1
|
Maximiano I, Henriques C, Teixeira RG, Marques F, Valente A, Antunes AMM. Lead to hit ruthenium-cyclopentadienyl anticancer compounds: Cytotoxicity against breast cancer cells, metabolic stability and metabolite profiling. J Inorg Biochem 2024; 251:112436. [PMID: 38016328 DOI: 10.1016/j.jinorgbio.2023.112436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
The successful choice of hit compounds during drug development programs involves the integration of structure-activity relationship (SAR) studies with pharmacokinetic determinations, including metabolic stability assays and metabolite profiling. A panel of nine ruthenium-cyclopentadienyl (RuCp) compounds with the general formula [Ru(η5-C5H4R)(PPh3)(bipyR')]+ (with R = H, CHO, CH2OH; R' = H, CH3, CH2OH, CH2Biotin) has been tested against hormone-dependent MCF-7 and triple negative MDA-MB-231 breast cancer cells. In general, all compounds showed important cytotoxicity against both cancer cell lines and were able to inhibit the formation of MDA-MB-231 colonies in a dose-dependent manner, while showing selectivity for cancer cells over normal fibroblasts. Among them, four compounds stood out as lead structures to be further studied. Cell distribution assays revealed their preference for the accumulation at cell membrane (Ru quantification by ICP-MS) and the mechanism of cell death seemed to be mediated by apoptosis. Potential structural liabilities of lead compounds were subsequently flagged upon in vitro metabolic stability assays and metabolite profiling. The implementation of this integrated strategy led to the selection of RT151 as a promising hit compound.
Collapse
Affiliation(s)
- Inês Maximiano
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Catarina Henriques
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal; Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa 1049-001, Portugal
| | - Ricardo G Teixeira
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal
| | - Fernanda Marques
- Centro de Ciências e Tecnologias Nucleares (C(2)TN) and Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Bobadela LRS 2695-066, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Institute of Molecular Sciences and Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Lisboa 1749-016, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico (IST), Universidade de Lisboa, Lisboa 1049-001, Portugal.
| |
Collapse
|
2
|
Sharma R, Dowling MS, Futatsugi K, Kalgutkar AS. Mitigating a Bioactivation Liability with an Azetidine-Based Inhibitor of Diacylglycerol Acyltransferase 2 (DGAT2) En Route to the Discovery of the Clinical Candidate Ervogastat. Chem Res Toxicol 2023. [PMID: 37148271 DOI: 10.1021/acs.chemrestox.3c00054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We recently disclosed SAR studies on systemically acting, amide-based inhibitors of diacylglycerol acyltransferase 2 (DGAT2) that addressed metabolic liabilities with the liver-targeted DGAT2 inhibitor PF-06427878. Despite strategic placement of a nitrogen atom in the dialkoxyaromatic ring in PF-06427878 to evade oxidative O-dearylation, metabolic intrinsic clearance remained high due to extensive piperidine ring oxidation as exemplified with compound 1. Piperidine ring modifications through alternate N-linked heterocyclic ring/spacer combination led to azetidine 2 that demonstrated lower intrinsic clearance. However, 2 underwent a facile cytochrome P450 (CYP)-mediated α-carbon oxidation followed by azetidine ring scission, resulting in the formation of ketone (M2) and aldehyde (M6) as stable metabolites in NADPH-supplemented human liver microsomes. Inclusion of GSH or semicarbazide in microsomal incubations led to the formation of Cys-Gly-thiazolidine (M3), Cys-thiazolidine (M5), and semicarbazone (M7) conjugates, which were derived from reaction of the nucleophilic trapping agents with aldehyde M6. Metabolites M2 and M5 were biosynthesized from NADPH- and l-cysteine-fortified human liver microsomal incubations with 2, and proposed metabolite structures were verified using one- and two-dimensional NMR spectroscopy. Replacement of the azetidine substituent with a pyridine ring furnished 8, which mitigated the formation of the electrophilic aldehyde metabolite, and was a more potent DGAT2 inhibitor than 2. Further structural refinements in 8, specifically introducing amide bond substituents with greater metabolic stability, led to the discovery of PF-06865571 (ervogastat) that is currently in phase 2 clinical trials for the treatment of nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Raman Sharma
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Matthew S Dowling
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Kentaro Futatsugi
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| | - Amit S Kalgutkar
- Medicine Design, Pfizer Worldwide Research, Development, and Medical, 1 Portland St, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Gong S, Hu X, Chen S, Sun B, Wu JL, Li N. Dual roles of drug or its metabolite-protein conjugate: Cutting-edge strategy of drug discovery using shotgun proteomics. Med Res Rev 2022; 42:1704-1734. [PMID: 35638460 DOI: 10.1002/med.21889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 11/11/2022]
Abstract
Many drugs can bind directly to proteins or be bioactivated by metabolizing enzymes to form reactive metabolites (RMs) that rapidly bind to proteins to form drug-protein conjugates or metabolite-protein conjugates (DMPCs). The close relationship between DMPCs and idiosyncratic adverse drug reactions (IADRs) has been recognized; drug discovery teams tend to avoid covalent interactions in drug discovery projects. Covalent interactions in DMPCs can provide high potency and long action duration and conquer the intractable targets, inspiring drug design, and development. This forms the dual role feature of DMPCs. Understanding the functional implications of DMPCs in IADR control and therapeutic applications requires precise identification of these conjugates from complex biological samples. While classical biochemical methods have contributed significantly to DMPC detection in the past decades, the low abundance and low coverage of DMPCs have become a bottleneck in this field. An emerging transformation toward shotgun proteomics is on the rise. The evolving shotgun proteomics techniques offer improved reproducibility, throughput, specificity, operability, and standardization. Here, we review recent progress in the systematic discovery of DMPCs using shotgun proteomics. Furthermore, the applications of shotgun proteomics supporting drug development, toxicity mechanism investigation, and drug repurposing processes are also reviewed and prospected.
Collapse
Affiliation(s)
- Shilin Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Xiaolan Hu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Shengshuang Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Respiratory Medical Center, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau
| |
Collapse
|
4
|
Abstract
Chemicals are measured regularly in air, food, the environment, and the workplace. Biomonitoring of chemicals in biological fluids is a tool to determine the individual exposure. Blood protein adducts of xenobiotics are a marker of both exposure and the biologically effective dose. Urinary metabolites and blood metabolites are short term exposure markers. Stable hemoglobin adducts are exposure markers of up to 120 days. Blood protein adducts are formed with many xenobiotics at different sites of the blood proteins. Newer methods apply the techniques developed in the field of proteomics. Larger adducted peptides with 20 amino acids are used for quantitation. Unfortunately, at present the methods do not reach the limits of detection obtained with the methods looking at single amino acid adducts or at chemically cleaved adducts. Therefore, to progress in the field new approaches are needed.
Collapse
|
5
|
Charneira C, Nunes J, Antunes AMM. 16α-Hydroxyestrone: Mass Spectrometry-Based Methodologies for the Identification of Covalent Adducts Formed with Blood Proteins. Chem Res Toxicol 2020; 33:2147-2156. [PMID: 32692160 DOI: 10.1021/acs.chemrestox.0c00171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Elevated levels of the estrone metabolite, 16α-hydroxyestrone (16αOHE1), have been linked with multiple diseases. As an electrophilic reactive metabolite, covalent binding to proteins is thought to constitute one of the possible mechanisms in the onset of deleterious health outcomes associated with 16αOHE1. Whereas mass spectrometry (MS)-based methodologies are currently considered the best suited to monitor the formation of protein covalent adducts, the application of these approaches for the identification of covalent adducts of 16αOHE1 is yet to be provided. In the present study, with the ultimate goal of determining the most adequate methodology for searching for 16αOHE1-derived covalent adducts, we explored multiple liquid chromatography-electrospray ionization tandem high-resolution mass spectrometry (LC-ESI-HRMS/MS)-based approaches to investigate the nature and specific locations of the covalent adducts produced in human hemoglobin (Hb) and human serum albumin (HSA) modified in vitro with 16αOHE1. The application of a "bottom up" proteomics approach, involving the nanoLC-ESI-HRMS/MS analysis of tryptic peptides, allowed the identification of multiple sites of 16αOHE1 adduction in Hb and HSA. As expected, the majority of the adducted peptides occurred in lysine residues following stabilization of the Schiff base formed with 16αOHE1 by reduction or via Heyns rearrangement, yielding the stable α-hydroxyamine and ketoamine adducts, respectively. Noteworthy is the fact that a serine residue was also identified to be covalently modified with 16αOHE1, which to our knowledge constitutes a first-hand report of a keto electrophile as target of hydroxyl-based nucleophilic amino acids. The N-alkyl Edman degradation resulted to be unsuitable for the identification of 16αOHE1adducts formed with the N-terminal valine of Hb, most probably due to stereochemical restraints of the tested derivatizing agents (fluorescein isothiocyanate and phenyl isothiocyanate) on assessing these bulky covalent adducts. Nonetheless, the digestion of adducted proteins to amino acids resulted in the detection of 16αOHE1-derived keto and α-hydroxyamine Lys adducts. The simplicity of this methodology might be beneficial for clinical studies, with the possibility of offering quantitative information with the preparation of synthetic standards of these adducts. The results obtained are crucial not only for the identification and quantification of biomarkers of exposure to 16αOHE1 but also for clarifying the role of protein binding in the onset of diseases associated with elevated levels of this reactive metabolite.
Collapse
Affiliation(s)
- Catarina Charneira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - João Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Nunes J, Charneira C, Morello J, Rodrigues J, Pereira SA, Antunes AMM. Mass Spectrometry-Based Methodologies for Targeted and Untargeted Identification of Protein Covalent Adducts (Adductomics): Current Status and Challenges. High Throughput 2019; 8:ht8020009. [PMID: 31018479 PMCID: PMC6631461 DOI: 10.3390/ht8020009] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 12/12/2022] Open
Abstract
Protein covalent adducts formed upon exposure to reactive (mainly electrophilic) chemicals may lead to the development of a wide range of deleterious health outcomes. Therefore, the identification of protein covalent adducts constitutes a huge opportunity for a better understanding of events underlying diseases and for the development of biomarkers which may constitute effective tools for disease diagnosis/prognosis, for the application of personalized medicine approaches and for accurately assessing human exposure to chemical toxicants. The currently available mass spectrometry (MS)-based methodologies, are clearly the most suitable for the analysis of protein covalent modifications, providing accuracy, sensitivity, unbiased identification of the modified residue and conjugates along with quantitative information. However, despite the huge technological advances in MS instrumentation and bioinformatics tools, the identification of low abundant protein covalent adducts is still challenging. This review is aimed at summarizing the MS-based methodologies currently used for the identification of protein covalent adducts and the strategies developed to overcome the analytical challenges, involving not only sample pre-treatment procedures but also distinct MS and data analysis approaches.
Collapse
Affiliation(s)
- João Nunes
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, 1049-001 Lisboa, Portugal.
| | - Catarina Charneira
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, 1049-001 Lisboa, Portugal.
| | - Judit Morello
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, 1049-001 Lisboa, Portugal.
| | - João Rodrigues
- Clarify Analytical, Rua dos Mercadores 128A, 7000-872 Évora, Portugal.
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-006 Lisboa, Portugal.
| | - Alexandra M M Antunes
- Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
7
|
Gan J, Zhang H, Humphreys WG. Drug–Protein Adducts: Chemistry, Mechanisms of Toxicity, and Methods of Characterization. Chem Res Toxicol 2016; 29:2040-2057. [DOI: 10.1021/acs.chemrestox.6b00274] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jinping Gan
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - Haiying Zhang
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| | - W. Griffith Humphreys
- Department of Biotransformation, Bristol-Myers Squibb Pharmaceutical Company, Princeton, New Jersey 08540, United States
| |
Collapse
|
8
|
Kalgutkar AS. Liabilities Associated with the Formation of “Hard” Electrophiles in Reactive Metabolite Trapping Screens. Chem Res Toxicol 2016; 30:220-238. [DOI: 10.1021/acs.chemrestox.6b00332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Amit S. Kalgutkar
- Pharmacokinetics, Dynamics, and Metabolism − New Chemical
Entities, Pfizer Worldwide Research and Development, 610 Main
Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Tailor A, Waddington JC, Meng X, Park BK. Mass Spectrometric and Functional Aspects of Drug–Protein Conjugation. Chem Res Toxicol 2016; 29:1912-1935. [DOI: 10.1021/acs.chemrestox.6b00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Arun Tailor
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - James C. Waddington
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Xiaoli Meng
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC Center
for Drug Safety
Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
10
|
Haas C, Ziccardi MR, Borgman J. Abacavir-induced fulminant hepatic failure in a HIV/HCV co-infected patient. BMJ Case Rep 2015; 2015:bcr-2015-212566. [PMID: 26670894 DOI: 10.1136/bcr-2015-212566] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abacavir hypersensitivity is a rare, yet significant adverse reaction that results in a spectrum of physical and laboratory abnormalities, and has been postulated to stem from a variety of aetiological factors. The major histocompatibility complex haplotype human leucocyte antigen (HLA)-B5701 is a significant risk factor in development of hypersensitivity reactions, yet only 55% of HLA-B5701+ individuals develop such reactions, suggesting a multifactorial aetiology. Nevertheless, prospective screening and avoidance of abacavir in these patients has limited adverse events. Within this spectrum of adverse events, abacavir-induced liver toxicity is exceedingly rare and reported events have ranged from mild elevations of aminotransferases to fulminant hepatic failure. We report the case of a 50-year-old Caucasian woman with a history significant for HIV, hepatitis C virus and a HLA-B5701+ status, transferred to our emergency department in a hypotensive state and found to have acute liver failure, acute renal failure and significant rhabdomyolysis following a change of highly active antiretroviral therapy regimen.
Collapse
Affiliation(s)
| | | | - Jody Borgman
- Department of Internal Medicine/Infectious Disease, Einstein Medical Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
11
|
The importance of hapten-protein complex formation in the development of drug allergy. Curr Opin Allergy Clin Immunol 2015; 14:293-300. [PMID: 24936850 DOI: 10.1097/aci.0000000000000078] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Drug allergy is an adverse drug reaction that is immune-mediated. Immune activation can occur when drugs or haptens bind covalently to proteins and then act as antigens. The purpose of this review is to summarize the recent data on the formation of hapten-protein complexes and to assess the importance of these complexes in the generation of drug allergy. RECENT FINDINGS The formation of hapten-protein complexes by drugs and their reactive metabolites has largely been investigated using model proteins such as human serum albumin. Precise identification of the structure of the hapten and the resulting modified residue(s) in the protein has been undertaken for a small number of drugs, such as p-phenylenediamine, nevirapine, carbamazepine, β-lactams and abacavir. Some progress has also been made in identifying hapten-protein complexes in the serum of patients with allergy. SUMMARY Drug-specific T cells have been isolated from different patients with allergy. Formation of hapten-protein complexes, their processing and antigen presentation have been implicated in the development of drug allergy to p-phenylenediamine, sulfonamides and β-lactams. However, evidence also supports the pi mechanism of immune activation wherein drugs interact directly with immune receptors. Thus, multiple mechanisms of immune activation may occur for the same drug.
Collapse
|
12
|
Harjivan SG, Pinheiro PF, Martins IL, Godinho AL, Wanke R, Santos PP, Pereira SA, Beland FA, Marques MM, Antunes AMM. Quinoid derivatives of the nevirapine metabolites 2-hydroxy- and 3-hydroxy-nevirapine: activation pathway to amino acid adducts. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00176e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Quinoid electrophiles from the nevirapine metabolites, 2-OH- and 3-OH-nevirapine, react with nitrogen-based bionucleophiles yielding covalent adducts.
Collapse
|
13
|
Thorsell A, Isin EM, Jurva U. Use of Electrochemical Oxidation and Model Peptides To Study Nucleophilic Biological Targets of Reactive Metabolites: The Case of Rimonabant. Chem Res Toxicol 2014; 27:1808-20. [DOI: 10.1021/tx500255r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Thorsell
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Emre M. Isin
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| | - Ulrik Jurva
- DMPK Design and Biotransformation, CVMD iMed DMPK, AstraZeneca R&D Mölndal, Sweden, Pepparedsleden 1, SE-431 83, Mölndal, Sweden
| |
Collapse
|
14
|
Meng X, Lawrenson AS, Berry NG, Maggs JL, French NS, Back DJ, Khoo SH, Naisbitt DJ, Park BK. Abacavir Forms Novel Cross-Linking Abacavir Protein Adducts in Patients. Chem Res Toxicol 2014; 27:524-35. [DOI: 10.1021/tx400406p] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaoli Meng
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Alexandre S. Lawrenson
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - Neil G. Berry
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - James L. Maggs
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Neil S. French
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - David J. Back
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Saye H. Khoo
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - Dean J. Naisbitt
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC Centre
for Drug Safety Science, Department of Molecular and Clinical Pharmacology, University of Liverpool, Sherrington Building, Ashton Street, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
15
|
Bioactivation to an aldehyde metabolite—Possible role in the onset of toxicity induced by the anti-HIV drug abacavir. Toxicol Lett 2014; 224:416-23. [DOI: 10.1016/j.toxlet.2013.10.036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 12/20/2022]
|
16
|
Bell CC, Santoyo Castelazo A, Yang EL, Maggs JL, Jenkins RE, Tugwood J, O’Neill PM, Naisbitt DJ, Park BK. Oxidative Bioactivation of Abacavir in Subcellular Fractions of Human Antigen Presenting Cells. Chem Res Toxicol 2013; 26:1064-72. [DOI: 10.1021/tx400041v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Catherine C. Bell
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Anahi Santoyo Castelazo
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Emma L. Yang
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United
Kingdom
| | - James L. Maggs
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Rosalind E. Jenkins
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - Jonathan Tugwood
- Paterson Institute
for Cancer
Research, The University of Manchester,
Manchester M20 4BX, United Kingdom
| | - Paul M. O’Neill
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United
Kingdom
| | - Dean J. Naisbitt
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| | - B. Kevin Park
- MRC Centre
for Drug Safety Science,
Department of Molecular and Clinical Pharmacology, University of Liverpool, Liverpool L69 3GE, United Kingdom
| |
Collapse
|
17
|
Monitoring abacavir bioactivation in humans: Screening for an aldehyde metabolite. Toxicol Lett 2013; 219:59-64. [DOI: 10.1016/j.toxlet.2013.02.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 02/21/2013] [Accepted: 02/23/2013] [Indexed: 11/19/2022]
|