1
|
Dakkak BE, Taneera J, El-Huneidi W, Abu-Gharbieh E, Hamoudi R, Semreen MH, Soares NC, Abu-Rish EY, Alkawareek MY, Alkilany AM, Bustanji Y. Unlocking the Therapeutic Potential of BCL-2 Associated Protein Family: Exploring BCL-2 Inhibitors in Cancer Therapy. Biomol Ther (Seoul) 2024; 32:267-280. [PMID: 38589288 PMCID: PMC11063480 DOI: 10.4062/biomolther.2023.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/05/2023] [Accepted: 12/05/2023] [Indexed: 04/10/2024] Open
Abstract
Apoptosis, programmed cell death pathway, is a vital physiological mechanism that ensures cellular homeostasis and overall cellular well-being. In the context of cancer, where evasion of apoptosis is a hallmark, the overexpression of anti-apoptotic proteins like Bcl2, Bcl-xL and Mcl-1 has been documented. Consequently, these proteins have emerged as promising targets for therapeutic interventions. The BCL-2 protein family is central to apoptosis and plays a significant importance in determining cellular fate serving as a critical determinant in this biological process. This review offers a comprehensive exploration of the BCL-2 protein family, emphasizing its dual nature. Specifically, certain members of this family promote cell survival (known as anti-apoptotic proteins), while others are involved in facilitating cell death (referred to as pro-apoptotic and BH3-only proteins). The potential of directly targeting these proteins is examined, particularly due to their involvement in conferring resistance to traditional cancer therapies. The effectiveness of such targeting strategies is also discussed, considering the tumor's propensity for anti-apoptotic pathways. Furthermore, the review highlights emerging research on combination therapies, where BCL-2 inhibitors are used synergistically with other treatments to enhance therapeutic outcomes. By understanding and manipulating the BCL-2 family and its associated pathways, we open doors to innovative and more effective cancer treatments, offering hope for resistant and aggressive cases.
Collapse
Affiliation(s)
- Bisan El Dakkak
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Jalal Taneera
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Waseem El-Huneidi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Eman Abu-Gharbieh
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Rifat Hamoudi
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- Division of Surgery and Interventional Science, University College London, London, United Kingdom
| | - Mohammad H. Semreen
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Nelson C. Soares
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon 1649-016, Portugal
| | - Eman Y. Abu-Rish
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | | | | | - Yasser Bustanji
- Research Institute of Medical and Health Sciences, University of Sharjah, Sharjah 27272, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
- School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Wen Y, Wu J, Pu Q, He X, Wang J, Feng J, Zhang Y, Si F, Wen JG, Yang J. ABT-263 exerts a protective effect on upper urinary tract damage by alleviating neurogenic bladder fibrosis. Ren Fail 2023; 45:2194440. [PMID: 37154092 PMCID: PMC10167888 DOI: 10.1080/0886022x.2023.2194440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
This study investigated the mechanism of action of ABT-263 in the treatment of neurogenic bladder fibrosis (NBF)and its protective effects against upper urinary tract damage (UUTD). Sixty 12-week-old Sprague-Dawley (SD) rats were randomly divided into sham, sham + ABT-263 (50 mg/kg), NBF, NBF + ABT-263 (25 mg/kg, oral gavage), and NBF + ABT-263 (50 mg/kg, oral gavage) groups. After cystometry, bladder and kidney tissue samples were collected for hematoxylin and eosin (HE), Masson, and Sirius red staining, and Western Blotting (WB) and qPCR detection. Primary rat bladder fibroblasts were isolated, extracted, and cultured. After co-stimulation with TGF-β1 (10 ng/mL) and ABT-263 (concentrations of 0, 0.1, 1, 10, and 100 µmol/L) for 24 h, cells were collected. Cell apoptosis was detected using CCK8, WB, immunofluorescence, and annexin/PI assays. Compared with the sham group, there was no significant difference in any physical parameters in the sham + ABT-263 (50 mg/kg) group. Compared with the NBF group, most of the markers involved in fibrosis were improved in the NBF + ABT-263 (25 mg/kg) and NBF + ABT-263 (50 mg/kg) groups, while the NBF + ABT-263 (50 mg/kg) group showed a significant improvement. When the concentration of ABT-263 was increased to 10 µmol/L, the apoptosis rate of primary bladder fibroblasts increased, and the expression of the anti-apoptotic protein BCL-xL began to decrease.ABT-263 plays an important role in relieving NBF and protecting against UUTD, which may be due to the promotion of myofibroblast apoptosis through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Yibo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Clinical Systems Biology Laboratories of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Junwei Wu
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Qingsong Pu
- Department of Urology, The First People's Hospital of Longquanyi District, Chengdu, P.R. China
| | - Xiangfei He
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Junkui Wang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jinjin Feng
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yanping Zhang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Feng Si
- Department of Urology, The First Affiliated Hospital of Xinxiang Medical College, Xinxiang, P.R. China
| | - Jian Guo Wen
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Bladder Structure and Function Reconstruction Henan Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jinghua Yang
- Clinical Systems Biology Laboratories of the First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- The Academy of Medical Science, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
3
|
Therapeutics That Can Potentially Replicate or Augment the Anti-Aging Effects of Physical Exercise. Int J Mol Sci 2022; 23:ijms23179957. [PMID: 36077358 PMCID: PMC9456478 DOI: 10.3390/ijms23179957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 12/30/2022] Open
Abstract
Globally, better health care access and social conditions ensured a significant increase in the life expectancy of the population. There is, however, a clear increase in the incidence of age-related diseases which, besides affecting the social and economic sustainability of countries and regions around the globe, leads to a decrease in the individual’s quality of life. There is an urgent need for interventions that can reverse, or at least prevent and delay, the age-associated pathological deterioration. Within this line, this narrative review aims to assess updated evidence that explores the potential therapeutic targets that can mimic or complement the recognized anti-aging effects of physical exercise. We considered pertinent to review the anti-aging effects of the following drugs and supplements: Rapamycin and Rapamycin analogues (Rapalogs); Metformin; 2-deoxy-D-glucose; Somatostatin analogues; Pegvisomant; Trametinib; Spermidine; Fisetin; Quercetin; Navitoclax; TA-65; Resveratrol; Melatonin; Curcumin; Rhodiola rosea and Caffeine. The current scientific evidence on the anti-aging effect of these drugs and supplements is still scarce and no recommendation of their generalized use can be made at this stage. Further studies are warranted to determine which therapies display a geroprotective effect and are capable of emulating the benefits of physical exercise.
Collapse
|
4
|
Matsunaga T, Iske J, Schroeter A, Azuma H, Zhou H, Tullius SG. The potential of Senolytics in transplantation. Mech Ageing Dev 2021; 200:111582. [PMID: 34606875 PMCID: PMC10655132 DOI: 10.1016/j.mad.2021.111582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022]
Abstract
Older organs provide a substantial unrealized potential with the capacity to close the gap between demand and supply in organ transplantation. The potential of senolytics in improving age-related conditions has been shown in various experimental studies and early clinical trials. Those encouraging data may also be of relevance for transplantation. As age-differences between donor and recipients are not uncommon, aging may be accelerated in recipients when transplanting older organs; young organs may, at least in theory, have the potential to 'rejuvenate' old recipients. Here, we review the relevance of senescent cells and the effects of senolytics on organ quality, alloimmune responses and outcomes in solid organ transplantation. This article is part of the Special Issue - Senolytics - Edited by Joao Passos and Diana Jurk.
Collapse
Affiliation(s)
- Tomohisa Matsunaga
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Jasper Iske
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Institute of Transplant Immunology, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Andreas Schroeter
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Lower Saxony, Germany
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Hao Zhou
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stefan G Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Programmed cell death, redox imbalance, and cancer therapeutics. Apoptosis 2021; 26:385-414. [PMID: 34236569 DOI: 10.1007/s10495-021-01682-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 02/06/2023]
Abstract
Cancer cells are disordered by nature and thus featured by higher internal redox level than healthy cells. Redox imbalance could trigger programmed cell death if exceeded a certain threshold, rendering therapeutic strategies relying on redox control a possible cancer management solution. Yet, various programmed cell death events have been consecutively discovered, complicating our understandings on their associations with redox imbalance and clinical implications especially therapeutic design. Thus, it is imperative to understand differences and similarities among programmed cell death events regarding their associations with redox imbalance for improved control over these events in malignant cells as well as appropriate design on therapeutic approaches relying on redox control. This review addresses these issues and concludes by bringing affront cold atmospheric plasma as an emerging redox controller with translational potential in clinics.
Collapse
|
6
|
Marofi F, Rahman HS, Achmad MH, Sergeevna KN, Suksatan W, Abdelbasset WK, Mikhailova MV, Shomali N, Yazdanifar M, Hassanzadeh A, Ahmadi M, Motavalli R, Pathak Y, Izadi S, Jarahian M. A Deep Insight Into CAR-T Cell Therapy in Non-Hodgkin Lymphoma: Application, Opportunities, and Future Directions. Front Immunol 2021; 12:681984. [PMID: 34248965 PMCID: PMC8261235 DOI: 10.3389/fimmu.2021.681984] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/12/2021] [Indexed: 12/19/2022] Open
Abstract
Non-Hodgkin's lymphoma (NHL) is a cancer that starts in the lymphatic system. In NHL, the important part of the immune system, a type of white blood cells called lymphocytes become cancerous. NHL subtypes include marginal zone lymphoma, small lymphocytic lymphoma, follicular lymphoma (FL), and lymphoplasmacytic lymphoma. The disease can emerge in either aggressive or indolent form. 5-year survival duration after diagnosis is poor among patients with aggressive/relapsing form of NHL. Therefore, it is necessary to understand the molecular mechanisms of pathogenesis involved in NHL establishment and progression. In the next step, we can develop innovative therapies for NHL based on our knowledge in signaling pathways, surface antigens, and tumor milieu of NHL. In the recent few decades, several treatment solutions of NHL mainly based on targeted/directed therapies have been evaluated. These approaches include B-cell receptor (BCR) signaling inhibitors, immunomodulatory agents, monoclonal antibodies (mAbs), epigenetic modulators, Bcl-2 inhibitors, checkpoint inhibitors, and T-cell therapy. In recent years, methods based on T cell immunotherapy have been considered as a novel promising anti-cancer strategy in the treatment of various types of cancers, and particularly in blood cancers. These methods could significantly increase the capacity of the immune system to induce durable anti-cancer responses in patients with chemotherapy-resistant lymphoma. One of the promising therapy methods involved in the triumph of immunotherapy is the chimeric antigen receptor (CAR) T cells with dramatically improved killing activity against tumor cells. The CAR-T cell-based anti-cancer therapy targeting a pan-B-cell marker, CD19 is recently approved by the US Food and Drug Administration (FDA) for the treatment of chemotherapy-resistant B-cell NHL. In this review, we will discuss the structure, molecular mechanisms, results of clinical trials, and the toxicity of CAR-T cell-based therapies. Also, we will criticize the clinical aspects, the treatment considerations, and the challenges and possible drawbacks of the application of CAR-T cells in the treatment of NHL.
Collapse
Affiliation(s)
- Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Heshu Sulaiman Rahman
- College of Medicine, University of Sulaimani, Sulaimaniyah, Iraq
- Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Iraq
| | - Muhammad Harun Achmad
- Department of Pediatric Dentistry, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Klunko Nataliya Sergeevna
- Department of Economics and Industrial Engineering, St. Petersburg University of Management and Economics, St. Petersburg, Russia
- Department of Postgraduate and Doctoral Studies, Russian New University, Moscow, Russia
| | - Wanich Suksatan
- Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al Kharj, Saudi Arabia
- Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | | | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Ali Hassanzadeh
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roza Motavalli
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yashwant Pathak
- Taneja College of Pharmacy, University of South Florida, Tampa, FL, United States
- Department of Pharmaceutical Science, Faculty of Pharmacy, Airlangga University, Subaraya, Indonesia
| | - Sepideh Izadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mostafa Jarahian
- German Cancer Research Center, Toxicology and Chemotherapy Unit (G401), Heidelberg, Germany
| |
Collapse
|
7
|
de Vos S, Leonard JP, Friedberg JW, Zain J, Dunleavy K, Humerickhouse R, Hayslip J, Pesko J, Wilson WH. Safety and efficacy of navitoclax, a BCL-2 and BCL-X L inhibitor, in patients with relapsed or refractory lymphoid malignancies: results from a phase 2a study. Leuk Lymphoma 2021; 62:810-818. [PMID: 33236943 PMCID: PMC9257998 DOI: 10.1080/10428194.2020.1845332] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 01/08/2023]
Abstract
Navitoclax, a novel BCL-2 and BCL-XL inhibitor, demonstrated promising antitumor activity in the dose-escalation part of a phase 1/2a study (NCT00406809) in lymphoid tumors. Herein, we report the continued safety and efficacy results of the phase 2a portion. Twenty-six adult patients with relapsed/refractory follicular lymphoma (n = 11, Arm A) and other relapsed/refractory lymphoid malignancies (n = 15, Arm B) were enrolled. Navitoclax administration schedule consisted of a 150-mg 7-day lead-in dose followed by 250-mg daily dosing with the option to further increase to 325 mg after 14 days if the 250-mg dose was tolerated. All patients experienced at least 1 treatment-related adverse event (TRAE). Seventeen (65.4%) patients reported grade 3/4 TRAEs; thrombocytopenia (38.5%) and neutropenia (30.8%) were the most common. Two patients reported serious AEs; none were fatal (no deaths occurred within 30 days of last dose of study drug). The objective response rate (complete and partial) was 23.1% (6/26; Arm A: 9.1%, Arm B: 33.3%). Median progression-free survival and time to progression were identical: 4.9 months (95% CI: 3.0, 8.2); median overall survival: 24.8 months (95% CI could not be computed). Navitoclax monotherapy has an acceptable safety profile and meaningful clinical activity in a minority of patients with relapsed/refractory lymphoid malignancies.
Collapse
Affiliation(s)
- Sven de Vos
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - John P. Leonard
- Weill Cornell Medicine and New York-Presbyterian Hospital, New York, NY, USA
| | | | - Jasmine Zain
- City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | | | | | | | | | | |
Collapse
|
8
|
Ju X, Yang Z, Zhang H, Wang Q. Role of pyroptosis in cancer cells and clinical applications. Biochimie 2021; 185:78-86. [PMID: 33746064 DOI: 10.1016/j.biochi.2021.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chemotherapy drugs usually inhibit tumor cell growth through the apoptosis pathway. However, tumor cells become resistant to chemotherapy drugs by evading apoptosis. It is necessary to find new ways to inhibit tumor growth through other types of death. Pyroptosis is a recently identified inflammatory cell death that plays an important role in a variety of diseases, including cancer. In this review, we will systematically review recent progress in the pyroptosis signaling pathway, the role of inflammasomes in cancer in the context of pyroptosis, the role of gasdermin proteins in cancer and the role of pyroptosis in tumor immunity. We will also discuss the application of the pyroptosis pathway in clinical studies. Finally, we hope to provide new strategies for pyroptosis in the clinic.
Collapse
Affiliation(s)
- Xiaoli Ju
- School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Zhilong Yang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Heng Zhang
- Department of General Surgery, Nanjing Lishui District People's Hospital, Zhongda Hospital Lishui Branch, Southeast University, Nanjing, China.
| | - Qiang Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, PR China.
| |
Collapse
|
9
|
Wang L, Li LR, Young KH. New agents and regimens for diffuse large B cell lymphoma. J Hematol Oncol 2020; 13:175. [PMID: 33317571 PMCID: PMC7734862 DOI: 10.1186/s13045-020-01011-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
As a widely recognized standard regimen, R-CHOP (rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone) is able to cure two-thirds patients with diffuse large B cell lymphoma (DLBCL), and the remaining patients suffer from refractory or relapsed disease due to resistance to R-CHOP and fare poorly. Unsatisfied outcomes for those relapsed/refractory patients prompted efforts to discover new treatment approaches for DLBCL, including chimeric antigen receptor T cells, bispecific T cell engagers, immunomodulatory drugs, immune checkpoint inhibitors, monoclonal antibodies, antibody-drug conjugates, molecular pathway inhibitors, and epigenetic-modifying drugs. Herein, up-to-date data about the most promising treatment approaches for DLBCL are recapitulated, and novel genetic classification systems are introduced to guide individualized treatment for DLBCL.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Drug Development
- Epigenesis, Genetic/drug effects
- Humans
- Immune Checkpoint Inhibitors/pharmacology
- Immune Checkpoint Inhibitors/therapeutic use
- Immunoconjugates/pharmacology
- Immunoconjugates/therapeutic use
- Immunologic Factors/pharmacology
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/therapy
- Signal Transduction
Collapse
Affiliation(s)
- Liang Wang
- Department of Hematology, Beijing TongRen Hospital, Capital Medical University, Beijing, 100730, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing TongRen Hospital, Beijing, 100730, China.
| | - Lin-Rong Li
- Peking Union Medical College Hospital, Beijing, 100560, China
| | - Ken H Young
- Division of Hematopathology, Department of Pathology, Duke University Medical Center and Cancer Institute, Durham, NC, 27710, USA.
| |
Collapse
|
10
|
Mohamad Anuar NN, Nor Hisam NS, Liew SL, Ugusman A. Clinical Review: Navitoclax as a Pro-Apoptotic and Anti-Fibrotic Agent. Front Pharmacol 2020; 11:564108. [PMID: 33381025 PMCID: PMC7768911 DOI: 10.3389/fphar.2020.564108] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
B-cell lymphoma 2 (BCL-2) family proteins primarily work as a programmed cell death regulator, whereby multiple interactions between them determine cell survival. This explains the two major classes of BCL-2 proteins which are anti-apoptotic and pro-apoptotic proteins. The anti-apoptotic proteins are attractive targets for BCL-2 family inhibitors, which result in the augmentation of the intrinsic apoptotic pathway. BCL-2 family inhibitors have been studied extensively for novel targeted therapies in various cancer types, fibrotic diseases, aging-related as well as autoimmune diseases. Navitoclax is one of them and it has been discovered to have a high affinity toward BCL-2 anti-apoptotic proteins, including BCL-2, BCL-W and B-cell lymphoma-extra-large. Navitoclax has been demonstrated as a single agent or in combination with other drugs to successfully ameliorate tumor progression and fibrosis development. To date, navitoclax has entered phase I and phase II clinical studies. Navitoclax alone potently treats small cell lung cancer and acute lymphocytic leukemia, whilst in combination therapy for solid tumors, it enhances the therapeutic effect of other chemotherapeutic agents. A low platelet count has always associated with single navitoclax treatments, though this effect is tolerable. Moreover, the efficacy of navitoclax is determined by the expression of several BCL-2 family members. Here, we elucidate the complex mechanisms of navitoclax as a pro-apoptotic agent, and review the early and current clinical studies of navitoclax alone as well as with other drugs. Additionally, some suggestions on the development of navitoclax clinical studies are presented in the future prospects section.
Collapse
Affiliation(s)
- Nur Najmi Mohamad Anuar
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Syahidah Nor Hisam
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sze Ling Liew
- Programme of Biomedical Science, Centre for Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Cheras, Malaysia
| |
Collapse
|
11
|
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S, Kirkland JL. Senescence and Cancer: A Review of Clinical Implications of Senescence and Senotherapies. Cancers (Basel) 2020; 12:cancers12082134. [PMID: 32752135 PMCID: PMC7464619 DOI: 10.3390/cancers12082134] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a key component of human aging that can be induced by a range of stimuli, including DNA damage, cellular stress, telomere shortening, and the activation of oncogenes. Senescence is generally regarded as a tumour suppressive process, both by preventing cancer cell proliferation and suppressing malignant progression from pre-malignant to malignant disease. It may also be a key effector mechanism of many types of anticancer therapies, such as chemotherapy, radiotherapy, and endocrine therapies, both directly and via bioactive molecules released by senescent cells that may stimulate an immune response. However, senescence may contribute to reduced patient resilience to cancer therapies and may provide a pathway for disease recurrence after cancer therapy. A new group of drugs, senotherapies, (drugs which interact with senescent cells to interfere with their pro-aging impacts by either selectively destroying senescent cells (senolytic drugs) or inhibiting their function (senostatic drugs)) are under active investigation to determine whether they can enhance the efficacy of cancer therapies and improve resilience to cancer treatments. Senolytic drugs include quercetin, navitoclax, and fisetin and preclinical and early phase clinical data are emerging of their potential role in cancer treatments, although none are yet in routine use clinically. This article provides a review of these issues.
Collapse
Affiliation(s)
- Lynda Wyld
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
- Correspondence:
| | - Ilaria Bellantuono
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jenna Morgan
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Olivia Turner
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Fiona Foss
- Department of Pathology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield S10 2JF, UK;
| | - Jayan George
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - Sarah Danson
- The Healthy Lifespan Institute, Department of Oncology and Metabolism, The Medical School, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK; (I.B.); (J.M.); (O.T.); (J.G.); (S.D.)
| | - James L. Kirkland
- Departments of Internal Medicine, Geriatric Medicine and Gerontology, The Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
12
|
Cao DS, Jiang SL, Guan YD, Chen XS, Zhang LX, Zhang Y, Chen AF, Yang JM, Cheng Y. A multi-scale systems pharmacology approach uncovers the anti-cancer molecular mechanism of Ixabepilone. Eur J Med Chem 2020; 199:112421. [PMID: 32428794 DOI: 10.1016/j.ejmech.2020.112421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022]
Abstract
It has been realized that FDA approved drugs may have more molecular targets than is commonly thought. Thus, to find the exact drug-target interactions (DTIs) is of great significance for exploring the new molecular mechanism of drugs. Here, we developed a multi-scale system pharmacology (MSSP) method for the large-scale prediction of DTIs. We used MSSP to integrate drug-related and target-related data from multiple levels, the network structural data formed by known drug-target relationships for predicting likely unknown DTIs. Prediction results revealed that Ixabepilone, an epothilone B analog for treating breast cancer patients, may target Bcl-2, an oncogene that contributes to tumor progression and therapy resistance by inhibiting apoptosis. Furthermore, we demonstrated that Ixabepilone could bind with Bcl-2 and decrease its protein expression in breast cancer cells. The down-regulation of Bcl-2 by Ixabepilone is resulted from promoting its degradation by affecting p-Bcl-2. We further found that Ixabepilone could induce autophagy by releasing Beclin1 from Beclin1/Bcl-2 complex. Inhibition of autophagy by knockdown of Beclin1 or pharmacological inhibitor augmented apoptosis, thus enhancing the antitumor efficacy of Ixabepilone against breast cancer cells in vitro and in vivo. In addition, Ixabepilone also decreases Bcl-2 protein expression and induces cytoprotective autophagy in human hepatic carcinoma and glioma cells. In conclusion, this study not only provides a feasible and alternative way exploring new molecular mechanisms of drugs by combing computation DTI prediction, but also reveals an effective strategy to reinforce the antitumor efficacy of Ixabepilone.
Collapse
Affiliation(s)
- Dong-Sheng Cao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China.
| | - Shi-Long Jiang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yi-Di Guan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xi-Sha Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Liu-Xia Zhang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China
| | - Yi Zhang
- Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China, 215000, China
| | - Alex F Chen
- Center for Vascular Disease and Translational Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, PR China
| | - Jin-Ming Yang
- Department of Cancer Biology and Toxicology, College of Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Yan Cheng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410008, China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
13
|
ABT-263 induces G 1/G 0-phase arrest, apoptosis and autophagy in human esophageal cancer cells in vitro. Acta Pharmacol Sin 2017; 38:1632-1641. [PMID: 28713162 DOI: 10.1038/aps.2017.78] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/21/2017] [Indexed: 12/11/2022] Open
Abstract
Both the anti- and pro-apoptotic members of the Bcl-2 family are regulated by a conserved Bcl-2 homology (BH3) domain. ABT-263 (Navitoclax), a novel BH3 mimetic and orally bioavailable Bcl-2 family inhibitor with high affinity for Bcl-xL, Bcl-2 and Bcl-w has entered clinical trials for cancer treatment. But the anticancer mechanisms of ABT-263 have not been fully elucidated. In this study we investigated the effects of ABT-263 on human esophageal cancer cells in vitro and to explore its anticancer mechanisms. Treatment with ABT-263 dose-dependently suppressed the viability of 3 human esophageal cancer cells with IC50 values of 10.7±1.4, 7.1±1.5 and 8.2±1.6 μmol/L, in EC109, HKESC-2 and CaES-17 cells, respectively. ABT-263 (5-20 μmol/L) dose-dependently induced G1/G0-phase arrest in the 3 cancer cell lines and induced apoptosis evidenced by increased the Annexin V-positive cell population and elevated levels of cleaved caspase 3, cleaved caspase 9 and PARP. We further demonstrated that ABT-263 treatment markedly increased the expression of p21Waf1/Cip1 and decreased the expression of cyclin D1 and phospho-Rb (retinoblastoma tumor suppressor protein) (Ser780) proteins that contributed to the G1/G0-phase arrest. Knockdown of p21Waf1/Cip1 attenuated ABT-263-induced G1/G0-phase arrest. Moreover, ABT-263 treatment enhanced pro-survival autophagy, shown as the increased LC3-II levels and decreased p62 levels, which counteracted its anticancer activity. Our results suggest that ABT-263 exerts cytostatic and cytotoxic effects on human esophageal cancer cells in vitro and enhances pro-survival autophagy, which counteracts its anticancer activity.
Collapse
|
14
|
Liao SH, Chen YK, Yu SC, Wu MS, Wang HP, Tseng PH. An unusual case of primary hepatic lymphoma with dramatic but unsustained response to bendamustine plus rituximab and literature review. SAGE Open Med Case Rep 2017; 5:2050313X17709190. [PMID: 28596829 PMCID: PMC5448865 DOI: 10.1177/2050313x17709190] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 04/17/2017] [Indexed: 12/18/2022] Open
Abstract
Objectives: Primary hepatic lymphoma is an uncommon cause of hepatic space-occupying lesions. Methods: We describe the case of a 73-year-old man with primary hepatic lymphoma, who presented with a low-grade fever and lower limb weakness which had progressed in the past 2 months. Results: Abdominal ultrasound and computed tomography showed multiple small hepatic tumors. Echo-guided biopsy of the hepatic tumor demonstrated primary hepatic diffuse large B cell lymphoma. Moreover, bone marrow was uninvolved, but the bone marrow smear disclosed hemophagocytosis, which is uncommon in diffuse large B cell lymphoma. Chemotherapy with bendamustine and rituximab treatment was initiated with a dramatic response: hepatic tumors markedly shrank in size shown by follow-up computed tomography and the patient returned to his normal life. Nevertheless, the response was sustained for only 8 months. Finally, the disease resisted further chemotherapy and this patient died of a severe Klebsiella pneumoniae infection. Conclusion: Chemotherapy with bendamustine and rituximab has shown a dramatic, but not durable, response in the present case with old age and multiple comorbidities.
Collapse
Affiliation(s)
- Sih-Han Liao
- National Taiwan University Cancer Center, Taipei, Taiwan
| | - Yin-Kai Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shan-Chi Yu
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hsiu-Po Wang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ping-Huei Tseng
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
15
|
Inoue M, Honma Y, Urano T, Suzumiya J. Japanese apricot extract (MK615) potentiates bendamustine-induced apoptosis via impairment of the DNA damage response in lymphoma cells. Oncol Lett 2017; 14:792-800. [PMID: 28693235 PMCID: PMC5494765 DOI: 10.3892/ol.2017.6219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 02/27/2017] [Indexed: 11/06/2022] Open
Abstract
Bendamustine, a hybrid molecule of a purine analog and alkylator, induces cell death by the activation of apoptosis and the DNA damage response. The agent MK615 is produced from Japanese apricot and contains a number of cyclic triterpenes that exhibit antitumor activities. In the present study, the combined effects of bendamustine and MK615 on lymphoma cells were investigated. The combined compounds synergistically induced apoptosis in all lymphoid cell lines examined. MK615 inhibited the bendamustine-induced phosphorylation of checkpoint kinase 1 and 2. As ataxia telangiectasia mutated (ATM) and ataxia telangiectasia- and Rad3-related (ATR) kinases are key mediators of the DNA damage response, the effects of the combination of bendamustine and ATM/ATR inhibitors (KU-60019 and VE-821) on lymphoma cells were investigated. KU-60019 and/or VE-821 potentiated bendamustine activity in all cell lines tested, but did not affect MK615 activity, suggesting that these inhibitors have the same underlying mechanism of action as that of MK615. The results of the present study suggest that it may be feasible to use ATM/ATR inhibitors in combination with bendamustine for treating malignant lymphoma.
Collapse
Affiliation(s)
- Masaya Inoue
- Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Yoshio Honma
- Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Takeshi Urano
- Department of Biochemistry, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| | - Junji Suzumiya
- Department of Oncology/Hematology, Faculty of Medicine, Shimane University, Izumo, Shimane 693-8501, Japan
| |
Collapse
|
16
|
Huber H, Edenhofer S, Estenfelder S, Stilgenbauer S. Profile of venetoclax and its potential in the context of treatment of relapsed or refractory chronic lymphocytic leukemia. Onco Targets Ther 2017; 10:645-656. [PMID: 28223822 PMCID: PMC5308588 DOI: 10.2147/ott.s102646] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last few years, dramatic changes have occurred in the treatment of chronic lymphocytic leukemia (CLL). The current standard for young and fit patients with CLL remains chemoimmunotherapy, namely the fludarabine, cyclophosphamide, and rituximab (FCR) regimen. However, novel oral therapies are presently being introduced and represent a considerable breakthrough concerning effectiveness and safety profile. In particular, the very high-risk group of CLL patients, defined by the genetic aberration del(17p) and/or TP53 mutation, benefit from the new agents. These genetic abnormalities are the most relevant negative prognostic markers in the context of chemoimmunotherapy. New targeted therapies allow different approaches to improve outcomes.
Collapse
Affiliation(s)
- Henriette Huber
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Simone Edenhofer
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | - Sven Estenfelder
- Department of Internal Medicine III, Ulm University, Ulm, Germany
| | | |
Collapse
|
17
|
Synergistic cooperation between ABT-263 and MEK1/2 inhibitor: effect on apoptosis and proliferation of acute myeloid leukemia cells. Oncotarget 2016; 7:845-59. [PMID: 26625317 PMCID: PMC4808037 DOI: 10.18632/oncotarget.6417] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
In spite of intensive research to improve treatment of acute myeloid leukemia (AML) more than half of all patients continue to develop a refractory disease. Therefore there is need to improve AML treatment. The overexpression of the BCL-2 family anti-apoptotic members, like BCL-2 or BCL-xL has been largely reported in lymphoid tumors but also in AML and other tumors. To counteract the anti-apoptotic effect of BCL-2, BH3 mimetics have been developed to target cancer cells. An increase in activity of ERK1/2 mitogen activated protein (MAP) kinase has also been reported in AML and might be targeted by MEK1/2 inhibitors. Hence, in the current work, we investigated whether the association of a BH3 mimetic such ABT-263 and the MEK1/2 inhibitor pimasertib (MEKI), was efficient to target AML cells. A synergistic increasing of apoptosis was observed in AML cell lines and in primary cells without affecting normal bone marrow cells. Such cooperation was confirmed on tumor growth in a mouse xenograft model of AML. In addition we demonstrated that MEKI sensitized the cells to apoptosis through its ability to promote a G1 cell cycle arrest. So, this combination of a MAP Kinase pathway inhibitor and a BH3 mimetic could be a promising strategy to improve the treatment of AML.
Collapse
|
18
|
Chen Q, Song S, Wei S, Liu B, Honjo S, Scott A, Jin J, Ma L, Zhu H, Skinner HD, Johnson RL, Ajani JA. ABT-263 induces apoptosis and synergizes with chemotherapy by targeting stemness pathways in esophageal cancer. Oncotarget 2016; 6:25883-96. [PMID: 26317542 PMCID: PMC4694873 DOI: 10.18632/oncotarget.4540] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 07/06/2015] [Indexed: 01/22/2023] Open
Abstract
Activation of cancer stem cell signaling is central to acquired resistance to therapy in esophageal cancer (EC). ABT-263, a potent Bcl-2 family inhibitor, is active against many tumor types. However, effect of ABT-263 on EC cells and their resistant counterparts are unknown. Here we report that ABT-263 inhibited cell proliferation and induced apoptosis in human EC cells and their chemo-resistant counterparts. The combination of ABT-263 with 5-FU had synergistic lethal effects and amplified apoptosis that does not depend fully on its inhibition of BCL-2 family proteins in EC cells. To further explore the novel mechanisms of ABT-263, proteomic array (RPPAs) were performed and gene set enriched analysis demonstrated that ABT-263 suppresses the expression of many oncogenes including genes that govern stemness pathways. Immunoblotting and immunofluorescence further confirmed reduction in protein expression and transcription in Wnt/β-catenin and YAP/SOX9 axes. Furthermore, ABT263 strongly suppresses cancer stem cell properties in EC cells and the combination of ABT-263 and 5-FU significantly reduced tumor growth in vivo and suppresses the expression of stemness genes. Thus, our findings demonstrated a novel mechanism of ABT-263 antitumor effect in EC and indicating that combination of ABT-263 with cytotoxic drugs is worthy of pursuit in patients with EC.
Collapse
Affiliation(s)
- Qiongrong Chen
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Hubei Cancer Hospital, Wuhan 430079, China
| | - Shumei Song
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | | - Bin Liu
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Soichiro Honjo
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ailing Scott
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jiankang Jin
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Lang Ma
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Haitao Zhu
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Heath D Skinner
- Departments of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Randy L Johnson
- Departments of Biochemistry & Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Jaffer A Ajani
- Departments of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
19
|
Kim EO, Kang SE, Im CR, Lee JH, Ahn KS, Yang WM, Um JY, Lee SG, Yun M. Tanshinone IIA induces TRAIL sensitization of human lung cancer cells through selective ER stress induction. Int J Oncol 2016; 48:2205-12. [PMID: 26983803 DOI: 10.3892/ijo.2016.3441] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 02/18/2016] [Indexed: 11/06/2022] Open
Abstract
Although tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promised anticancer medicine targeting only the tumor, most cancers show resistance to TRAIL-induced apoptosis. For this reason, new therapeutic strategies to overcome the TRAIL resistance are required for more effective tumor treatment. In the present study, potential of tanshinone IIA as a TRAIL sensitizer was evaluated in human non-small cell lung cancer (NSCLC) cells. NSCLC cells showed resistance to TRAIL-mediated cell death, but combination treatment of Tanshinone IIA and TRAIL synergistically decreased cell viability and increased apoptosis in TRAIL-resistant NSCLC cells. Tanshinone IIA greatly induced death receptor 5 (DR5), but not death receptor 4 (DR4). Furthermore, DR5 knockdown attenuated the combination treatment of tanshinone IIA with TRAIL-mediated cell death in human NSCLC cells. Tanshinone IIA also increased CHOP and activated the PERK-ATF4 pathway suggesting that tanshinone IIA increased DR5 and CHOP by activating the PERK-ATF4 pathway. Tanshinone IIA also downregulated phosphorylation of STAT3 and expression of survivin. Taken together, these results indicate that tanshinone IIA increases TRAIL-induced cell death via upregulating DR5 and downregulating survivin mediated by, respectively, selective activation of PERK/ATF4 and inhibition of STAT3, suggesting combinatorial intervention of tanshinone IIA and TRAIL as a new therapeutic strategy for human NSCLC.
Collapse
Affiliation(s)
- Eun-Ok Kim
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Shi Eun Kang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Chang Rak Im
- Department of Applied Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jun-Hee Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Woong Mo Yang
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jae-Young Um
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seok-Geun Lee
- Korean Medicine Clinical Trial Center, Kyung Hee University Korean Medicine Hospital, Seoul 02447, Republic of Korea
| | - Miyong Yun
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
20
|
Cang S, Iragavarapu C, Savooji J, Song Y, Liu D. ABT-199 (venetoclax) and BCL-2 inhibitors in clinical development. J Hematol Oncol 2015; 8:129. [PMID: 26589495 PMCID: PMC4654800 DOI: 10.1186/s13045-015-0224-3] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 11/10/2015] [Indexed: 12/21/2022] Open
Abstract
With the advent of new agents targeting CD20, Bruton's tyrosine kinase, and phosphoinositol-3 kinase for chronic lymphoid leukemia (CLL), more treatment options exist than ever before. B-cell lymphoma-2 (BCL-2) plays a major role in cellular apoptosis and is a druggable target. Small molecule inhibitors of BCL-2 are in active clinical studies. ABT-199 (venetoclax, RG7601, GDC-0199) has been granted breakthrough designation by FDA for relapsed or refractory CLL with 17p deletion. In this review, we summarized the latest clinical development of ABT-199/venetoclax and other novel agents targeting the BCL-2 proteins.
Collapse
Affiliation(s)
- Shundong Cang
- Department of Oncology, The Henan Province People's Hospital, Zhengzhou, China
| | - Chaitanya Iragavarapu
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, New York, 10595, USA
| | - John Savooji
- Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla, New York, 10595, USA
| | - Yongping Song
- Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
21
|
Phillips DC, Xiao Y, Lam LT, Litvinovich E, Roberts-Rapp L, Souers AJ, Leverson JD. Loss in MCL-1 function sensitizes non-Hodgkin's lymphoma cell lines to the BCL-2-selective inhibitor venetoclax (ABT-199). Blood Cancer J 2015; 5:e368. [PMID: 26565405 PMCID: PMC4670945 DOI: 10.1038/bcj.2015.88] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 08/05/2015] [Accepted: 08/20/2015] [Indexed: 02/06/2023] Open
Abstract
As a population, non-Hodgkin's lymphoma (NHL) cell lines positive for the t(14;18) translocation and/or possessing elevated BCL2 copy number (CN; BCL2(High)) are exquisitely sensitive to navitoclax or the B-cell lymphoma protein-2 (BCL-2)-selective inhibitor venetoclax. Despite this, some BCL2(High) cell lines remain resistant to either agent. Here we show that the MCL-1-specific inhibitor A-1210477 sensitizes these cell lines to navitoclax. Chemical segregation of this synergy with the BCL-2-selective inhibitor venetoclax or BCL-XL-selective inhibitor A-1155463 indicated that MCL-1 and BCL-2 are the two key anti-apoptotic targets for sensitization. Similarly, the CDK inhibitor flavopiridol downregulated MCL-1 expression and synergized with venetoclax in BCL2(High) NHL cell lines to a similar extent as A-1210477. A-1210477 also synergized with navitoclax in the majority of BCL2(Low) NHL cell lines. However, chemical segregation with venetoclax or A-1155463 revealed that synergy was driven by BCL-XL inhibition in this population. Collectively these data emphasize that BCL2 status is predictive of venetoclax potency in NHL not only as a single agent, but also in the adjuvant setting with anti-tumorigenic agents that inhibit MCL-1 function. These studies also potentially identify a patient population (BCL2(Low)) that could benefit from BCL-XL (navitoclax)-driven combination therapy.
Collapse
Affiliation(s)
- D C Phillips
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | - Y Xiao
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | - L T Lam
- Oncology Discovery, AbbVie Inc., North Chicago, IL, USA
| | | | | | - A J Souers
- Oncology Development, AbbVie Inc., North Chicago, IL, USA
| | - J D Leverson
- Oncology Development, AbbVie Inc., North Chicago, IL, USA
| |
Collapse
|
22
|
Baranski Z, de Jong Y, Ilkova T, Peterse EF, Cleton-Jansen AM, van de Water B, Hogendoorn PC, Bovée JV, Danen EH. Pharmacological inhibition of Bcl-xL sensitizes osteosarcoma to doxorubicin. Oncotarget 2015; 6:36113-25. [PMID: 26416351 PMCID: PMC4742165 DOI: 10.18632/oncotarget.5333] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/14/2015] [Indexed: 12/15/2022] Open
Abstract
High-grade conventional osteosarcoma is the most common primary bone tumor. Prognosis for osteosarcoma patients is poor and resistance to chemotherapy is common. We performed an siRNA screen targeting members of the Bcl-2 family in human osteosarcoma cell lines to identify critical regulators of osteosarcoma cell survival. Silencing the anti-apoptotic family member Bcl-xL but also the pro-apoptotic member Bak using a SMARTpool of siRNAs as well as 4/4 individual siRNAs caused loss of viability. Loss of Bak impaired cell cycle progression and triggered autophagy. Instead, silencing Bcl-xL induced apoptotic cell death. Bcl-xL was expressed in clinical osteosarcoma samples but mRNA or protein levels did not significantly correlate with therapy response or survival. Nevertheless, pharmacological inhibition of a range of Bcl-2 family members showed that inhibitors targeting Bcl-xL synergistically enhanced the response to the chemotherapeutic agent, doxorubicin. Indeed, in osteosarcoma cells strongly expressing Bcl-xL, the Bcl-xL-selective BH3 mimetic, WEHI-539 potently enhanced apoptosis in the presence of low doses of doxorubicin. Our results identify Bcl-xL as a candidate drug target for sensitization to chemotherapy in patients with osteosarcoma.
Collapse
Affiliation(s)
- Zuzanna Baranski
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Yvonne de Jong
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Trayana Ilkova
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | - Elisabeth F.P. Peterse
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | - Bob van de Water
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | | | - Judith V.M.G. Bovée
- Department of Pathology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Erik H.J. Danen
- Division of Toxicology, Leiden/Academic Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| |
Collapse
|
23
|
Safety, efficacy, and pharmacokinetics of navitoclax (ABT-263) in combination with irinotecan: results of an open-label, phase 1 study. Cancer Chemother Pharmacol 2015; 76:1041-9. [DOI: 10.1007/s00280-015-2882-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/17/2015] [Indexed: 12/13/2022]
|
24
|
Ackler S, Oleksijew A, Chen J, Chyla BJ, Clarin J, Foster K, McGonigal T, Mishra S, Schlessinger S, Smith ML, Tahir SK, Leverson JD, Souers AJ, Boghaert ER, Hickson J. Clearance of systemic hematologic tumors by venetoclax (Abt-199) and navitoclax. Pharmacol Res Perspect 2015; 3:e00178. [PMID: 26516589 PMCID: PMC4618648 DOI: 10.1002/prp2.178] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 07/23/2015] [Accepted: 08/03/2015] [Indexed: 11/11/2022] Open
Abstract
The Bcl-2 family inhibitors venetoclax and navitoclax demonstrated potent antitumor activity in chronic lymphocytic leukemia patients, notably in reducing marrow load and adenopathy. Subsequent trials with venetoclax have been initiated in non-Hodgkin's lymphoma and multiple myeloma patients. Traditional preclinical models fall short either in faithfully recapitulating disease progression within such compartments or in allowing the direct longitudinal analysis of systemic disease. We show that intravenous inoculation of engineered RS4;11 (acute lymphoblastic leukemia) and Granta 519 (mantle cell lymphoma) bioluminescent reporter cell lines result in tumor engraftment of bone marrow, with additional invasion of the central nervous system in the case of Granta 519. Importantly, apoptosis induction and response of these systemically engrafted tumors to Bcl-2 family inhibitors alone or in combination with standard-of-care agents could be monitored longitudinally with optical imaging, and was more accurately reflective of the observed clinical response.
Collapse
Affiliation(s)
| | | | - Jun Chen
- AbbVie Inc. North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Verner J, Trbusek M, Chovancova J, Jaskova Z, Moulis M, Folber F, Halouzka R, Mayer J, Pospisilova S, Doubek M. NOD/SCID IL2Rγ-null mouse xenograft model of human p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma using permanent cell lines. Leuk Lymphoma 2015; 56:3198-206. [PMID: 25827173 DOI: 10.3109/10428194.2015.1034701] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Xenograft models represent a promising tool to study the pathogenesis of hematological malignancies. To establish a reliable and appropriate in vivo model of aggressive human B-cell leukemia and lymphoma we xenotransplanted four p53-mutated cell lines and one ATM-mutated cell line into immunodeficient NOD/SCID IL2Rγ-null mice. The cell lines MEC-1, SU-DHL-4, JEKO-1, REC-1, and GRANTA-519 were transplanted intraperitoneally or subcutaneously and the engraftment was investigated using immunohistochemistry and flow cytometry. We found significant differences in engraftment efficiency. MEC-1, JEKO-1 and GRANTA-519 cell lines engrafted most efficiently, while SU-DHL-4 cells did not engraft at all. MEC-1 and GRANTA-519 massively infiltrated organs and the whole intraperitoneal cavity showing very aggressive growth. In addition, GRANTA-519 cells massively migrated to the bone marrow regardless of the transplantation route. The MEC-1 and GRANTA-519 cells can be especially recommended for in vivo study of p53-mutated chronic lymphocytic leukemia and ATM-mutated mantle cell lymphoma, respectively.
Collapse
Affiliation(s)
- Jan Verner
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic.,b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Martin Trbusek
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic.,b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Jana Chovancova
- b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Zuzana Jaskova
- b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Mojmir Moulis
- c Department of Pathology , University Hospital Brno , Czech Republic
| | - Frantisek Folber
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic
| | - Roman Halouzka
- d Department of Pathology , University of Veterinary and Pharmaceutical Sciences Brno , Czech Republic
| | - Jiri Mayer
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic.,b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Sarka Pospisilova
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic.,b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| | - Michael Doubek
- a Department of Internal Medicine , Hematology and Oncology, University Hospital Brno and Faculty of Medicine , Masaryk University Brno, Czech Republic.,b CEITEC - Central European Institute of Technology , Masaryk University Brno, Czech Republic
| |
Collapse
|
26
|
Kipps TJ, Eradat H, Grosicki S, Catalano J, Cosolo W, Dyagil IS, Yalamanchili S, Chai A, Sahasranaman S, Punnoose E, Hurst D, Pylypenko H. A phase 2 study of the BH3 mimetic BCL2 inhibitor navitoclax (ABT-263) with or without rituximab, in previously untreated B-cell chronic lymphocytic leukemia. Leuk Lymphoma 2015; 56:2826-33. [PMID: 25797560 DOI: 10.3109/10428194.2015.1030638] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
We evaluated the safety and biologic activity of the BH3 mimetic protein, navitoclax, combined with rituximab, in comparison to rituximab alone. One hundred and eighteen patients with chronic lymphocytic leukemia (CLL) were randomized to receive eight weekly doses of rituximab (arm A), eight weekly doses of rituximab plus daily navitoclax for 12 weeks (arm B) or eight weekly doses of rituximab plus daily navitoclax until disease progression or unacceptable toxicity (arm C). Investigator-assessed overall response rates (complete [CR] and partial [PR]) were 35% (arm A), 55% (arm B, p = 0.19 vs. A) and 70% (arm C, p = 0.0034 vs. A). Patients with del(17p) or high levels of BCL2 had significantly better clinical responses when treated with navitoclax. Navitoclax in combination with rituximab was well tolerated as initial therapy for patients with CLL, yielded higher response rates than rituximab alone and resulted in prolonged progression-free survival with treatment beyond 12 weeks.
Collapse
Affiliation(s)
- Thomas J Kipps
- a Department of Hematology-Oncology , UCSD School of Medicine , San Diego , CA , USA
| | - Herbert Eradat
- b Division of Hematology-Oncology, David Geffen School of Medicine at UCLA , Los Angeles , CA , USA
| | | | - John Catalano
- d Frankston Hospital and Monash University , Frankston , Australia
| | - Walter Cosolo
- e John Fawkner Cancer Trial Centre , Coburg , Australia
| | - Iryna S Dyagil
- f Department of Hematology , National Research Center for Radiation Medicine of National Medical Academy of Sciences of Ukraine , Kyiv , Ukraine
| | | | - Akiko Chai
- g Genentech, Inc. , South San Francisco , CA , USA
| | | | | | | | - Halyna Pylypenko
- h Department of Hematology , Cherkassy Regional Oncological Center , Cherkassy , Ukraine
| |
Collapse
|
27
|
Brahmbhatt H, Oppermann S, Osterlund EJ, Leber B, Andrews DW. Molecular Pathways: Leveraging the BCL-2 Interactome to Kill Cancer Cells--Mitochondrial Outer Membrane Permeabilization and Beyond. Clin Cancer Res 2015; 21:2671-6. [PMID: 25838396 DOI: 10.1158/1078-0432.ccr-14-0959] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/06/2015] [Indexed: 11/16/2022]
Abstract
The inhibition of apoptosis enables the survival and proliferation of tumors and contributes to resistance to conventional chemotherapy agents and is therefore a very promising avenue for the development of new agents that will enhance current cancer therapies. The BCL-2 family proteins orchestrate apoptosis at the mitochondria and endoplasmic reticulum and are involved in other processes such as autophagy and unfolded protein response (UPR) that lead to different types of cell death. Over the past decade, significant efforts have been made to restore apoptosis using small molecules that modulate the activity of BCL-2 family proteins. The small molecule ABT-199, which antagonizes the activity of BCL-2, is currently the furthest in clinical trials and shows promising activity in many lymphoid malignancies as a single agent and in combination with conventional chemotherapy agents. Here, we discuss strategies to improve the specificity of pharmacologically modulating various antiapoptotic BCL-2 family proteins, review additional BCL-2 family protein interactions that can be exploited for the improvement of conventional anticancer therapies, and highlight important points of consideration for assessing the activity of small-molecule BCL-2 family protein modulators.
Collapse
Affiliation(s)
- Hetal Brahmbhatt
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada. Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Sina Oppermann
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Elizabeth J Osterlund
- Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada. Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada. Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Pharmacokinetic and pharmacodynamic profile of bendamustine and its metabolites. Cancer Chemother Pharmacol 2015; 75:1143-54. [PMID: 25829094 PMCID: PMC4441746 DOI: 10.1007/s00280-015-2727-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/15/2015] [Indexed: 12/27/2022]
Abstract
Purpose Bendamustine is a unique alkylating agent indicated for the treatment of chronic lymphocytic leukemia and rituximab-refractory, indolent B cell non-Hodgkin’s lymphoma. Despite the extensive experience with bendamustine, its pharmacokinetic profile has only recently been described. This overview summarizes the pharmacokinetics, pharmacokinetic/pharmacodynamic relationships, and drug–drug interactions of bendamustine in adult and pediatric patients with hematologic malignancies. Methods A literature search and data on file (including a human mass balance study, pharmacokinetic population analyses in adult and pediatric patients, and modeling analyses) were evaluated for inclusion. Results Bendamustine concentrations peak at end of intravenous infusion (~1 h). Subsequent elimination is triphasic, with the intermediate t1/2 (~40 min) as the effective t1/2 since the final phase represents <1 % of the area under the curve. Bendamustine is rapidly hydrolyzed to monohydroxy-bendamustine and dihydroxy-bendamustine, which have little or no activity. Cytochrome P450 (CYP) 1A2 oxidation yields the active metabolites γ-hydroxybendamustine and N-desmethyl-bendamustine, at low concentrations, which contribute minimally to cytotoxicity. Minor involvement of CYP1A2 in bendamustine elimination suggests a low likelihood of drug–drug interactions with CYP1A2 inhibitors. Systemic exposure to bendamustine 120 mg/m2 is comparable between adult and pediatric patients; age, race, and sex have been shown to have no significant effect on systemic exposure in either population. The effect of hepatic/renal impairment on bendamustine pharmacokinetics remains to be elucidated. Higher bendamustine concentrations may be associated with increased probability of nausea or infection. No clear exposure–efficacy response relationship has been observed. Conclusions Altogether, the findings support dosing based on body surface area for most patient populations.
Collapse
|
29
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Cancer therapeutics: Targeting the apoptotic pathway. Crit Rev Oncol Hematol 2014; 90:200-19. [DOI: 10.1016/j.critrevonc.2013.12.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 01/20/2023] Open
|
31
|
Petros AM, Swann SL, Song D, Swinger K, Park C, Zhang H, Wendt MD, Kunzer AR, Souers AJ, Sun C. Fragment-based discovery of potent inhibitors of the anti-apoptotic MCL-1 protein. Bioorg Med Chem Lett 2014; 24:1484-8. [DOI: 10.1016/j.bmcl.2014.02.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/04/2014] [Indexed: 10/25/2022]
|
32
|
Moldoveanu T, Follis AV, Kriwacki RW, Green DR. Many players in BCL-2 family affairs. Trends Biochem Sci 2014; 39:101-11. [PMID: 24503222 DOI: 10.1016/j.tibs.2013.12.006] [Citation(s) in RCA: 312] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/19/2013] [Accepted: 12/27/2013] [Indexed: 01/08/2023]
Abstract
During apoptotic cell death, cellular stress signals converge at the mitochondria to induce mitochondrial outer-membrane permeabilization (MOMP) through B cell lymphoma-2 (BCL-2) family proteins and their effectors. BCL-2 proteins function through protein-protein interactions, the mechanisms and structural aspects of which are only now being uncovered. Recently, the elucidation of the dynamic features underlying their function has highlighted their structural plasticity and the consequent complex thermodynamic landscape governing their protein-protein interactions. These studies show that canonical interactions involve a conserved, hydrophobic groove, whereas non-canonical interactions function allosterically outside the groove. We review the latest structural advances in understanding the interactions and functions of mammalian BCL-2 family members, and discuss new opportunities to modulate these proteins in health and disease.
Collapse
Affiliation(s)
- Tudor Moldoveanu
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ariele Viacava Follis
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Richard W Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
33
|
Tolcher AW, Rodrigueza WV, Rasco DW, Patnaik A, Papadopoulos KP, Amaya A, Moore TD, Gaylor SK, Bisgaier CL, Sooch MP, Woolliscroft MJ, Messmann RA. A phase 1 study of the BCL2-targeted deoxyribonucleic acid inhibitor (DNAi) PNT2258 in patients with advanced solid tumors. Cancer Chemother Pharmacol 2014; 73:363-71. [PMID: 24297683 PMCID: PMC3909249 DOI: 10.1007/s00280-013-2361-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 11/13/2013] [Indexed: 11/04/2022]
Abstract
PURPOSE Maximum tolerated dose, safety, pharmacokinetics, and pharmacodynamics were assessed in this phase 1 study of PNT2258, a BCL-2-targeted liposomal formulation of a 24-base DNA oligonucleotide called PNT100. METHODS Patients with malignant solid tumors were assigned sequentially to one of ten dose-escalation cohorts of PNT2258 at 1, 2, 4, 8, 16, 32, 64, 85, 113, and 150 mg/m(2) administered intravenously on days 1 through 5 of each 21-day cycle. Pharmacokinetics were determined on days 1 and 5 of the first cycle. Lymphocyte and platelets concentrations were measured for evidence of BCL2-targeted effect. CT scans were used to identify radiologic evidence of anti-tumor effect. RESULTS Twenty-two subjects received PNT2258, and the maximum tolerated dose for PNT2258 was not reached. Doses at or above 32 mg/m(2) resulted in exposure to PNT2258 above the exposure level required for anti-tumor activity in preclinical xenograft testing of 22,377 ng h/ml (PK analysis 2012). Fatigue was the most commonly reported adverse event. Dose-limiting toxicity, manifesting as a transient increase in aspartate aminotransferase, occurred at 150 mg/m(2), the highest dose tested. Four subjects, two each with diagnosis of non-small-cell lung cancer and sarcoma, treated at doses of 64 mg/m(2) or higher, remained on study for 5-8 cycles. CONCLUSIONS PNT2258 was safe and well tolerated at the doses tested up to 150 mg/m(2). Exposure to PNT2258 resulted in clinically manageable decreases in lymphocyte and platelet concentrations.
Collapse
Affiliation(s)
- Anthony W. Tolcher
- South Texas Accelerated Research Therapeutics (START), LLC, San Antonio, TX USA
| | - Wendi V. Rodrigueza
- ProNAi Therapeutics, Inc., 46701 Commerce Center Dr., Plymouth, MI 48170 USA
| | - Drew W. Rasco
- South Texas Accelerated Research Therapeutics (START), LLC, San Antonio, TX USA
| | - Amita Patnaik
- South Texas Accelerated Research Therapeutics (START), LLC, San Antonio, TX USA
| | | | - Alex Amaya
- South Texas Accelerated Research Therapeutics (START), LLC, San Antonio, TX USA
| | | | - Shari K. Gaylor
- ProNAi Therapeutics, Inc., 46701 Commerce Center Dr., Plymouth, MI 48170 USA
| | - Charles L. Bisgaier
- ProNAi Therapeutics, Inc., 46701 Commerce Center Dr., Plymouth, MI 48170 USA
| | - Mina P. Sooch
- ProNAi Therapeutics, Inc., 46701 Commerce Center Dr., Plymouth, MI 48170 USA
| | | | - Richard A. Messmann
- ProNAi Therapeutics, Inc., 46701 Commerce Center Dr., Plymouth, MI 48170 USA
| |
Collapse
|
34
|
Souers AJ, Leverson JD, Boghaert ER, Ackler SL, Catron ND, Chen J, Dayton BD, Ding H, Enschede SH, Fairbrother WJ, Huang DCS, Hymowitz SG, Jin S, Khaw SL, Kovar PJ, Lam LT, Lee J, Maecker HL, Marsh KC, Mason KD, Mitten MJ, Nimmer PM, Oleksijew A, Park CH, Park CM, Phillips DC, Roberts AW, Sampath D, Seymour JF, Smith ML, Sullivan GM, Tahir SK, Tse C, Wendt MD, Xiao Y, Xue JC, Zhang H, Humerickhouse RA, Rosenberg SH, Elmore SW. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat Med 2013; 19:202-8. [PMID: 23291630 DOI: 10.1038/nm.3048] [Citation(s) in RCA: 2256] [Impact Index Per Article: 188.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 11/29/2012] [Indexed: 01/28/2023]
Abstract
Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.
Collapse
|