
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, 300052, Tianjin, China
| | - Tao Wang
- Biostatistics Department of Clinical Center of Research Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., 222000, Nanjing, China
| | - Jiajia Zhu
- Biostatistics Department of Clinical Center of Research Institute, Chia Tai Tianqing Pharmaceutical Group Co., Ltd., 222000, Nanjing, China
| |
Collapse
|
9
|
Abdelgalil AA, Alkahtani HM. Crizotinib: A comprehensive profile. PROFILES OF DRUG SUBSTANCES, EXCIPIENTS AND RELATED METHODOLOGY 2023; 48:39-69. [PMID: 37061275 DOI: 10.1016/bs.podrm.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Crizotinib, approved in 2011, was the first approved inhibitor targeting anaplastic lymphoma kinase (ALK) It used for treatment of the patients with metastatic non-small cell lung cancer (NSCLC) that is anaplastic lymphoma kinase (ALK) positive. This chapter provides a complete review of crizotinib including nomenclature, physiochemical properties, methods of preparation, identification techniques and various qualitative and quantitative analytical techniques as well as pharmacology of crizotinib. In addition, the chapter also includes review of several methods for separation of crizotinib using chromatographic techniques.
Collapse
|
10
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
11
|
Crizotinib Shows Antibacterial Activity against Gram-Positive Bacteria by Reducing ATP Production and Targeting the CTP Synthase PyrG. Microbiol Spectr 2022; 10:e0088422. [PMID: 35674439 PMCID: PMC9241945 DOI: 10.1128/spectrum.00884-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections caused by drug-resistant bacteria are a serious threat to public health worldwide, and the discovery of novel antibacterial compounds is urgently needed. Here, we screened an FDA-approved small-molecule library and found that crizotinib possesses good antimicrobial efficacy against Gram-positive bacteria. Crizotinib was found to increase the survival rate of mice infected with bacteria and decrease pulmonary inflammation activity in an animal model. Furthermore, it showed synergy with clindamycin and gentamicin. Importantly, the Gram-positive bacteria showed a low tendency to develop resistance to crizotinib. Mechanistically, quantitative proteomics and biochemical validation experiments indicated that crizotinib exerted its antibacterial effects by reducing ATP production and pyrimidine metabolism. A drug affinity responsive target stability study suggested crizotinib targets the CTP synthase PyrG, which subsequently disturbs pyrimidine metabolism and eventually reduces DNA synthesis. Subsequent molecular dynamics analysis showed that crizotinib binding occurs in close proximity to the ATP binding pocket of PyrG and causes loss of function of this CTP synthase. Crizotinib is a promising antimicrobial agent and provides a novel choice for the development of treatment for Gram-positive infections. IMPORTANCE Infections caused by drug-resistant bacteria are a serious problem worldwide. Therefore, there is an urgent need to find novel drugs with good antibacterial activity against multidrug-resistant bacteria. In this study, we found that a repurposed drug, crizotinib, exhibits excellent antibacterial activity against drug-resistant bacteria both in vivo and in vitro via suppressing ATP production and pyrimidine metabolism. Crizotinib was found to disturb pyrimidine metabolism by targeting the CTP synthase PyrG, thus reducing DNA synthesis. This unique mechanism of action may explain the decreased development of resistance by Staphylococcus aureus to crizotinib. This study provides a potential option for the treatment of drug-resistant bacterial infections in the future.
Collapse
|
12
|
Lazertinib improves the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 overexpression cancer cells in vitro, in vivo, and ex vivo. Mol Ther Oncolytics 2022; 24:636-649. [PMID: 35284628 PMCID: PMC8897717 DOI: 10.1016/j.omto.2022.02.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 02/03/2022] [Indexed: 01/20/2023] Open
Abstract
Multidrug resistance (MDR) is the major cause of chemotherapy failure, which is usually caused by the overexpression of ATP-binding cassette (ABC) transporters such as ABCB1 and ABCG2. To date, no MDR modulator has been clinically approved. Here, we found that lazertinib (YH25448; a novel third-generation tyrosine kinase inhibitor [TKI]) could enhance the anticancer efficacy of MDR transporter substrate anticancer drugs in vitro,in vivo, and ex vivo. Mechanistically, lazertinib was shown to inhibit the drug efflux activities of ABCB1 and ABCG2 and thus increase the intracellular accumulation of the transporter substrate anticancer drug. Moreover, lazertinib was found to stimulate the ATPase activity of ABCB1/ABCG2 and inhibit the photolabeling of the transporters by 125I-iodoarylazidoprazosin (IAAP). However, lazertinib neither changed the expression or locolization of ABCB1 and ABCG2 nor blocked the signal pathway of Akt or Erk1/2 at a drug concentration effective for MDR reversal. Overall, our results demonstrate that lazertinib effectively reverses ABCB1- or ABCG2-mediated MDR by competitively binding to the ATP-binding site and inhibiting drug efflux function. This is the first report demonstrating the novel combined use of lazertinib and conventional chemotherapeutical drugs to overcome MDR in ABCB1/ABCG2-overexpressing cancer cells.
Collapse
|
13
|
Fogli S, Tabbò F, Capuano A, Re MD, Passiglia F, Cucchiara F, Scavone C, Gori V, Novello S, Schmidinger M, Danesi R. The expanding family of c-Met inhibitors in solid tumors: a comparative analysis of their pharmacologic and clinical differences. Crit Rev Oncol Hematol 2022; 172:103602. [DOI: 10.1016/j.critrevonc.2022.103602] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
|
14
|
Saib S, Hodin S, Bin V, Ollier E, Delavenne X. In Vitro Evaluation of P-gp-Mediated Drug-Drug Interactions Using the RPTEC/TERT1 Human Renal Cell Model. Eur J Drug Metab Pharmacokinet 2021; 47:223-233. [PMID: 34935100 DOI: 10.1007/s13318-021-00744-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND AND OBJECTIVES In vitro evaluation of the P-glycoprotein (P-gp) inhibitory potential is an important issue when predicting clinically relevant drug-drug interactions (DDIs). Located within all physiological barriers, including intestine, liver, and kidneys, P-gp plays a major role in the pharmacokinetics of various therapeutic classes. However, few data are available about DDIs involving renal transporters during the active tubular secretion of drugs. In this context, the present study was designed to investigate the application of the human renal cell line RPTEC/TERT1 to study drug interactions mediated by P-gp. METHODS The P-gp inhibitory potentials of a panel of drugs were first determined by measuring the intracellular accumulation of rhodamine 123 in RPTEC/TERT1 cells. Then four drugs were selected to assess the half-maximal inhibitor concentration (IC50) values by measuring the intracellular accumulation of two P-gp-substrate drugs, apixaban and rivaroxaban. Finally, according to the FDA guidelines, the [I1]/IC50 ratio was calculated for each combination of drugs to assess the clinical relevance of the DDIs. RESULTS The data showed that drugs which are known P-gp inhibitors, including cyclosporin A, ketoconazole, and verapamil, caused great increases in rhodamine 123 retention, whereas noninhibitors did not affect the intracellular accumulation of the P-gp substrate. The determined IC50 values were in accordance with the inhibition profiles observed in the rhodamine 123 accumulation assays, confirming the reliability of the RPTEC/TERT1 model. CONCLUSIONS Taken together, the data demonstrate the feasibility of the application of the RPTEC/TERT1 model for evaluating the P-gp inhibitory potentials of drugs and consequently predicting renal drug interactions.
Collapse
Affiliation(s)
- Sonia Saib
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.
| | - Sophie Hodin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Valérie Bin
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Edouard Ollier
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France
| | - Xavier Delavenne
- INSERM U1059, Dysfonction Vasculaire et Hémostase, Université Jean Monnet, 10 rue de la Marandière, Campus Santé Innovations, Saint-Priest-en-Jarez, Saint-Etienne, France.,Laboratoire de Pharmacologie Toxicologie Gaz du sang, CHU de Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
15
|
Nensi S, Ashton J. ALK-positive non-small cell lung cancer; potential combination drug treatments. Curr Cancer Drug Targets 2021; 21:737-748. [PMID: 34325640 DOI: 10.2174/1568009621666210729100647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/31/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Advances in chromosomally rearranged ALK positive non-small cell lung cancer have been dramatic in only the last few years. Survival times have improved dramatically due to the introduction of ever more efficacious ALK inhibitors. These improvements have been due largely to improvements in blood-brain barrier penetration and the breadth of ligand binding pocket mutations against which the drugs are effective. However, the advances maybe slow as compared to the frequency of cancers with compound resistance mutations are appearing, suggesting the need to develop multiple ALK inhibitors to target different compound mutations.Another research area that promises to provide further gains is the use of drug combinations, with an ALK inhibitor combined with a drug targeting a "second driver" to overcome resistance. In this review, the range of secondary targets for ALK+ lung cancer and the potential for their clinical success are reviewed.
Collapse
Affiliation(s)
- Shrestha Nensi
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John Ashton
- Department of Pharmacology & Toxicology, Otago School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
16
|
Shao M, Shi R, Gao ZX, Gao SS, Li JF, Li H, Cui SZ, Hu WM, Chen TY, Wu GR, Zhang J, Xu J, Sy MS, Li C. Crizotinib and Doxorubicin Cooperatively Reduces Drug Resistance by Mitigating MDR1 to Increase Hepatocellular Carcinoma Cells Death. Front Oncol 2021; 11:650052. [PMID: 34094940 PMCID: PMC8170002 DOI: 10.3389/fonc.2021.650052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/16/2021] [Indexed: 11/24/2022] Open
Abstract
As the sixth most lethal cancers worldwide, hepatocellular carcinoma (HCC) has been treated with doxorubicin (Dox) for decades. However, chemotherapy resistance, especially for Dox is an even more prominent problem due to its high cardiotoxicity. To find a regimen to reduce Dox resistance, and identify the mechanisms behind it, we tried to identify combination of drugs that can overcome drug resistance by screening tyrosine kinase inhibitor(s) with Dox with various HCC cell lines in vitro and in vivo. We report here that combination of Crizo and Dox has a synergistic effect on inducing HCC cell death. Accordingly, Crizo plus Dox increases Dox accumulation in nucleus 3-16 times compared to Dox only; HCC cell death enhanced at least 50% in vitro and tumor weights reduced ranging from 35 to 65%. Combining these two drugs reduces multiple drug resistance 1 (MDR1) protein as a result of activation of protein kinase RNA-like endoplasmic reticulum kinase (PERK), which phosphorylates eIF2α, leading to protein translational repression. Additionally, PERK stimulation activates C-Jun terminal kinase (JNK), resulting in accumulation of unfused autophagosome to enhance autophagic cell death via Poly-ADP-ribosyltransferase (PARP-1) cleavage. When the activity of PERK or JNK is blocked, unfused autophagosome is diminished, cleaved PARP-1 is reduced, and cell death is abated. Therefore, Crizo plus Dox sensitize HCC drug resistance by engaging PERK-p- eIF2α-MDR1, and kill HCC cells by engaging PERK-JNK- autophagic cell death pathways. These newly discovered mechanisms of Crizo plus Dox not only provide a potential treatment for HCC but also point to an approach to overcome MDR1 related drug resistance in other cancers.
Collapse
Affiliation(s)
- Ming Shao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Run Shi
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Xing Gao
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Shan-Shan Gao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jing-Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huan Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.,Abdominal Surgery, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Wei-Min Hu
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Tian-Yun Chen
- Department of Stomatology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Gui-Ru Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jie Zhang
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Jiang Xu
- Department of Stomatology, First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, China
| | - Man-Sun Sy
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Chaoyang Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Synthesis and Pharmacological In Vitro Investigations of Novel Shikonin Derivatives with a Special Focus on Cyclopropane Bearing Derivatives. Int J Mol Sci 2021; 22:ijms22052774. [PMID: 33803437 PMCID: PMC7967198 DOI: 10.3390/ijms22052774] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 11/17/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and accounts for about three quarters of all skin cancer deaths. Especially at an advanced stage, its treatment is challenging, and survival rates are very low. In previous studies, we showed that the constituents of the roots of Onosma paniculata as well as a synthetic derivative of the most active constituent showed promising results in metastatic melanoma cell lines. In the current study, we address the question whether we can generate further derivatives with optimized activity by synthesis. Therefore, we prepared 31, mainly novel shikonin derivatives and screened them in different melanoma cell lines (WM9, WM164, and MUG-Mel2 cells) using the XTT viability assay. We identified (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl 2-cyclopropyl-2-oxoacetate as a novel derivative with even higher activity. Furthermore, pharmacological investigations including the ApoToxGloTM Triplex assay, LDH assay, and cell cycle measurements revealed that this compound induced apoptosis and reduced cells in the G1 phase accompanied by an increase of cells in the G2/M phase. Moreover, it showed hardly any effects on the cell membrane integrity. However, it also exhibited cytotoxicity against non-tumorigenic cells. Nevertheless, in summary, we could show that shikonin derivatives might be promising drug leads in the treatment of melanoma.
Collapse
|
18
|
Moosavi F, Giovannetti E, Peters GJ, Firuzi O. Combination of HGF/MET-targeting agents and other therapeutic strategies in cancer. Crit Rev Oncol Hematol 2021; 160:103234. [PMID: 33497758 DOI: 10.1016/j.critrevonc.2021.103234] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
MET receptor has emerged as a druggable target across several human cancers. Agents targeting MET and its ligand hepatocyte growth factor (HGF) including small molecules such as crizotinib, tivantinib and cabozantinib or antibodies including rilotumumab and onartuzumab have proven their values in different tumors. Recently, capmatinib was approved for treatment of metastatic lung cancer with MET exon 14 skipping. In this review, we critically examine the current evidence on how HGF/MET combination therapies may take advantage of synergistic effects, overcome primary or acquired drug resistance, target tumor microenvironment, modulate drug metabolism or tackle pharmacokinetic issues. Preclinical and clinical studies on the combination of HGF/MET-targeted agents with conventional chemotherapeutics or molecularly targeted treatments (including EGFR, VEGFR, HER2, RAF/MEK, and PI3K/Akt targeting agents) and also the value of biomarkers are examined. Our deeper understanding of molecular mechanisms underlying successful pharmacological combinations is crucial to find the best personalized treatment regimens for cancer patients.
Collapse
Affiliation(s)
- Fatemeh Moosavi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, the Netherlands; Department of Biochemistry, Medical University of Gdansk, Gdansk, Poland
| | - Omidreza Firuzi
- Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
19
|
Bland AR, Shrestha N, Bower RL, Rosengren RJ, Ashton JC. The effect of metformin in EML 4-ALK+ lung cancer alone and in combination with crizotinib in cell and rodent models. Biochem Pharmacol 2020; 183:114345. [PMID: 33227290 DOI: 10.1016/j.bcp.2020.114345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 01/12/2023]
Abstract
Cell based studies have suggested that the diabetes drug metformin may combine with the anaplastic lymphoma kinase receptor (ALK) inhibitor crizotinib to increase ALK positive lung cancer cell killing and overcome crizotinib resistance. We therefore tested metformin alone and in combination with crizotinib in vivo, by employing a xenograft mouse model of ALK positive lung cancer. We found that 14 days of daily oral metformin (100 mg/kg) alone had a moderate but statistically significant effect on tumour growth suppression, but in combination with crizotinib, produced no greater tumour suppression than crizotinib (25 mg/kg) alone. We also reassessed the effect of metformin on EML4-ALK positive lung cancer (H3122) cell viability. Although metformin alone did have a moderate effect on cell viability (30% suppression) this was only at a clinically irrelevant concentration (5 mM) and there was no additive effect with cytotoxic concentrations of crizotinib. Moreover, metformin did not overcome crizotinib resistance in our resistant cells. Nevertheless, we were able to show that metformin induces a G1-cell cycle arrest and apoptosis alone and in combination with crizotinib. Also, consistent with earlier work, the addition of insulin-like growth factor-1 (IGF-1) to EML4-ALK positive cancer cells reduced cell killing by crizotinib. We therefore hypothesised that the effect of metformin in vivo was not due to direct cytotoxicity on cancer cells, but by modulation of IGF-1 expression. We therefore measured levels of IGF-1 in plasma taken from mice treated with metformin, but found no difference between the drug treatment and control groups. We further hypothesised that the effect of metformin could be due to modulation of thrombospondin 1 (TSP-1), which metformin has been proposed to regulatein vivo, but again we found no difference between the experimental groups. Finally, we investigated the potential for liver and kidney toxicity, as well as CYP3A based interactions, from the combination of metformin with crizotinib.
Collapse
Affiliation(s)
- A R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - N Shrestha
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R L Bower
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R J Rosengren
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J C Ashton
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
20
|
Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels. Invest New Drugs 2020; 39:77-88. [PMID: 32833135 DOI: 10.1007/s10637-020-00989-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/16/2020] [Indexed: 02/07/2023]
Abstract
MET is a receptor tyrosine kinase known to drive neoplastic transformation and aggressive tumor phenotypes. Crizotinib is an oral multi-targeted tyrosine kinase inhibitor of MET, ALK, RON, and ROS1 kinases. In this study, the anticancer effects of crizotinib on breast cancer cells were investigated in vitro along with the molecular mechanisms associated with these effects. Besides, the antiproliferative effects of crizotinib in combination with chemotherapy, hormonal drugs, and targeted agents were examined. Results showed that crizotinib produced dose-dependent antiproliferative effects in BT-474 and SK-BR-3 breast cancer cells with IC50 values of 1.7 μM and 5.2 μM, respectively. Crizotinib inhibited colony formation of BT-474 cells at low micromolar concentrations (1-5 μM). Immunofluorescence and Western blotting indicated that crizotinib reduced total levels of MET and estrogen receptor (ERα) in BT-474 cells. Also, crizotinib reduced the levels of phosphorylated (active) MET and HER2 in BT-474 cells. The combined treatment of crizotinib with doxorubicin and paclitaxel resulted in synergistic growth inhibition of BT-474 cells with combination index values of 0.46 and 0.35, respectively. Synergy was also observed with the combination of crizotinib with the hormonal drugs 4-hydroxytamoxifen and fulvestrant in BT-474 cells. Alternatively, the combination of crizotinib with lapatinib produced antagonistic antiproliferative effects in both BT-474 and SK-BR-3 cells. Collectively, these findings demonstrate the anticancer effects of crizotinib in breast cancer cells and reveal ERα as a potential therapeutic target of the drug apart from its classical kinase inhibitory activity. Crizotinib could be an appealing option in combination with chemotherapy or hormonal drugs for the management of breast cancer.
Collapse
|
21
|
Zahra R, Furqan M, Ullah R, Mithani A, Saleem RSZ, Faisal A. A cell-based high-throughput screen identifies inhibitors that overcome P-glycoprotein (Pgp)-mediated multidrug resistance. PLoS One 2020; 15:e0233993. [PMID: 32484843 PMCID: PMC7266297 DOI: 10.1371/journal.pone.0233993] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 05/15/2020] [Indexed: 12/26/2022] Open
Abstract
Multidrug resistance (MDR) to chemotherapeutic drugs remains one of the major impediments to the treatment of cancer. Discovery and development of drugs that can prevent and reverse the acquisition of multidrug resistance constitute a foremost challenge in cancer therapeutics. In this work, we screened a library of 1,127 compounds with known targets for their ability to overcome Pgp-mediated multidrug resistance in cancer cell lines. We identified four compounds (CHIR-124, Elesclomol, Tyrphostin-9 and Brefeldin A) that inhibited the growth of two pairs of parental and Pgp-overexpressing multidrug-resistant cell lines with similar potency irrespective of their Pgp status. Mechanistically, CHIR-124 (a potent inhibitor of Chk1 kinase) inhibited Pgp activity in both multidrug-resistant cell lines (KB-V1 and A2780-Pac-Res) as determined through cell-based Pgp-efflux assays. Other three inhibitors on the contrary, were effective in Pgp-overexpressing resistant cells without increasing the cellular accumulation of a Pgp substrate, indicating that they overcome resistance by avoiding efflux through Pgp. None of these compounds modulated the expression of Pgp in resistant cell lines. PIK-75, a PI3 Kinase inhibitor, was also determined to inhibit Pgp activity, despite being equally potent in only one of the two pairs of resistant and parental cell lines. Strong binding of both CHIR-124 and PIK-75 to Pgp was predicted through docking studies and both compounds inhibited Pgp in a biochemical assay. The inhibition of Pgp causes accumulation of these compounds in the cells where they can modulate the function of their target proteins and thereby inhibit cell proliferation. In conclusion, we have identified compounds with various cellular targets that overcome multidrug resistance in Pgp-overexpressing cell lines through mechanisms that include Pgp inhibition and efflux evasion. These compounds, therefore, can avoid challenges associated with the co-administration of Pgp inhibitors with chemotherapeutic or targeted drugs such as additive toxicities and differing pharmacokinetic properties.
Collapse
Affiliation(s)
- Rida Zahra
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Muhammad Furqan
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Aziz Mithani
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Rahman Shah Zaib Saleem
- Department of Chemistry & Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, Pakistan
- * E-mail:
| |
Collapse
|
22
|
Bland AR, Shrestha N, Rosengren RJ, Ashton JC. Does Crizotinib Auto-Inhibit CYP3A in vivo? Pharmacology 2020; 105:715-718. [PMID: 32460299 DOI: 10.1159/000506996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 03/04/2020] [Indexed: 11/19/2022]
Abstract
Crizotinib is a tyrosine kinase inhibitor used to treat anaplastic lymphoma kinase-positive lung cancer. There is in vitro evidence that crizotinib may auto-inhibit cytochrome P450 3A (CYP3A) activity, with important implications for crizotinib pharmacokinetics. In order to test whether crizotinib treatment alters CYP3A activity in vivo, mice were treated with 5 and 25 mg/kg crizotinib (p.o.) daily for 14 days. Results showed that crizotinib treatment did not alter CYP3A activity as determined by erythromycin N-demethylation. In addition, CYP3A polypeptide expression as measured by Western blot was unchanged. Therefore, our results do not support CYP3A inhibition by crizotinib in vivo.
Collapse
Affiliation(s)
- Abigail R Bland
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Nensi Shrestha
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Rhonda J Rosengren
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology & Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand,
| |
Collapse
|
23
|
Kim KS, Jiang C, Kim JY, Park JH, Kim HR, Lee SH, Kim HS, Yoon S. Low-Dose Crizotinib, a Tyrosine Kinase Inhibitor, Highly and Specifically Sensitizes P-Glycoprotein-Overexpressing Chemoresistant Cancer Cells Through Induction of Late Apoptosis in vivo and in vitro. Front Oncol 2020; 10:696. [PMID: 32528877 PMCID: PMC7247847 DOI: 10.3389/fonc.2020.00696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/14/2020] [Indexed: 12/22/2022] Open
Abstract
We investigated possible conditions or drugs that could target P-glycoprotein (P-gp)-overexpressing drug-resistant KBV20C cancer cells. Specifically, we focused on identifying a single treatment with a relatively low half maximal inhibitory concentration (IC50). Our approach utilized repurposing drugs, which are already used in clinical practice. We evaluated 13 TKIs (gefitinib, imatinib, erlotinib, nilotinib, pazopanib, masatinib, sunitinib, sorafenib, regorafenib, lapatinib, vandetanib, cediranib, and crizotinib) for their sensitizing effects on P-gp-overexpressing drug-resistant KBV20C cells. We found that crizotinib had a much greater sensitization effect than the other tested drugs at relatively low doses. In a detailed quantitative analysis using both lower doses and time-duration treatments, we demonstrated that crizotinib, which increased the levels of apoptosis and G2 arrest, was the best TKI to induce sensitization in P-gp-overexpressing KBV20C cells. Upon comparing resistant KBV20C cells and sensitive KB parent cells, crizotinib was found to markedly sensitize drug-resistant KBV20C cancer cells compared with other TKIs. This suggests that crizotinib is a resistant cancer cell-sensitizing drug that induces apoptosis. In mice bearing xenografted P-gp-overexpressing KBV20C cells, we confirmed that crizotinib significantly reduced tumor growth and weight, without apparent side effects. In addition, although lapatinib and crizotinib have a high P-gp inhibitory activity, we found that co-treatment with crizotinib and vincristine (VIC) did not have much of a sensitization effect on KBV20C cells, whereas lapatinib had a high sensitization effect on VIC-treated KBV20C cells. This suggests that crizotinib is a single-treatment specific drug for resistant cancer cells. These findings provide valuable information regarding the sensitization of drug-resistant cells and indicate that low-dose crizotinib monotherapy may be used in patients with specific P-gp-overexpressing chemoresistant cancer.
Collapse
Affiliation(s)
- Kyeong Seok Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Chunxue Jiang
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Ji Young Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Jae Hyeon Park
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Hae Ri Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Su Hyun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| | - Sungpil Yoon
- School of Pharmacy, Sungkyunkwan University, Suwon-si, South Korea
| |
Collapse
|
24
|
Rociletinib (CO-1686) enhanced the efficacy of chemotherapeutic agents in ABCG2-overexpressing cancer cells in vitro and in vivo. Acta Pharm Sin B 2020; 10:799-811. [PMID: 32528828 PMCID: PMC7280144 DOI: 10.1016/j.apsb.2020.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/16/2019] [Accepted: 12/06/2019] [Indexed: 02/06/2023] Open
Abstract
Overexpression of adenosine triphosphate (ATP)-binding cassette subfamily G member 2 (ABCG2) in cancer cells is known to cause multidrug resistance (MDR), which severely limits the clinical efficacy of chemotherapy. Currently, there is no FDA-approved MDR modulator for clinical use. In this study, rociletinib (CO-1686), a mutant-selective epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), was found to significantly improve the efficacy of ABCG2 substrate chemotherapeutic agents in the transporter-overexpressing cancer cells in vitro and in MDR tumor xenografts in nude mice, without incurring additional toxicity. Mechanistic studies revealed that in ABCG2-overexpressing cancer cells, rociletinib inhibited ABCG2-mediated drug efflux and increased intracellular accumulation of ABCG2 probe substrates. Moreover, rociletinib, inhibited the ATPase activity, and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling of ABCG2. However, ABCG2 expression at mRNA and protein levels was not altered in the ABCG2-overexpressing cells after treatment with rociletinib. In addition, rociletinib did not inhibit EGFR downstream signaling and phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK). Our results collectively showed that rociletinib reversed ABCG2-mediated MDR by inhibiting ABCG2 efflux function, thus increasing the cellular accumulation of the transporter substrate anticancer drugs. The findings advocated the combination use of rociletinib and other chemotherapeutic drugs in cancer patients with ABCG2-overexpressing MDR tumors.
Collapse
Key Words
- ABC, adenosine triphosphate-binding cassette
- ABCB1, ABC transporter subfamily B member 1
- ABCG2
- ABCG2, ABC transporter subfamily G member 2
- AKT, protein kinase B
- ATP, adenosine triphosphate
- ATPase
- DDP, cisplatin
- DMEM, Dulbecco's modified Eagle's medium
- DMSO, dimethyl sulfoxide
- DOX, doxorubicin
- EGFR, epidermal growth factor receptor
- ERK, extracellular signal-regulated kinase
- FBS, fetal bovine serum
- FTC, fumitremorgin C
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- IAAP, iodoarylazidoprazosin
- IC50, half maximal (50%) inhibitory concentration
- MDR, multidrug resistance
- MTT, 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazoliumbromide
- MX, mitoxantrone
- Multidrug resistance
- PBS, phosphate buffer saline
- PTK, protein tyrosine kinases
- Rho 123, rhodamine 123
- Rociletinib
- TKIs, tyrosine kinase inhibitors
- Tyrosine kinase inhibitor
- VCR, vincristine
- VRP, verapamil
Collapse
|
25
|
Shrestha N, Bland AR, Bower RL, Rosengren RJ, Ashton JC. Inhibition of Mitogen-Activated Protein Kinase Kinase Alone and in Combination with Anaplastic Lymphoma Kinase (ALK) Inhibition Suppresses Tumor Growth in a Mouse Model of ALK-Positive Lung Cancer. J Pharmacol Exp Ther 2020; 374:134-140. [PMID: 32284325 DOI: 10.1124/jpet.120.266049] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/08/2020] [Indexed: 01/09/2023] Open
Abstract
Anaplastic lymphoma kinase (ALK)-positive non-small-cell lung cancer most commonly arises through EML4 (Echinoderm Microtuble Like 4)-ALK chromosomal fusion. We have previously demonstrated that combination of the ALK inhibitor crizotinib with the MEK inhibitor selumetinib was highly effective at reducing cell viability of ALK-positive non-small-cell lung cancer (H3122) cells. In this study, we further investigated the efficacy of crizotinib and selumetinib combination therapy in an in vivo xenograft model of ALK-positive lung cancer. Crizotinib decreased tumor volume by 52% compared with control, and the drug combination reduced tumor growth compared with crizotinib. In addition, MEK inhibition alone reduced tumor growth by 59% compared with control. Crizotinib and selumetinib alone and in combination were nontoxic at the dose of 25 mg/kg, with values for ALT (<80 U/l) and creatinine (<2 mg/dl) within the normal range. Our results support the combined use of crizotinib with selumetinib in ALK-positive lung cancer but raise the possibility that a sufficient dose of an MEK inhibitor alone may be as effective as adding an MEK inhibitor to an ALK inhibitor. SIGNIFICANCE STATEMENT: This study contains in vivo evidence supporting the use of combination MEK inhibitors in ALK+ lung cancer research, both singularly and in combination with ALK inhibitors. Contrary to previously published reports, our results suggest that it is possible to gain much of the benefit from combination treatment with an MEK inhibitor alone, at a tolerable dose.
Collapse
Affiliation(s)
- N Shrestha
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - A R Bland
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R L Bower
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - R J Rosengren
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - J C Ashton
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
26
|
Ensartinib (X-396) Effectively Modulates Pharmacokinetic Resistance Mediated by ABCB1 and ABCG2 Drug Efflux Transporters and CYP3A4 Biotransformation Enzyme. Cancers (Basel) 2020; 12:cancers12040813. [PMID: 32231067 PMCID: PMC7226045 DOI: 10.3390/cancers12040813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/21/2020] [Accepted: 03/26/2020] [Indexed: 12/26/2022] Open
Abstract
Ensartinib (X-396) is a promising tyrosine kinase inhibitor currently undergoing advanced clinical evaluation for the treatment of non-small cell lung cancer. In this work, we investigate possible interactions of this promising drug candidate with ATP-binding cassette (ABC) drug efflux transporters and cytochrome P450 biotransformation enzymes (CYPs), which play major roles in multidrug resistance (MDR) and pharmacokinetic drug-drug interactions (DDIs). Accumulation studies showed that ensartinib is a potent inhibitor of ABCB1 and ABCG2 transporters. Additionally, incubation experiments with recombinant CYPs showed that ensartinib significantly inhibits CYP3A4 and CYP2C9. Subsequent molecular docking studies confirmed these findings. Drug combination experiments demonstrated that ensartinib synergistically potentiates the antiproliferative effects of daunorubicin, mitoxantrone, and docetaxel in ABCB1, ABCG2, and CYP3A4-overexpressing cellular models, respectively. Advantageously, ensartinib’s antitumor efficiency was not compromised by the presence of MDR-associated ABC transporters, although it acted as a substrate of ABCB1 in Madin-Darby Canine Kidney II (MDCKII) monolayer transport assays. Finally, we demonstrated that ensartinib had no significant effect on the mRNA-level expression of examined transporters and enzymes in physiological and lung tumor cellular models. In conclusion, ensartinib may perpetrate clinically relevant pharmacokinetic DDIs and modulate ABCB1-, ABCG2-, and CYP3A4-mediated MDR. The in vitro findings presented here will provide a valuable foundation for future in vivo investigations.
Collapse
|
27
|
Wang F, Li D, Zheng Z, Kin Wah To K, Chen Z, Zhong M, Su X, Chen L, Fu L. Reversal of ABCB1-related multidrug resistance by ERK5-IN-1. J Exp Clin Cancer Res 2020; 39:50. [PMID: 32164732 PMCID: PMC7066765 DOI: 10.1186/s13046-020-1537-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/31/2020] [Indexed: 11/11/2022] Open
Abstract
Background Inhibition of ABC transporters is considered the most effective way to circumvent multidrug resistance (MDR). In the present study, we evaluated the MDR modulatory potential of ERK5-IN-1, a potent extracelluar signal regulated kinase 5 (ERK5) inhibitor. Methods The cytotoxicity and MDR reversal effect of ERK5-IN-1 were assessed by MTT assay. The KBv200-inoculated nude mice xenograft model was used for the in vivo study. Doxorubicin efflux and accumulation were measured by flow cytometry. The modulation of ABCB1 activity was measured by colorimetric ATPase assay and [125I]-iodoarylazidoprazosin (IAAP) photolabeling assay. Effect of ERK5-IN-1 on expression of ABCB1 and its downstream markers was measured by PCR and/or Western blot. Cell surface expression and subcellular localization of ABCB1 were tested by flow cytometry and immunofluorescence. Results Our results showed that ERK5-IN-1 significantly increased the sensitivity of vincristine, paclitaxel and doxorubicin in KBv200, MCF7/adr and HEK293/ABCB1 cells, respectively. This effect was not found in respective drug sensitive parental cell lines. Moreover, in vivo combination studies showed that ERK5-IN-1 effectively enhanced the antitumor activity of paclitaxel in KBv200 xenografts without causing addition toxicity. Mechanistically, ERK5-IN-1 increased intracellular accumulation of doxorubicin dose dependently by directly inhibiting the efflux function of ABCB1. ERK5-IN-1 stimulated the ABCB1 ATPase activity and inhibited the incorporation of [125I]-iodoarylazidoprazosin (IAAP) into ABCB1 in a concentration-dependent manner. In addition, ERK5-IN-1 treatment neither altered the expression level of ABCB1 nor blocked the phosphorylation of downstream Akt or Erk1/2. No significant reversal effect was observed on ABCG2-, ABCC1-, MRP7- and LRP-mediated drug resistance. Conclusions Collectively, these results indicated that ERK5-IN-1 efficiently reversed ABCB1-mediated MDR by competitively inhibiting the ABCB1 drug efflux function. The use of ERK5-IN-1 to restore sensitivity to chemotherapy or to prevent resistance could be a potential treatment strategy for cancer patients.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Delan Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - ZongHeng Zheng
- Department of Gastrointestinal surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510000, Guangdong, People's Republic of China
| | - Kenneth Kin Wah To
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Mengjun Zhong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaodong Su
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Likun Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
28
|
Wang J, Wang JQ, Cai CY, Cui Q, Yang Y, Wu ZX, Dong X, Zeng L, Zhao L, Yang DH, Chen ZS. Reversal Effect of ALK Inhibitor NVP-TAE684 on ABCG2-Overexpressing Cancer Cells. Front Oncol 2020; 10:228. [PMID: 32175279 PMCID: PMC7056829 DOI: 10.3389/fonc.2020.00228] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 02/10/2020] [Indexed: 12/23/2022] Open
Abstract
Failure of cancer chemotherapy is mostly due to multidrug resistance (MDR). Overcoming MDR mediated by overexpression of ATP binding cassette (ABC) transporters in cancer cells remains a big challenge. In this study, we explore whether NVP-TAE684, a novel ALK inhibitor which has the potential to inhibit the function of ABC transport, could reverse ABC transporter-mediated MDR. MTT assay was carried out to determine cell viability and reversal effect of NVP-TAE684 in parental and drug resistant cells. Drug accumulation and efflux assay was performed to examine the effect of NVP-TAE684 on the cellular accumulation and efflux of chemotherapeutic drugs. The ATPase activity of ABCG2 transporter in the presence or absence of NVP-TAE684 was conducted to determine the impact of NVP-TAE684 on ATP hydrolysis. Western blot analysis and immunofluorescence assay were used to investigate protein molecules related to MDR. In addition, the interaction between NVP-TAE684 and ABCG2 transporter was investigated via in silico analysis. MTT assay showed that NVP-TAE684 significantly decreased MDR caused byABCG2-, but not ABCC1-transporter. Drug accumulation and efflux tests indicated that the effect of NVP-TAE684 in decreasing MDR was due to the inhibition of efflux function of ABCG2 transporter. However, NVP-TAE684 did not alter the expression or change the subcellular localization of ABCG2 protein. Furthermore, ATPase activity analysis indicated that NVP-TAE684 could stimulate ABCG2 ATPase activity. Molecular in silico analysis showed that NVP-TAE684 interacts with the substrate binding sites of the ABCG2 transporter. Taken together, our study indicates that NVP-TAE684 could reduce the resistance of MDR cells to chemotherapeutic agents, which provides a promising strategy to overcome MDR.
Collapse
Affiliation(s)
- Jingqiu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Xingduo Dong
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Linguo Zhao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
29
|
Stanković T, Dinić J, Podolski-Renić A, Musso L, Burić SS, Dallavalle S, Pešić M. Dual Inhibitors as a New Challenge for Cancer Multidrug Resistance Treatment. Curr Med Chem 2019; 26:6074-6106. [PMID: 29874992 DOI: 10.2174/0929867325666180607094856] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/28/2018] [Accepted: 05/28/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Dual-targeting in cancer treatment by a single drug is an unconventional approach in relation to drug combinations. The rationale for the development of dualtargeting agents is to overcome incomplete efficacy and drug resistance frequently present when applying individual targeting agents. Consequently, -a more favorable outcome of cancer treatment is expected with dual-targeting strategies. METHODS We reviewed the literature, concentrating on the association between clinically relevant and/or novel dual inhibitors with the potential to modulate multidrug resistant phenotype of cancer cells, particularly the activity of P-glycoprotein. A balanced analysis of content was performed to emphasize the most important findings and optimize the structure of this review. RESULTS Two-hundred and forty-five papers were included in the review. The introductory part was interpreted by 9 papers. Tyrosine kinase inhibitors' role in the inhibition of Pglycoprotein and chemosensitization was illustrated by 87 papers. The contribution of naturalbased compounds in overcoming multidrug resistance was reviewed using 92 papers, while specific dual inhibitors acting against microtubule assembling and/or topoisomerases were described with 55 papers. Eleven papers gave an insight into a novel and less explored approach with hybrid drugs. Their influence on P-glycoprotein and multidrug resistance was also evaluated. CONCLUSION These findings bring into focus rational anticancer strategies with dual-targeting agents. Most evaluated synthetic and natural drugs showed a great potential in chemosensitization. Further steps in this direction are needed for the optimization of anticancer treatment.
Collapse
Affiliation(s)
- Tijana Stanković
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jelena Dinić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Ana Podolski-Renić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Loana Musso
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Sonja Stojković Burić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| | - Sabrina Dallavalle
- DeFENS, Department of Food, Environmental and Nutritional Sciences, Universita degli Studi di Milano, Milano, Italy
| | - Milica Pešić
- Department of Neurobiology, Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
30
|
Waite MMA, Martinelli AW, Preston SD, Gudgin E, Symington E, Rintoul RC, Peryt A, Coughlin P, Hayes P, Gilligan D, Besser M. A hypercoagulable state leading to venous limb gangrene associated with occult lung adenocarcinoma. Clin Case Rep 2019; 7:888-892. [PMID: 31110709 PMCID: PMC6510014 DOI: 10.1002/ccr3.2106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 01/29/2019] [Accepted: 02/17/2019] [Indexed: 11/12/2022] Open
Abstract
We report a case of lung adenocarcinoma-associated hypercoagulability leading to venous limb gangrene, managed successfully with argatroban and then dabigatran. Use of idarucizumab permitted diagnostic investigations, leading to targeted antineoplastic therapy with crizotinib, surgical resection with curative intent, and continued survival over 2 years after the index event.
Collapse
Affiliation(s)
- Matthew M. A. Waite
- Addenbrooke's HospitalUniversity of Cambridge School of Clinical MedicineCambridgeUK
| | | | - Stephen D. Preston
- Department of Thoracic OncologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Emma Gudgin
- Department of HaematologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Emily Symington
- Department of HaematologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Robert C. Rintoul
- Department of Thoracic OncologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Adam Peryt
- Department of Thoracic SurgeryPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Patrick Coughlin
- Department of Vascular and Endovascular SurgeryAddenbrooke's HospitalCambridgeUK
| | - Paul Hayes
- Department of Vascular and Endovascular SurgeryAddenbrooke's HospitalCambridgeUK
| | - David Gilligan
- Department of Thoracic OncologyPapworth Hospital NHS Foundation TrustCambridgeUK
| | - Martin Besser
- Department of HaematologyPapworth Hospital NHS Foundation TrustCambridgeUK
| |
Collapse
|
31
|
Puccini A, Marín-Ramos NI, Bergamo F, Schirripa M, Lonardi S, Lenz HJ, Loupakis F, Battaglin F. Safety and Tolerability of c-MET Inhibitors in Cancer. Drug Saf 2019; 42:211-233. [PMID: 30649748 PMCID: PMC7491978 DOI: 10.1007/s40264-018-0780-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The role of aberrant hepatocyte growth factor receptor (c-MET, also known as tyrosine-protein kinase MET)/hepatocyte growth factor (HGF) signaling in cancer progression and invasion has been extensively studied. c-MET inhibitors have shown promising pre-clinical and early phase clinical trial anti-tumor activity in several tumor types, although results of most phase III trials with these agents have been negative. To date, two small molecule c-MET inhibitors, cabozantinib and crizotinib, have been approved by regulatory authorities for the treatment of selected cancer types, but several novel c-MET inhibitors (either monoclonal antibodies or small molecule c-MET tyrosine kinase inhibitors) and treatment combinations are currently under study in different settings. Here we provide an overview of the mechanism of action and rationale of c-MET inhibition in cancer, the efficacy of approved agents, and novel promising c-MET-inhibitors and novel targeted combination strategies under development in different cancer types, with a focus on the safety profile and tolerability of these compounds.
Collapse
Affiliation(s)
- Alberto Puccini
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
- Medical Oncology Unit 1, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Nagore I Marín-Ramos
- Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Francesca Bergamo
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Marta Schirripa
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Sara Lonardi
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA
| | - Fotios Loupakis
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Francesca Battaglin
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, 1441 Eastlake Avenue, Suite 5410, Los Angeles, CA, 90033, USA.
- Medical Oncology Unit 1, Clinical and Experimental Oncology Department, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy.
| |
Collapse
|
32
|
Kretschmer N, Deutsch A, Durchschein C, Rinner B, Stallinger A, Higareda-Almaraz JC, Scheideler M, Lohberger B, Bauer R. Comparative Gene Expression Analysis in WM164 Melanoma Cells Revealed That β- β-Dimethylacrylshikonin Leads to ROS Generation, Loss of Mitochondrial Membrane Potential, and Autophagy Induction. Molecules 2018; 23:molecules23112823. [PMID: 30380804 PMCID: PMC6278572 DOI: 10.3390/molecules23112823] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Skin cancer is currently diagnosed as one in every three cancers. Melanoma, the most aggressive form of skin cancer, is responsible for 79% of skin cancer deaths and the incidence is rising faster than in any other solid tumor type. Previously, we have demonstrated that dimethylacrylshikonin (DMAS), isolated from the roots of Onosma paniculata (Boraginaceae), exhibited the lowest IC50 values against different tumor types out of several isolated shikonin derivatives. DMAS was especially cytotoxic towards melanoma cells and led to apoptosis and cell cycle arrest. In this study, we performed a comprehensive gene expression study to investigate the mechanism of action in more detail. Gene expression signature was compared to vehicle-treated WM164 control cells after 24 h of DMAS treatment; where 1192 distinct mRNAs could be identified as expressed in all replicates and 89 were at least 2-fold differentially expressed. DMAS favored catabolic processes and led in particular to p62 increase which is involved in cell growth, survival, and autophagy. More in-depth experiments revealed that DMAS led to autophagy, ROS generation, and loss of mitochondrial membrane potential in different melanoma cells. It has been reported that the induction of an autophagic cell death represents a highly effective approach in melanoma therapy.
Collapse
Affiliation(s)
- Nadine Kretschmer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4/1, 8010 Graz, Austria.
| | - Alexander Deutsch
- Department of Hematology, Internal Medicine, Medical University Graz, Auenbruggerplatz 15, 8036 Graz, Austria.
| | - Christin Durchschein
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4/1, 8010 Graz, Austria.
| | - Beate Rinner
- Department for Biomedical Research, Medical University Graz, Roseggerweg 48, 8036 Graz, Austria.
| | - Alexander Stallinger
- Department for Biomedical Research, Medical University Graz, Roseggerweg 48, 8036 Graz, Austria.
| | - Juan Carlos Higareda-Almaraz
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Marcel Scheideler
- Institute for Diabetes and Cancer (IDC), Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany.
- Joint Heidelberg-IDC Translational Diabetes Program, Heidelberg University Hospital, 69120 Heidelberg, Germany.
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Birgit Lohberger
- Department of Orthopedics and Trauma, Medical University of Graz, Auenbruggerplatz 5, 8036 Graz, Austria.
| | - Rudolf Bauer
- Institute of Pharmaceutical Sciences, Department of Pharmacognosy, University of Graz, Universitaetsplatz 4/1, 8010 Graz, Austria.
| |
Collapse
|
33
|
Synthesis of Novel Shikonin Derivatives and Pharmacological Effects of Cyclopropylacetylshikonin on Melanoma Cells. Molecules 2018; 23:molecules23112820. [PMID: 30380765 PMCID: PMC6278577 DOI: 10.3390/molecules23112820] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/19/2018] [Accepted: 10/20/2018] [Indexed: 12/25/2022] Open
Abstract
Despite much research in the last centuries, treatment of malignant melanoma is still challenging because of its mostly unnoticeable metastatic spreading and aggressive growth rate. Therefore, the discovery of novel drug leads is an important goal. In a previous study, we have isolated several shikonin derivatives from the roots of Onosma paniculata Bureau & Franchet (Boraginaceae) which evolved as promising anticancer candidates. β,β-Dimethylacrylshikonin (1) was the most cytotoxic derivative and exhibited strong tumor growth inhibitory activity, in particular, towards melanoma cells. In this study, we synthesized eighteen novel shikonin derivatives in order to obtain compounds which exhibit a higher cytotoxicity than 1. We investigated their cytotoxic potential against various melanoma cell lines and juvenile skin fibroblasts. The most active compound was (R)-1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxonaphthalen-2-yl)-4-methylpent-3-enyl cyclopropylacetate (cyclopropylacetylshikonin) (6). It revealed significant stronger tumor growth inhibitory activity towards two melanoma cell lines derived from metastatic lesions (WM164 and MUG-Mel2). Further investigations have shown that 6 induced apoptosis caspase-dependently, increased the protein levels of cleaved PARP, and led to double-stranded DNA breaks as shown by phosphorylation of H2AX. Cell membrane damage and cell cycle arrest were not observed.
Collapse
|
34
|
Clinical Pharmacokinetics of Anaplastic Lymphoma Kinase Inhibitors in Non-Small-Cell Lung Cancer. Clin Pharmacokinet 2018; 58:403-420. [DOI: 10.1007/s40262-018-0689-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Eliesen GAM, van den Broek P, van den Heuvel JJ, Bilos A, Pertijs J, van Drongelen J, Russel FGM, Greupink R. Editor's Highlight: PlacentalDisposition and Effects of Crizotinib: An Ex Vivo Study in the Isolated Dual-Side Perfused Human Cotyledon. Toxicol Sci 2018; 157:500-509. [PMID: 28369651 DOI: 10.1093/toxsci/kfx063] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) play an important role in cancer pharmacotherapy, yet there is limited data on their use during pregnancy. We studied placental disposition and placental toxicity of crizotinib, a TKI used to treat nonsmall cell lung cancer. Term placentas were perfused for 3 h with crizotinib (1 µM) using the ex vivo dual-side cotyledon perfusion technique. Interference of TKIs with trophoblast viability was studied using BeWo cells. Expression of P-glycoprotein (P-gp) and Breast Cancer Resistance Protein (BCRP) in placental tissue was assessed by immunohistochemistry and inhibition of these transporters was determined in vitro by transport studies with membrane vesicles overexpressing human P-gp or BCRP. We found that crizotinib rapidly and strongly accumulates in cotyledon perfusion experiments, reaching a concentration of 3.1 ± 0.4 µM in placental tissue. Final drug concentrations in the maternal and foetal reservoirs were 0.2 ± 0.05 and 0.08 ± 0.01 µM, respectively. Furthermore, crizotinib inhibited BeWo cell viability (IC50: 234 nM, 95% CI: 167-328 nM) 10 times more potently than other TKIs tested. In vitro transport studies revealed that crizotinib is a potent inhibitor of the transport activities of BCRP (IC50: 5.7 µM, 95% CI: 2.7-11.8 µM) and P-gp (IC50: 7.8 µM, 95% CI: 3.4-18.0 µM). In conclusion, crizotinib strongly accumulated in placental tissue at clinically relevant concentrations. IC50 values for transporter inhibition and trophoblast cell viability were similar to the tissue concentrations reached, suggesting that crizotinib can inhibit placental BCRP and P-gp function and possibly affect trophoblast viability.
Collapse
Affiliation(s)
- Gaby A M Eliesen
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Petra van den Broek
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jeroen J van den Heuvel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Albert Bilos
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Jeanne Pertijs
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Joris van Drongelen
- Department of Obstetrics and Gynecology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rick Greupink
- Department of Pharmacology and Toxicology, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| |
Collapse
|
36
|
Guo X, To KKW, Chen Z, Wang X, Zhang J, Luo M, Wang F, Yan S, Fu L. Dacomitinib potentiates the efficacy of conventional chemotherapeutic agents via inhibiting the drug efflux function of ABCG2 in vitro and in vivo. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:31. [PMID: 29458405 PMCID: PMC5819299 DOI: 10.1186/s13046-018-0690-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND ATP-binding cassette subfamily G member 2 (ABCG2), a member of the ABC transporter superfamily proteins, mediates multidrug resistance (MDR) by transporting substrate anticancer drugs out of cancer cells and decreasing their intracellular accumulation. MDR is a major hurdle to successful chemotherapy. A logical approach to overcome MDR is to inhibit the transporter. However, no safe and effective MDR inhibitor has been approved in the clinic. METHODS The MTT assay was used to evaluate cell cytotoxicity and MDR reversal effect. Drug efflux and intracellular drug accumulation were measured by flow cytometry. The H460/MX20 cell xenograft model was established to evaluate the enhancement of anticancer efficacy of topotecan by dacomitinib in vivo. To ascertain the interaction of dacomitinib with the substrate binding sites of ABCG2, the competition of dacomitinib for photolabeling of ABCG2 with [125I]- iodoarylazidoprazosin (IAAP) was performed. Vanadate-sensitive ATPase activity of ABCG2 was measured in the presence of a range of different concentrations of dacomitinib to evaluate the effect of dacomitinib on ATP hydrolysis as the energy source of the transporter. A flow cytometry-based assay and western blotting were employed to study whether dacomitininb could inhibit the expression level of ABCG2. The mRNA expression levels of ABCG2 were analyzed by real-time quantitative RT-PCR. The protein expression level of AKT, ERK and their phosphorylations were detected by Western blotting. RESULTS Here, we found that dacomitinib, an irreversible pan-ErbB tyrosine kinase inhibitor (TKI) in phase III clinical trial, could enhance the efficacy of conventional chemotherapeutic agents specifically in ABCG2-overexpressing MDR cancer cells but not in the parental sensitive cells. Dacomitinib was found to significantly increase the accumulation of ABCG2 probe substrates [doxorubicin (DOX),Rhodamine 123 (Rho 123) and Hoechst 33342] by inhibiting the transporter efflux function. Moreover, dacomitinib stimulated ABCG2 ATPase activity and competed with [125I]-IAAP photolabeling of ABCG2 in a concentration-dependent manner. However, dacomitinib did not alter ABCG2 expression at protein and mRNA levels or inhibit ErbB downstream signaling of AKT and ERK. Importantly, dacomitinib significantly enhanced the efficacy of topotecan in ABCG2-overexpressing H460/MX20 cell xenografts in nude mice without incurring additional toxicity. CONCLUSIONS These results suggest that dacomitinib reverses ABCG2-mediated MDR by inhibiting ABCG2 efflux function and increasing intracellular accumulation of anticancer agents. Our findings advocate further clinical investigation of combinations of dacomitinib and conventional chemotherapy in cancer patients with ABCG2-overexpressing MDR tumors.
Collapse
Affiliation(s)
- Xiaoran Guo
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.,Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Kenneth K W To
- School of Pharmacy, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Zhen Chen
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaokun Wang
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Jianye Zhang
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Min Luo
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Shirong Yan
- Hubei University of Medicine, Shiyan, Hubei, 442000, China.
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
37
|
Wu S, Fu L. Tyrosine kinase inhibitors enhanced the efficacy of conventional chemotherapeutic agent in multidrug resistant cancer cells. Mol Cancer 2018; 17:25. [PMID: 29455646 PMCID: PMC5817862 DOI: 10.1186/s12943-018-0775-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 02/01/2018] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance (MDR) triggered by ATP binding cassette (ABC) transporter such as ABCB1, ABCC1, ABCG2 limited successful cancer chemotherapy. Unfortunately, no commercial available MDR modulator approved by FDA was used in clinic. Tyrosine kinase inhibitors (TKIs) have been administrated to fight against cancer for decades. Almost TKI was used alone in clinic. However, drug combinations acting synergistically to kill cancer cells have become increasingly important in cancer chemotherapy as an approach for the recurrent resistant disease. Here, we summarize the effect of TKIs on enhancing the efficacy of conventional chemotherapeutic drug in ABC transporter-mediated MDR cancer cells, which encourage to further discuss and study in clinic.
Collapse
Affiliation(s)
- Shaocong Wu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Guangdong Esophageal Cancer Institute; Cancer Center, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
38
|
El-Khouly FE, van Vuurden DG, Stroink T, Hulleman E, Kaspers GJL, Hendrikse NH, Veldhuijzen van Zanten SEM. Effective Drug Delivery in Diffuse Intrinsic Pontine Glioma: A Theoretical Model to Identify Potential Candidates. Front Oncol 2017; 7:254. [PMID: 29164054 PMCID: PMC5670105 DOI: 10.3389/fonc.2017.00254] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/11/2017] [Indexed: 01/03/2023] Open
Abstract
Despite decades of clinical trials for diffuse intrinsic pontine glioma (DIPG), patient survival does not exceed 10% at two years post-diagnosis. Lack of benefit from systemic chemotherapy may be attributed to an intact bloodbrain barrier (BBB). We aim to develop a theoretical model including relevant physicochemical properties in order to review whether applied chemotherapeutics are suitable for passive diffusion through an intact BBB or whether local administration via convection-enhanced delivery (CED) may increase their therapeutic potential. Physicochemical properties (lipophilicity, molecular weight, and charge in physiological environment) of anticancer drugs historically and currently administered to DIPG patients, that affect passive diffusion over the BBB, were included in the model. Subsequently, the likelihood of BBB passage of these drugs was ascertained, as well as their potential for intratumoral administration via CED. As only non-molecularly charged, lipophilic, and relatively small sized drugs are likely to passively diffuse through the BBB, out of 51 drugs modeled, only 8 (15%)-carmustine, lomustine, erlotinib, vismodegib, lenalomide, thalidomide, vorinostat, and mebendazole-are theoretically qualified for systemic administration in DIPG. Local administration via CED might create more therapeutic options, excluding only positively charged drugs and drugs that are either prodrugs and/or only available as oral formulation. A wide variety of drugs have been administered systemically to DIPG patients. Our model shows that only few are likely to penetrate the BBB via passive diffusion, which may partly explain the lack of efficacy. Drug distribution via CED is less dependent on physicochemical properties and may increase the therapeutic options for DIPG.
Collapse
Affiliation(s)
- Fatma E El-Khouly
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands
| | - Dannis G van Vuurden
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Thom Stroink
- Department of Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Esther Hulleman
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands
| | - Gertjan J L Kaspers
- Department of Pediatric Oncology - Hematology, VU University Medical Center, Amsterdam, Netherlands.,Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - N Harry Hendrikse
- Department of Clinical Pharmacology and Pharmacy, VU University Medical Center, Amsterdam, Netherlands.,Department of Radiology and Nuclear Medicine, VU University Medical Center, Amsterdam, Netherlands
| | | |
Collapse
|
39
|
Ayoub NM, Al-Shami KM, Alqudah MA, Mhaidat NM. Crizotinib, a MET inhibitor, inhibits growth, migration, and invasion of breast cancer cells in vitro and synergizes with chemotherapeutic agents. Onco Targets Ther 2017; 10:4869-4883. [PMID: 29042798 PMCID: PMC5634371 DOI: 10.2147/ott.s148604] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
MET is a receptor tyrosine kinase known for its pleiotropic effects in tumorigenesis. Dysregulations of MET expression and/or signaling have been reported and determined to be associated with inferior outcomes in breast cancer patients rendering MET a versatile candidate for targeted therapeutic intervention. Crizotinib is a multi-targeted small-molecule kinase inhibitor for MET, ALK, and ROS1 kinases. This study evaluated the anti-proliferative, cytotoxic, anti-migratory, and anti-invasive effects of crizotinib in breast cancer cells in vitro. Cell viability was assessed by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) colorimetric assay. In vitro wound-healing assay was used to examine the effect of crizotinib on breast cancer cell migration. The expressions of Ki-67, MET, and phospho-MET receptors were characterized using immunofluorescence staining. Results showed that crizotinib has significant anti-proliferative activity on all mammary tumor cells with IC50 values of 5.16, 1.5, and 3.85 µM in MDA-MB-231, MCF-7, and SK-BR-3 cells, respectively. Crizotinib induced cytotoxic effects in all breast cancer cells examined. Combined treatment of small dose of crizotinib with paclitaxel or doxorubicin exhibited a highly synergistic inhibition of growth of MDA-MB-231 and MCF-7 cells with combination index values <1 while no significant effect was observed in SK-BR-3 cells compared with individual compounds. Treatment with crizotinib demonstrated a remarkable reduction in the expression of Ki-67 protein in all 3 tested cell lines. Crizotinib inhibited migration and invasion of MDA-MB-231 cells in a dose-dependent fashion. Crizotinib reduced MET receptor activation in MDA-MB-231 cells when treated at effective concentrations. In conclusion, crizotinib suppressed proliferation, migration, and invasion of breast cancer cells in vitro. The results of this study demonstrated that combined treatment of crizotinib with chemotherapeutic agents resulted in a synergistic growth inhibition of specific breast cancer cell lines.
Collapse
Affiliation(s)
- Nehad M Ayoub
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Kamal M Al-Shami
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammad A Alqudah
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Nizar M Mhaidat
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
40
|
Hardin C, Shum E, Singh AP, Perez-Soler R, Cheng H. Emerging treatment using tubulin inhibitors in advanced non-small cell lung cancer. Expert Opin Pharmacother 2017; 18:701-716. [DOI: 10.1080/14656566.2017.1316374] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
41
|
Vallo S, Köpp R, Michaelis M, Rothweiler F, Bartsch G, Brandt MP, Gust KM, Wezel F, Blaheta RA, Haferkamp A, Cinatl J. Resistance to nanoparticle albumin-bound paclitaxel is mediated by ABCB1 in urothelial cancer cells. Oncol Lett 2017; 13:4085-4092. [PMID: 28599410 PMCID: PMC5453046 DOI: 10.3892/ol.2017.5986] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 02/01/2017] [Indexed: 11/17/2022] Open
Abstract
Nanoparticle albumin-bound (nab)-paclitaxel appears to exhibit better response rates in patients with metastatic urothelial cancer of the bladder whom are pretreated with nab-paclitaxel compared with conventional paclitaxel. Paclitaxel may induce multidrug resistance in patients with cancer, while the mechanisms of resistance against paclitaxel are manifold. These include reduced function of pro-apoptotic proteins, mutations of tubulin and overexpression of the drug transporter adenosine 5′-triphosphate-binding cassette transporter subfamily B, member 1 (ABCB1). To evaluate the role of ABCB1 in nab-paclitaxel resistance in urothelial cancer cells, the bladder cancer cell lines T24 and TCC-SUP, as well as sub-lines with acquired resistance against gemcitabine (T24rGEMCI20 and TCC-SUPrGEMCI20) and vinblastine (T24rVBL20 and TCC-SUPrVBL20) were examined. For the functional inhibition of ABCB1, multi-tyrosine kinase inhibitors with ABCB1-inhibiting properties, including cabozantinib and crizotinib, were used. Additional functional assessment was performed with cell lines stably transduced with a lentiviral vector encoding for ABCB1, and protein expression was determined by western blotting. It was indicated that cell lines overexpressing ABCB1 exhibited similar resistance profiles to nab-paclitaxel and paclitaxel. Cabozantinib and crizotinib sensitized tumor cells to nab-paclitaxel and paclitaxel in the same dose-dependent manner in cell lines overexpressing ABCB1, without altering the downstream signaling of tyrosine kinases. These results suggest that the overexpression of ABCB1 confers resistance to nab-paclitaxel in urothelial cancer cells. Additionally, small molecules may overcome resistance to anticancer drugs that are substrates of ABCB1.
Collapse
Affiliation(s)
- Stefan Vallo
- Institute of Medical Virology, University Hospital Frankfurt, D-60596 Frankfurt am Main, Germany.,Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Raoul Köpp
- Institute of Medical Virology, University Hospital Frankfurt, D-60596 Frankfurt am Main, Germany
| | - Martin Michaelis
- Centre for Molecular Processing and School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | - Florian Rothweiler
- Institute of Medical Virology, University Hospital Frankfurt, D-60596 Frankfurt am Main, Germany
| | - Georg Bartsch
- Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Maximilian P Brandt
- Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Kilian M Gust
- Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Felix Wezel
- Department of Urology, University Hospital Ulm, D-89075 Ulm, Germany
| | - Roman A Blaheta
- Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, University Hospital Frankfurt, D-60590 Frankfurt am Main, Germany
| | - Jindrich Cinatl
- Institute of Medical Virology, University Hospital Frankfurt, D-60596 Frankfurt am Main, Germany
| |
Collapse
|
42
|
Application of single-cell technology in cancer research. Biotechnol Adv 2017; 35:443-449. [PMID: 28390874 DOI: 10.1016/j.biotechadv.2017.04.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/29/2017] [Accepted: 04/01/2017] [Indexed: 12/24/2022]
Abstract
In this review, we have outlined the application of single-cell technology in cancer research. Single-cell technology has made encouraging progress in recent years and now provides the means to detect rare cancer cells such as circulating tumor cells and cancer stem cells. We reveal how this technology has advanced the analysis of intratumor heterogeneity and tumor epigenetics, and guided individualized treatment strategies. The future prospects now are to bring single-cell technology into the clinical arena. We believe that the clinical application of single-cell technology will be beneficial in cancer diagnostics and treatment, and ultimately improve survival in cancer patients.
Collapse
|
43
|
Yang K, Chen Y, To KKW, Wang F, Li D, Chen L, Fu L. Alectinib (CH5424802) antagonizes ABCB1- and ABCG2-mediated multidrug resistance in vitro, in vivo and ex vivo. Exp Mol Med 2017; 49:e303. [PMID: 28303028 PMCID: PMC5382559 DOI: 10.1038/emm.2016.168] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 09/20/2016] [Accepted: 10/24/2016] [Indexed: 01/13/2023] Open
Abstract
Alectinib, an inhibitor of anaplastic lymphoma kinase (ALK), was approved by the Food and Drug Administration (FDA) for the treatment of patients with ALK-positive non-small cell lung cancer (NSCLC). Here we investigated the reversal effect of alectinib on multidrug resistance (MDR) induced by ATP-binding cassette (ABC) transporters, which is the primary cause of chemotherapy failure. We provide the first evidence that alectinib increases the sensitivity of ABCB1- and ABCG2-overexpressing cells to chemotherapeutic agents in vitro and in vivo. Mechanistically, alectinib increased the intracellular accumulation of ABCB1/ABCG2 substrates such as doxorubicin (DOX) and Rhodamine 123 (Rho 123) by inhibiting the efflux function of the transporters in ABCB1- or ABCG2-overexpressing cells but not in their parental sensitive cells. Furthermore, alectinib stimulated ATPase activity and competed with substrates of ABCB1 or ABCG2 and competed with [125I] iodoarylazidoprazosin (IAAP) photolabeling bound to ABCB1 or ABCG2 but neither altered the expression and localization of ABCB1 or ABCG2 nor the phosphorylation levels of AKT and ERK. Alectinib also enhanced the cytotoxicity of DOX and the intracellular accumulation of Rho 123 in ABCB1-overexpressing primary leukemia cells. These findings suggest that alectinib combined with traditional chemotherapy may be beneficial to patients with ABCB1- or ABCG2-mediated MDR.
Collapse
Affiliation(s)
- Ke Yang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Yifan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong, China
| | - Fang Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Delan Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| | - Likun Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Liwu Fu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
- Guangdong Esophageal Cancer Institute, Guangzhou, China
| |
Collapse
|
44
|
Zhang GN, Zhang YK, Wang YJ, Barbuti AM, Zhu XJ, Yu XY, Wen AW, Wurpel JND, Chen ZS. Modulating the function of ATP-binding cassette subfamily G member 2 (ABCG2) with inhibitor cabozantinib. Pharmacol Res 2017; 119:89-98. [PMID: 28131876 DOI: 10.1016/j.phrs.2017.01.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/18/2022]
Abstract
Cabozantinib (XL184) is a small molecule tyrosine kinase receptor inhibitor, which targets c-Met and VEGFR2. Cabozantinib has been approved by the Food and Drug Administration to treat advanced medullary thyroid cancer and renal cell carcinoma. In the present study, we evaluated the ability of cabozantinib to modulate the function of the ATP-binding cassette subfamily G member 2 (ABCG2) by sensitizing cells that are resistant to ABCG2 substrate antineoplastic drugs. We used a drug-selected resistant cell line H460/MX20 and three ABCG2 stable transfected cell lines ABCG2-482-R2, ABCG2-482-G2, and ABCG2-482-T7, which overexpress ABCG2. Cabozantinib, at non-toxic concentrations (3 or 5μM), sensitized the ABCG2-overexpressing cells to mitoxantrone, SN-38, and topotecan. Our results indicate that cabozantinib reverses ABCG2-mediated multidrug resistance by antagonizing the drug efflux function of the ABCG2 transporter instead of downregulating its expression. The molecular docking analysis indicates that cabozantinib binds to the drug-binding site of the ABCG2 transporter. Overall, our findings demonstrate that cabozantinib inhibits the ABCG2 transporter function and consequently enhances the effect of the antineoplastic agents that are substrates of ABCG2. Cabozantinib may be a useful agent in anticancer treatment regimens for patients who are resistant to ABCG2 substrate drugs.
Collapse
Affiliation(s)
- Guan-Nan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Yun-Kai Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Yi-Jun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Anna Maria Barbuti
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Xi-Jun Zhu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; The Affiliated High School of South China Normal University, Guangzhou, Guangdong, 510630, China
| | - Xin-Yue Yu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; Zhixin High School, Guangzhou, Guangdong, 510000, China
| | - Ai-Wen Wen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA; Guangdong Pharmaceutical University, Guangzhou, Guangdong, 510515, China
| | - John N D Wurpel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences,St. John's University, Queens, New York, 11439, USA.
| |
Collapse
|
45
|
Sato T, Ito H, Hirata A, Abe T, Mano N, Yamaguchi H. Interactions of crizotinib and gefitinib with organic anion-transporting polypeptides (OATP)1B1, OATP1B3 and OATP2B1: gefitinib shows contradictory interaction with OATP1B3. Xenobiotica 2017; 48:73-78. [PMID: 28005438 DOI: 10.1080/00498254.2016.1275880] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
1. The drug-drug interaction (DDI) mediated by organic anion-transporting polypeptide (OATP)1B1, OATP1B3 and OATP2B1 has a major impact on the hepatic clearance of drugs. The effects of tyrosine kinase inhibitors (TKIs) on OATPs have not been well studied. In the present study, we evaluated the contribution of OATPs to the hepatic uptake of crizotinib and gefitinib and the interaction of those TKIs with OATPs to estimate DDIs. 2. To clarify whether crizotinib and gefitinib were substrates for OATPs, we performed uptake studies. We examined the effects of the TKIs on uptake of typical substrates and fluvastatin via OATPs. IC50 and EC50 values of the TKIs were calculated. 3. OATP1B3- and OATP2B1-mediated crizotinib uptake and OATP2B1-mediated gefitinib uptake were observed. Gefitinib accelerated OATP1B3-mediated [3H]TCA uptake and inhibited OATP2B1-mediated [3H]E3S uptake. On the other hand, gefitinib inhibited OATP1B1- and OATP2B1-mediated fluvastatin uptake. 4. We provided basic information to estimate the DDI on OATPs caused by TKIs. The DDI on OATPs caused by gefitinib could occur in a normal clinical situation. And the uptake of crizotinib into the intrahepatocellular environment via OATPs may induce DDI and liver damage. We therefore emphasize the necessity of careful use of TKIs.
Collapse
Affiliation(s)
- Toshihiro Sato
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan
| | - Hajime Ito
- b Laboratory of Clinical Pharmaceutics & Therapeutics , Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University , Sapporo , Japan
| | - Ayaka Hirata
- c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Takaaki Abe
- d Division of Nephrology , Endocrinology, and Vascular Medicine, Graduate School of Medicine, Tohoku University , Sendai , Japan.,e Division of Medical Science , Graduate School of Biomedical Engineering, Tohoku University , Sendai , Japan , and.,f Department of Clinical Biology and Hormonal Regulation , Graduate School of Medicine, Tohoku University , Sendai , Japan
| | - Nariyasu Mano
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| | - Hiroaki Yamaguchi
- a Department of Pharmaceutical Sciences , Tohoku University Hospital , Sendai , Japan.,c Graduate School of Pharmaceutical Sciences, Tohoku University , Sendai , Japan
| |
Collapse
|
46
|
Gay C, Toulet D, Le Corre P. Pharmacokinetic drug-drug interactions of tyrosine kinase inhibitors: A focus on cytochrome P450, transporters, and acid suppression therapy. Hematol Oncol 2016; 35:259-280. [DOI: 10.1002/hon.2335] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/04/2016] [Accepted: 07/04/2016] [Indexed: 12/25/2022]
Affiliation(s)
- Caroline Gay
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Delphine Toulet
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
| | - Pascal Le Corre
- Pôle Pharmacie; Service Hospitalo-Universitaire de Pharmacie; CHU de Rennes Rennes Cedex France
- Laboratoire de Pharmacie Galénique, Biopharmacie et Pharmacie Clinique; IRSET U1085, Faculté de Pharmacie, Université de Rennes 1; Rennes Cedex France
| |
Collapse
|
47
|
Hu H, Lin WQ, Zhu Q, Yang XW, Wang HD, Kuang YK. Is there a benefit of first- or second-line crizotinib in locally advanced or metastatic anaplastic lymphoma kinase-positive non-small cell lung cancer? a meta-analysis. Oncotarget 2016; 7:81090-81098. [PMID: 27835601 PMCID: PMC5348378 DOI: 10.18632/oncotarget.13191] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 10/31/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Crizotinib show a promising efficacy in patients with anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC). However, differences in efficacy for first- and second-line crizotinib are unclear. RESULTS The pooled overall response rate and progression-free survival were 65% and 9.38 months, respectively. In the subgroup analysis, first-line crizotinib showed a higher trend of overall response rate and longer trend of progression-free survival although there was no statistical difference between first-line and second-line crizotinib (74%, 11.28 months vs. 65%, 8.12 months, respectively; fixed effects model). Moreover, overall response rate between Asians and Caucasians were similar (67% and 66%, respectively; fixed effects model). MATERIALS AND METHODS A comprehensive search of MEDLINE, EMBASE, WEB OF SCIENCE and the COCHRANE databases from their inception to February 2016 was performed to identify clinical trials in English-language journals. Pooled overall response rate, progression-free survival and differences between first- and second-line crizotinib were estimated. Moreover, overall response rate between Asians and Caucasians were also estimated. CONCLUSIONS First-line crizotinib may more effective than second-line crizotinib for patients with locally advanced or metastatic ALK-positive NSCLC.
Collapse
Affiliation(s)
- Hao Hu
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006, China
| | - Wei Qing Lin
- Department of Integrated Chinese and Western Medicine, Medical College of Nanchang University, Nanchang, 330006, China
- Department of Integrated Chinese and Western Medicine, Jiangxi Province People's Hospital, Nanchang, 330006, China
| | - Qian Zhu
- Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangdong, 510060, China
| | - Xiong Wen Yang
- Department of Thoracic Surgery, Medical College of Nanchang University, Nanchang, 330006, China
| | - Hai Dong Wang
- Department of General Surgery, Medical College of Nanchang University, Nanchang, 330006, China
| | - Yu Kang Kuang
- Department of Thoracic Surgery, Medical College of Nanchang University, Jiangxi Province Tumor Hospital, Nanchang, 330006, China
| |
Collapse
|
48
|
Yan YY, Wang F, Zhao XQ, Wang XK, Chen YF, Liu H, Xie Y, Fu LW. Degradation of P-glycoprotein by pristimerin contributes to overcoming ABCB1-mediated chemotherapeutic drug resistance in vitro. Oncol Rep 2016; 37:31-40. [PMID: 27840996 PMCID: PMC5355671 DOI: 10.3892/or.2016.5230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Accepted: 10/31/2016] [Indexed: 11/22/2022] Open
Abstract
ABCB1 (P-glycoprotein, ABCB1/MDR1) is one of the major members of the ABC transporters linked to MDR in cancer cells. In this study, we observed that pristimerin, a natural triterpenoid, potently decreased P-gp in a dose-dependent manner in both drug-resistant KBv200 and stable transfected HEK293/ABCB1 cell lines. Moreover, pristimerin also inhibited cell proliferation and induced apoptosis in both cell lines. Intriguingly, reverse transcription-PCR, real-time PCR and protein turn-over assay revealed that the decrease of P-gp was independent of mRNA level but primarily owing to its protein stability. Furthermore, immunofluorescence study with anti-P-gp antibody showed that pristimerin disturbed the subcellular distribution of P-gp with decreased location in the plasma membrane. Taken together, these data suggest that subcellular distribution of P-gp and subsequent downregulation by pristimerin contribute to overcoming ABCB1-mediated chemotherapeutic drug resistance. Our findings suggested inducing the decrease of P-gp membrane protein could be a new promising alternative therapeutic strategy in ABCB1-mediated MDR.
Collapse
Affiliation(s)
- Yan-Yan Yan
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Qin Zhao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Xiao-Kun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Yi-Fan Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| | - Hong Liu
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Yong Xie
- Institute of Respiratory and Occupational Diseases, Collaborative Innovation Center for Cancer, Shanxi Datong University, Datong, Shanxi 037009, P.R. China
| | - Li-Wu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Cancer Center, Sun Yat-Sen University, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
49
|
Effect of ceritinib (LDK378) on enhancement of chemotherapeutic agents in ABCB1 and ABCG2 overexpressing cells in vitro and in vivo. Oncotarget 2016; 6:44643-59. [PMID: 26556876 PMCID: PMC4792582 DOI: 10.18632/oncotarget.5989] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/01/2015] [Indexed: 12/02/2022] Open
Abstract
Multidrug resistance (MDR) is the leading cause of treatment failure in cancer chemotherapy. The overexpression of ATP-binding cassette (ABC) transporters, particularly ABCB1, ABCC1 and ABCG2, play a key role in mediating MDR by pumping anticancer drugs out from cancer cells. Ceritinib (LDK378) is a second-generation tyrosine kinase inhibitor of anaplastic lymphoma kinase (ALK) currently in phase III clinical trial for the treatment of non-small cell lung cancer. Here, we found that ceritinib remarkably enhanced the efficacy of chemotherapeutic drugs in ABCB1 or ABCG2 over-expressing cancer cells in vitro and in vivo. Ceritinib significantly increased the intracellular accumulation of chemotherapeutic agents such as doxorubicin (DOX) by inhibiting ABCB1 or ABCG2-mediated drug efflux in the transporters-overexpressing cells. Mechanistically, ceritinib is likely a competitive inhibitor of ABCB1 and ABCG2 because it competed with [125I]-iodoarylazidoprazosin for photo affinity labeling of the transporters. On the other hand, at the transporters-inhibiting concentrations, ceritinib did not alter the expression level of ABCB1 and ABCG2, and phosphorylation status of AKT and ERK1/2. Thus the findings advocate further clinical investigation of combination chemotherapy of ceritinib and other conventional chemotherapeutic drugs in chemo-refractory cancer patients.
Collapse
|
50
|
Integrating Domain Specific Knowledge and Network Analysis to Predict Drug Sensitivity of Cancer Cell Lines. PLoS One 2016; 11:e0162173. [PMID: 27607242 PMCID: PMC5015856 DOI: 10.1371/journal.pone.0162173] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 08/18/2016] [Indexed: 12/20/2022] Open
Abstract
One of fundamental challenges in cancer studies is that varying molecular characteristics of different tumor types may lead to resistance to certain drugs. As a result, the same drug can lead to significantly different results in different types of cancer thus emphasizing the need for individualized medicine. Individual prediction of drug response has great potential to aid in improving the clinical outcome and reduce the financial costs associated with prescribing chemotherapy drugs to which the patient's tumor might be resistant. In this paper we develop a network based classifier (NBC) method for predicting sensitivity of cell lines to anticancer drugs from transcriptome data. In the literature, this strategy has been used for predicting cancer types. Here, we extend it to estimate sensitivity of cells from different tumor types to various anticancer drugs. Furthermore, we incorporate domain specific knowledge such as the use of apoptotic gene list and clinical dose information in our method to impart biological significance to the prediction. Our experimental results suggest that our network based classifier (NBC) method outperforms existing classifiers in estimating sensitivity of cell lines for different drugs.
Collapse
|