1
|
Ghobrial DK, El-Nikhely N, Sheta E, Ragab HM, Rostom SAF, Saeed H, Wahid A. The Role of Pyrazolo[3,4-d]pyrimidine-Based Kinase Inhibitors in The Attenuation of CCl4-Induced Liver Fibrosis in Rats. Antioxidants (Basel) 2023; 12:antiox12030637. [PMID: 36978885 PMCID: PMC10045301 DOI: 10.3390/antiox12030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Liver Fibrosis can be life-threatening if left untreated as it may lead to serious, incurable complications. The common therapeutic approach is to reverse the fibrosis while the intervention is still applicable. Celecoxib was shown to exhibit some antifibrotic properties in the induced fibrotic liver in rats. The present study aimed to investigate the possible antifibrotic properties in CCl4-induced liver fibrosis in male Sprague–Dawley rats compared to celecoxib of three novel methoxylated pyrazolo[3,4-d]pyrimidines. The three newly synthesized compounds were proved to be safe candidates. They showed a therapeutic effect against severe CCl4-induced fibrosis but at different degrees. The three compounds were able to partially reverse hepatic architectural distortion and reduce the fibrotic severity by showing antioxidant properties reducing MDA with increasing GSH and SOD levels, remodeling the extracellular matrix proteins and liver enzymes balance, and reducing the level of proinflammatory (TNF-α and IL-6) and profibrogenic (TGF-β) cytokines. The results revealed that the dimethoxy-analog exhibited the greatest activity in all the previously mentioned parameters compared to celecoxib and the other two analogs which could be attributed to the different methoxylation patterns of the derivatives. Collectively, the dimethoxy-derivative could be considered a safe promising antifibrotic candidate.
Collapse
Affiliation(s)
- Diana K. Ghobrial
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
- Correspondence: (D.K.G.); (A.W.)
| | - Nefertiti El-Nikhely
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Eman Sheta
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria 21321, Egypt
| | - Hanan M. Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Sherif A. F. Rostom
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
| | - Hesham Saeed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria 21526, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21500, Egypt
- Correspondence: (D.K.G.); (A.W.)
| |
Collapse
|
2
|
Tai Y, Zhao C, Zhang L, Tang S, Jia X, Tong H, Liu R, Tang C, Gao J. Celecoxib reduces hepatic vascular resistance in portal hypertension by amelioration of endothelial oxidative stress. J Cell Mol Med 2021; 25:10389-10402. [PMID: 34609050 PMCID: PMC8581330 DOI: 10.1111/jcmm.16968] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 02/05/2023] Open
Abstract
The balance between endothelial nitric oxide (NO) synthase (eNOS) activation and production of reactive oxygen species (ROS) is very important for NO homeostasis in liver sinusoidal endothelial cells (LSECs). Overexpression of cyclooxygenase‐2 (COX‐2), a major intravascular source of ROS production, has been observed in LSECs of cirrhotic liver. However, the links between low NO bioavailability and COX‐2 overexpression in LSECs are unknown. This study has confirmed the link between low NO bioavailability and COX‐2 overexpression by COX‐2‐dependent PGE2‐EP2‐ERK1/2‐NOX1/NOX4 signalling pathway in LSECs in vivo and in vitro. In addition, the regulation of COX‐2‐independent LKB1‐AMPK‐NRF2‐HO‐1 signalling pathway on NO homeostasis in LSECs was also elucidated. The combinative effects of celecoxib on diminishment of ROS via COX‐2‐dependent and COX‐2‐independent signalling pathways greatly decreased NO scavenging. As a result, LSECs capillarisation was reduced, and endothelial dysfunction was corrected. Furthermore, portal hypertension of cirrhotic liver was ameliorated with substantial decreasing hepatic vascular resistance and great increase of portal blood flow. With the advance understanding of the mechanisms of LSECs protection, celecoxib may serve as a potential therapeutic candidate for patients with cirrhotic portal hypertension.
Collapse
Affiliation(s)
- Yang Tai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chong Zhao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Linhao Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shihang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xintong Jia
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Liu
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Feng S, Tong H, Gao JH, Tang SH, Yang WJ, Wang GM, Zhou HY, Wen SL. Anti-inflammation treatment for protection of hepatocytes and amelioration of hepatic fibrosis in rats. Exp Ther Med 2021; 22:1213. [PMID: 34584558 PMCID: PMC8422404 DOI: 10.3892/etm.2021.10647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Chronic inflammation is considered as an important pathophysiologic mechanism of hepatic cirrhosis, which induces hepatocyte injury and activates hepatic stellate cells (HSCs), thus resulting in hepatic fibrosis. Previous studies have reported that cyclooxygenase-2 (COX-2) inhibitor can effectively treat liver fibrosis, while somatostatin (SST) analogues inhibit the activation of HSCs. The present study aimed to investigate the effects of a COX-2 inhibitor, celecoxib, combined with a SST analogue, octreotide, for protection of hepatocytes and prevention of fibrosis in a rat model of hepatic fibrosis. Therefore, a hepatic fibrosis rat model was established following peritoneal injection of thioacetamide (TAA), and the rats were then treated with a combination of celecoxib and octreotide (TAA + C). Immunohistochemistry and western blotting assays were used to assess the expression levels of proteins associated with inflammation, epithelial-mesenchymal transition (EMT), proliferation, apoptosis and autophagy. H&E staining, transmission electron microscopy and scanning electron microscopy were used to evaluate the destruction of hepatocytes. Masson's Trichrome and Sirius Red were used to measure the degree of liver fibrosis. The results demonstrated that, compared with those of the control group, the degree of liver fibrosis and the expression of the intrahepatic inflammation factors were aggravated in the TAA group. Furthermore, the apoptosis rate, EMT and autophagy of hepatocytes were also increased in the TAA group. However, treatment with TAA + C restored the aforementioned increased levels compared with the TAA group. In conclusion, treatment of rats with the combination of celecoxib and octreotide could attenuate the progress of hepatic fibrosis via protection of hepatocytes by reducing apoptosis, EMT and autophagy in hepatocytes.
Collapse
Affiliation(s)
- Shi Feng
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Huan Tong
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Hang Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Wen-Juan Yang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Gui-Ming Wang
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong-Ying Zhou
- Department of Human Anatomy, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
4
|
Alvarez MDL, Lorenzetti F. Role of eicosanoids in liver repair, regeneration and cancer. Biochem Pharmacol 2021; 192:114732. [PMID: 34411565 DOI: 10.1016/j.bcp.2021.114732] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/24/2022]
Abstract
Eicosanoids are lipid signaling molecules derived from the oxidation of ω-6 fatty acids, usually arachidonic acid. There are three major pathways, including the cyclooxygenase (COX), lipoxygenase (LOX), and P450 cytochrome epoxygenase (CYP) pathway. Prostanoids, which include prostaglandins (PG) and thromboxanes (Tx), are formed via the COX pathway, leukotrienes (LT) and lipoxins (LX) by the action of 5-LOX, and hydroxyeicosatetraenoic acids (HETEs) and epoxyeicosatrienoic acids (EETs) by CYP. Although eicosanoids are usually associated with pro-inflammatory responses, non-classic eicosanoids, as LX, have anti-inflammatory and pro-resolving properties. Eicosanoids like PGE2, LTB4 and EETs have been involved in promoting liver regeneration after partial hepatectomy. PGE2 and LTB4 have also been reported to participate in the regenerative phase after ischemia and reperfusion (I/R), while cysteinyl leukotrienes (Cys-LT) contribute to the inflammatory process associated with I/R and are also involved in liver fibrosis and cirrhosis. However, LX, another product of 5-LOX, have the opposite effect, acting as pro-resolving mediators in these pathologies. In liver cancer, most studies show that eicosanoids, with the exception of LX, promote the proliferation of hepatocellular carcinoma cells and favor metastasis. This review summarizes the synthesis of different eicosanoids in the liver and discusses key findings from basic research linking eicosanoids to liver repair, regeneration and cancer and the impact of targeting eicosanoid cascade. In addition, studies in patients are presented that explore the potential use of eicosanoids as biomarkers and show correlations between eicosanoid production and the course and prognosis of liver disease.
Collapse
Affiliation(s)
- María de Luján Alvarez
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina.
| | - Florencia Lorenzetti
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
5
|
Karatzas E, Kakouri AC, Kolios G, Delis A, Spyrou GM. Fibrotic expression profile analysis reveals repurposed drugs with potential anti-fibrotic mode of action. PLoS One 2021; 16:e0249687. [PMID: 33826640 PMCID: PMC8026018 DOI: 10.1371/journal.pone.0249687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/22/2021] [Indexed: 02/07/2023] Open
Abstract
Fibrotic diseases cover a spectrum of systemic and organ-specific maladies that affect a large portion of the population, currently without cure. The shared characteristic these diseases feature is their uncontrollable fibrogenesis deemed responsible for the accumulated damage in the susceptible tissues. Idiopathic Pulmonary Fibrosis, an interstitial lung disease, is one of the most common and studied fibrotic diseases and still remains an active research target. In this study we highlight unique and common (i) genes, (ii) biological pathways and (iii) candidate repurposed drugs among 9 fibrotic diseases. We identify 7 biological pathways involved in all 9 fibrotic diseases as well as pathways unique to some of these diseases. Based on our Drug Repurposing results, we suggest captopril and ibuprofen that both appear to slow the progression of fibrotic diseases according to existing bibliography. We also recommend nafcillin and memantine, which haven't been studied against fibrosis yet, for further wet-lab experimentation. We also observe a group of cardiomyopathy-related pathways that are exclusively highlighted for Oral Submucous Fibrosis. We suggest digoxin to be tested against Oral Submucous Fibrosis, since we observe cardiomyopathy-related pathways implicated in Oral Submucous Fibrosis and there is bibliographic evidence that digoxin may potentially clear myocardial fibrosis. Finally, we establish that Idiopathic Pulmonary Fibrosis shares several involved genes, biological pathways and candidate inhibiting-drugs with Dupuytren's Disease, IgG4-related Disease, Systemic Sclerosis and Cystic Fibrosis. We propose that treatments for these fibrotic diseases should be jointly pursued.
Collapse
Affiliation(s)
- Evangelos Karatzas
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - Andrea C. Kakouri
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Department of Neurogenetics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - George Kolios
- Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alex Delis
- Department of Informatics and Telecommunications, University of Athens, Athens, Greece
| | - George M. Spyrou
- Department of Bioinformatics, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- The Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
6
|
Harris TR, Kodani S, Rand AA, Yang J, Imai DM, Hwang SH, Hammock BD. Celecoxib Does Not Protect against Fibrosis and Inflammation in a Carbon Tetrachloride-Induced Model of Liver Injury. Mol Pharmacol 2018; 94:834-841. [PMID: 29844231 DOI: 10.1124/mol.118.111831] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/18/2018] [Indexed: 12/11/2022] Open
Abstract
The cyclooxygenase-2 (COX-2) selective inhibitor celecoxib is widely used in the treatment of pain and inflammation. Celecoxib has been explored as a possible treatment of liver fibrosis with contradictory results, depending on the model. The present study reports the effect of celecoxib in a 5-week carbon tetrachloride (CCl4)-induced liver fibrosis mouse model. Celecoxib alone and in combination with inhibitors of the enzyme-soluble epoxide hydrolase (sEH), as well as a dual inhibitor that targets both COX-2 and sEH, were administered via osmotic minipump to mice receiving intraperitoneal injections of CCl4 Collagen deposition was elevated in the mice treated with both celecoxib and CCl4 compared with the control or CCl4-only groups, as assessed by trichrome staining. Histopathology revealed more extensive fibrosis and cell death in the animals treated with both celecoxib and CCl4 compared with all other experimental groups. Although some markers of fibrosis, such as matrix metalloprotease, were unchanged or lowered in the animals treated with both celecoxib and CCl4, overall, hepatic fibrosis was more severe in this group. Cotreatment with celecoxib and an inhibitor of sEH or treatment with a dual inhibitor of COX-2 and sEH decreased the elevated levels of fibrotic markers observed in the group that received both celecoxib and CCl4 Oxylipid analysis revealed that celecoxib reduced the level of prostaglandin E2 relative to the CCl4 only group. Overall, celecoxib treatment did not decrease liver fibrosis in CCl4-treated mice.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sean Kodani
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Amy A Rand
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Jun Yang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Denise M Imai
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Sung Hee Hwang
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| | - Bruce D Hammock
- Department of Entomology and Nematology and UC Davis Comprehensive Cancer Center (T.R.H., S.K., A.A.R., J.Y., S.H.H., B.D.H.), and Comparative Pathology Laboratory, School of Veterinary Medicine (D.M.I.), University of California, Davis, California
| |
Collapse
|
7
|
Tang SH, Gao JH, Wen SL, Tong H, Yan ZP, Liu R, Tang CW. Expression of cyclooxygenase-2 is correlated with lncRNA-COX-2 in cirrhotic mice induced by carbon tetrachloride. Mol Med Rep 2017; 15:1507-1512. [PMID: 28259935 PMCID: PMC5364955 DOI: 10.3892/mmr.2017.6161] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 12/01/2016] [Indexed: 02/05/2023] Open
Abstract
Multiple long non-coding RNAs (lncRNAs) have been demonstrated to be involved in liver disease. Increased cyclooxygenase-2 (COX‑2) levels have also been reported to be involved in the progression of liver cirrhosis. In the present study, the correlations between lncRNA‑COX‑2 RNA expression levels, COX‑2 mRNA expression levels and liver fibrosis were examined. Liver fibrosis was induced by intraperitoneal injection of carbon tetrachloride (CCl4) in mice for 2 months (CCl4‑2M) or 3 months (CCl4‑3M). Liver histopathological evaluation was conducted using hematoxylin and eosin and Masson trichrome staining. Hepatic expression of COX‑2 and lncRNA‑COX‑2 was evaluated by reverse transcription‑quantitative polymerase chain reaction and immunohistochemical staining. Compared with the control group, fibrotic areas were increased four and nine times in the CCl4‑2M group and the CCl4‑3M group, respectively. LncRNA-COX-2 and COX‑2 upregulation were observed in the cirrhotic liver. COX‑2 mRNA expression levels and lncRNA-COX-2 RNA expression levels were significantly positively correlated with the fibrotic area. In addition, COX‑2 mRNA expression was significantly positively correlated with lncRNA‑COX‑2 expression. These results suggest that expression of COX‑2 and lncRNA‑COX‑2 increased with the progression of liver fibrosis. LncRNA-COX-2 may potentially be considered as a novel therapeutic target for liver fibrosis.
Collapse
Affiliation(s)
- Shi-Hang Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jin-Hang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shi-Lei Wen
- Department of Human Anatomy, Academy of Preclinical and Forensic Medicine, West China Medicine College, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhao-Ping Yan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Rui Liu
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Cheng-Wei Tang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
8
|
Zakaria S, El-Sisi A. Rebamipide retards CCl4-induced hepatic fibrosis in rats: Possible role for PGE2. J Immunotoxicol 2016; 13:453-62. [PMID: 26849241 DOI: 10.3109/1547691x.2015.1128022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Prostaglandin E2 (PGE2) is a potent physiological suppressor of liver fibrosis. Because the anti-ulcer drug rebamipide can induce the formation of endogenous PGE2, this study investigated the potential effects of rebamipide on development of a hepatic fibrosis that was inducible by carbon tetrachloride (CCl4). Groups of Wistar rats received intraperitoneal (IP) injections of CCl4 (0.45 ml/kg [0.72 g CCl4/kg]) over the course of for 4 weeks. Sub-sets of CCl4-treated rats were also treated concurrently with rebamipide at 60 or 100 mg/kg. At 24 h after the final treatments, liver function and oxidative stress were indirectly assessed. The extent of hepatic fibrosis was evaluated using two fibrotic markers, hyaluronic acid (HA) and pro-collagen-III (Procol-III); isolated liver tissues underwent histology and were evaluated for interleukin (IL)-10 and PGE2 content. The results indicated that treatment with rebamipide significantly inhibited CCl4-induced increases in serum ALT and AST and also reduced oxidative stress induced by CCl4. Fibrotic marker assays revealed that either dose of rebamipide decreased the host levels of Procol-III and HA that had become elevated due to the CCl4. At the higher dose tested, rebamipide appeared to be able to permit the hosts to have a normal liver histology and to minimize any CCl4-induced collagen precipitation in the liver. Lastly, the use of rebamipide was seen to be associated with significant increases in liver levels of both PGE2 and the anti-inflammatory cytokine IL-10. Based on these findings, it is concluded that rebamipide can retard hepatic fibrosis induced by CCl4 and that this effect may, in part, be mediated by an induction of PGE2 and IL-10 in the liver itself.
Collapse
Affiliation(s)
- Sherin Zakaria
- a Department of Pharmacology and Toxicology , Damanhour University , Damanhour , Egypt
| | - Alaa El-Sisi
- b Department of Pharmacology and Toxicology , Tanta University , Tanta , Egypt
| |
Collapse
|
9
|
Aqueous Date Flesh or Pits Extract Attenuates Liver Fibrosis via Suppression of Hepatic Stellate Cell Activation and Reduction of Inflammatory Cytokines, Transforming Growth Factor- β 1 and Angiogenic Markers in Carbon Tetrachloride-Intoxicated Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:247357. [PMID: 25945106 PMCID: PMC4402562 DOI: 10.1155/2015/247357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 01/18/2023]
Abstract
Previous data indicated the protective effect of date fruit extract on oxidative damage in rat liver. However, the hepatoprotective effects via other mechanisms have not been investigated. This study was performed to evaluate the antifibrotic effect of date flesh extract (DFE) or date pits extract (DPE) via inactivation of hepatic stellate cells (HSCs), reducing the levels of inflammatory, fibrotic and angiogenic markers. Coffee was used as reference hepatoprotective agent. Liver fibrosis was induced by injection of CCl4 (0.4 mL/kg) three times weekly for 8 weeks. DFE, DPE (6 mL/kg), coffee (300 mg/kg), and combination of coffee + DFE and coffee + DPE were given to CCl4-intoxicated rats daily for 8 weeks. DFE, DPE, and their combination with coffee attenuated the elevated levels of inflammatory cytokines including tumor necrosis factor-α, interleukin-6, and interleukin-1β. The increased levels of transforming growth factor-β1 and collagen deposition in injured liver were alleviated by both extracts. CCl4-induced expression of α-smooth muscle actin was suppressed indicating HSCs inactivation. Increased angiogenesis was ameliorated as revealed by reduced levels and expression of vascular endothelial growth factor and CD31. We concluded that DFE or DPE could protect liver via different mechanisms. The combination of coffee with DFE or DPE may enhance its antifibrotic effects.
Collapse
|
10
|
Harris TR, Bettaieb A, Kodani S, Dong H, Myers R, Chiamvimonvat N, Haj FG, Hammock BD. Inhibition of soluble epoxide hydrolase attenuates hepatic fibrosis and endoplasmic reticulum stress induced by carbon tetrachloride in mice. Toxicol Appl Pharmacol 2015; 286:102-11. [PMID: 25827057 DOI: 10.1016/j.taap.2015.03.022] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Revised: 03/18/2015] [Accepted: 03/20/2015] [Indexed: 12/26/2022]
Abstract
Liver fibrosis is a pathological condition in which chronic inflammation and changes to the extracellular matrix lead to alterations in hepatic tissue architecture and functional degradation of the liver. Inhibitors of the enzyme soluble epoxide hydrolase (sEH) reduce fibrosis in the heart, pancreas and kidney in several disease models. In this study, we assess the effect of sEH inhibition on the development of fibrosis in a carbon tetrachloride (CCl4)-induced mouse model by monitoring changes in the inflammatory response, matrix remolding and endoplasmic reticulum stress. The sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea (TPPU) was administered in drinking water. Collagen deposition in the liver was increased five-fold in the CCl4-treated group, and this was returned to control levels by TPPU treatment. Hepatic expression of Col1a2 and 3a1 mRNA was increased over fifteen-fold in the CCl4-treated group relative to the Control group, and this increase was reduced by 50% by TPPU treatment. Endoplasmic reticulum (ER) stress observed in the livers of CCl4-treated animals was attenuated by TPPU treatment. In order to support the hypothesis that TPPU is acting to reduce the hepatic fibrosis and ER stress through its action as a sEH inhibitor we used a second sEH inhibitor, trans-4-{4-[3-(4-trifluoromethoxy-phenyl)-ureido]-cyclohexyloxy}-benzoic acid (t-TUCB), and sEH null mice. Taken together, these data indicate that the sEH may play an important role in the development of hepatic fibrosis induced by CCl4, presumably by reducing endogenous fatty acid epoxide chemical mediators acting to reduce ER stress.
Collapse
Affiliation(s)
- Todd R Harris
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Ahmed Bettaieb
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Sean Kodani
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Hua Dong
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Richard Myers
- Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616, USA
| | - Nipavan Chiamvimonvat
- Department of Internal Medicine: Cardiovascular, University of California, Davis, CA 95616, USA
| | - Fawaz G Haj
- Department of Nutrition, University of California, Davis, CA 95616, USA; Department of Internal Medicine: Endocrinology, Diabetes and Metabolism, University of California, Davis, CA 95616, USA
| | - Bruce D Hammock
- Department of Entomology and Comprehensive Cancer Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
11
|
Wen SL, Gao JH, Yang WJ, Lu YY, Tong H, Huang ZY, Liu ZX, Tang CW. Celecoxib attenuates hepatic cirrhosis through inhibition of epithelial-to-mesenchymal transition of hepatocytes. J Gastroenterol Hepatol 2014; 29:1932-42. [PMID: 24909904 DOI: 10.1111/jgh.12641] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/01/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM The epithelial-mesenchymal transition (EMT) of hepatocytes is a key step for hepatic fibrosis and cirrhosis. Long-term administration of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, can ameliorate hepatic fibrosis. This research aimed to examine the effect of celecoxib on the EMT of hepatocytes during the development of liver cirrhosis. METHODS Cirrhotic liver model of rat was established by peritoneal injection of thiacetamide (TAA). Thirty-six rats were randomly assigned to control, TAA, and TAA + celecoxib groups. Hepatic expressions of tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), COX-2, prostaglandin E2 (PGE2 ), matrix metalloproteinase (MMP)-2 and -9, transforming growth factor-β1 (TGF-β1), Phospho-Smad2/3, Snail1, α-smooth muscle actin (α-SMA), vimentin, collagen I, fibroblast-specific protein (FSP-1), E-cadherin and N-cadherin were quantitated. Hepatic fibrosis was assessed by the visible hepatic fibrotic areas and Ishak's scoring system. RESULTS Exposed to TAA treatment, hepatocytes underwent the process of EMT during hepatic fibrosis. Compared with those in TAA group, celecoxib significantly downregulated the hepatic expressions of TNF-α, IL-6, COX-2, PGE2 , MMP-2, MMP-9, TGF-β1, Phospho-Smad2/3, Snail1, α-SMA, FSP-1, and vimentin while greatly restoring the levels of E-cadherin. The fibrotic areas and collagen I levels of TAA + celecoxib group were much lower than those in TAA group. CONCLUSIONS Celecoxib could ameliorate hepatic fibrosis and cirrhosis in TAA-rat model through suppression of the mesenchymal biomarkers in the hepatocytes while restoring the levels of their epithelial biomarkers. The inhibitory effect of celecoxib on the EMT of hepatocytes is associated with reduction of intrahepatic inflammation, preservation of normal basement matrix, and inhibition of TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Shi-Lei Wen
- Regenerative Medicine Research Center, West China Hospital, Chengdu, China; Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bahde R, Kapoor S, Gupta S. Nonselective inhibition of prostaglandin-endoperoxide synthases by naproxen ameliorates acute or chronic liver injury in animals. Exp Mol Pathol 2013; 96:27-35. [PMID: 24220607 DOI: 10.1016/j.yexmp.2013.10.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022]
Abstract
The rising prevalence of hepatic injury due to toxins, metabolites, viruses, etc., necessitates development of further mechanisms for protecting the liver and for treating acute or chronic liver diseases. To examine whether inhibition of inflammation is directed by cyclo-oxygenase pathways, we performed animal studies with naproxen, which inhibits prostaglandin-endoperoxide synthases 1 and 2 and is in extensive clinical use. We administered carbon tetrachloride to induce acute liver injury and ligated the common bile duct to induce chronic liver injury in adult rats. These experimental manipulations produced abnormalities in liver tests, tissue necrosis, compensatory hepatocyte or biliary proliferation, and onset of fibrosis, particularly after bile duct ligation. After carbon tetrachloride-induced acute injury, naproxen decreased liver test abnormalities, tissue necrosis and compensatory hepatocellular proliferation. After bile duct ligation-induced chronic injury, naproxen decreased liver test abnormalities, tissue injury and compensatory biliary hyperplasia. Moreover, after bile duct ligation, naproxen-treated rats showed more periductular oval liver cells, which have been classified as hepatic progenitor cells. In naproxen-treated rats, we found greater expression in hepatic stellate cells and mononuclear cells of cytoprotective factors, such as vascular endothelial growth factor. The ability of naproxen to induce expression of vascular endothelial growth factor was verified in cell culture studies with CFSC-8B clone of rat hepatic stellate cells. Whereas assays for carbon tetrachloride toxicity using cultured primary hepatocytes established that naproxen was not directly cytoprotective, we found conditioned medium containing vascular endothelial growth factor from naproxen-treated CFSC-8B cells protected hepatocytes from carbon tetrachloride toxicity. Therefore, naproxen was capable of ameliorating toxic liver injury, which involved naproxen-induced release of physiological cytoprotective factors in nonparenchymal liver cells. Such drug-induced release of endogenous cytoprotectants will advance therapeutic development for hepatic injury.
Collapse
Affiliation(s)
- Ralf Bahde
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Surgical Research, Department of General and Visceral Surgery, University Hospital, Muenster, Germany
| | - Sorabh Kapoor
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sanjeev Gupta
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, and Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
13
|
Li XE, Zhu L, Liu TCY. Fibrosis Inhibition of Photobiomodulation Promoted Regeneration. Photomed Laser Surg 2013; 31:505-6. [DOI: 10.1089/pho.2013.3513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Xing-Er Li
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Ling Zhu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| | - Timon Cheng-Yi Liu
- Laboratory of Laser Sports Medicine, South China Normal University, Guangzhou, China
| |
Collapse
|
14
|
Gao JH, Wen SL, Yang WJ, Lu YY, Tong H, Huang ZY, Liu ZX, Tang CW. Celecoxib ameliorates portal hypertension of the cirrhotic rats through the dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. PLoS One 2013; 8:e69309. [PMID: 23922700 PMCID: PMC3724827 DOI: 10.1371/journal.pone.0069309] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/12/2013] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Increased intra-hepatic resistance to portal blood flow is the primary factor leading to portal hypertension in cirrhosis. Up-regulated expression of cyclooxygenase-2 (COX-2) in the cirrhotic liver might be a potential target to ameliorate portal hypertension. OBJECTIVE To verify the effect of celecoxib, a selective inhibitor of COX-2, on portal hypertension and the mechanisms behind it. METHODS Cirrhotic liver model of rat was established by peritoneal injection of thiacetamide (TAA). 36 rats were randomly assigned to control, TAA and TAA+celecoxib groups. Portal pressures were measured by introduction of catheters into portal vein. Hepatic fibrosis was assessed by the visible hepatic fibrotic areas and mRNAs for collagen III and α-SMA. The neovasculature was determined by hepatic vascular areas, vascular casts and CD31 expression. Expressions of COX-2, vascular endothelial growth factor (VEGF), VEGF receptor-2 (VEGFR-2) and related signal molecules were quantitated. RESULTS Compared with TAA group, the portal pressure in TAA+celecoxib group was significantly decreased by 17.8%, p<0.01. Celecoxib treatment greatly reduced the tortuous hepatic portal venules. The data of fibrotic areas, CD31expression, mRNA levels of α-SMA and collagen III in TAA+celecoxib group were much lower than those in TAA group, p<0.01. Furthermore, the up-regulation of hepatic mRNA and protein levels of VEGF, VEGFR-2 and COX-2 induced by TAA was significantly inhibited after celecoxib treatment. The expressions of prostaglandin E2 (PGE2), phosphorylated extracellular signal-regulated kinase (p-ERK), hypoxia-inducible factor-1α (HIF-1α), and c-fos were also down-regulated after celecoxib treatment. CONCLUSIONS Long term administration of celecoxib can efficiently ameliorate portal hypertension in TAA rat model by its dual inhibitory effects on the intrahepatic fibrosis and angiogenesis. The anti-angiogenesis effect afforded by celecoxib may attribute to its modulation on VEGF/VEGFR-2 through the down-regulation of integrated signal pathways involving PGE2- HIF-1α- VEGF and p-ERK- c-fos- VEGFR-2.
Collapse
Affiliation(s)
- Jin-Hang Gao
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Shi-Lei Wen
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wen-Juan Yang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yao-Yao Lu
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Tong
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yin Huang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhang-Xu Liu
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Cheng-Wei Tang
- Division of Peptides Related with Human Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- * E-mail:
| |
Collapse
|
15
|
An orally available small imidazolium salt ameliorates inflammation and fibrosis in a murine model of cholestasis. J Transl Med 2011; 91:752-63. [PMID: 21339743 DOI: 10.1038/labinvest.2011.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hepatic fibrosis is the result of chronic liver injuries underlined by diverse etiologies. The massive accumulation of extracellular matrix (ECM) proteins during fibrogenesis leads to structural distortion and functional disruption of the liver. There is currently no effective standard treatment for liver fibrosis. We previously identified a class of imidazolium salts (IMSs) with anti-fibrotic properties in a cell-based screen. In this report, we investigated the anti-fibrotic efficacy and mechanisms of a small IMS, 1,3-diisopropylimidazolium tetrafluoroborate (DPIM), in a hepatic fibrosis model induced by bile duct ligation (BDL) in mice. The orally available DPIM was administered to BDL mice via drinking water at three concentrations (0.5, 0.75, and 1 g/l) for 4 weeks. We observed a significant reduction in inflammation and collagen deposition in the liver, which could be mediated by a reduction in the expression of monocyte chemoattractant protein-1 (MCP-1) and by an enhancement in the matrix metalloproteinase-mediated ECM remodeling. The current findings highlight the importance for simultaneously targeting multiple pathways to more effectively attenuate and resolve liver fibrosis and warrant further studies on this compound in additional models of hepatic fibrosis.
Collapse
|
16
|
Wang YXJ, Yuan J, Chu ESH, Go MYY, Huang H, Ahuja AT, Sung JJY, Yu J. T1rho MR imaging is sensitive to evaluate liver fibrosis: an experimental study in a rat biliary duct ligation model. Radiology 2011; 259:712-9. [PMID: 21436087 DOI: 10.1148/radiol.11101638] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
PURPOSE To correlate spin-lattice relaxation time in the rotating frame (T1ρ) measurements with degree of liver fibrosis in a rat model. MATERIALS AND METHODS The protocols and procedures were approved by the local Animal Experimentation Ethics Committee. Liver fibrosis was induced with biliary duct ligation (BDL). Two studies, 1 month apart, were performed with a 3-T clinical imager. The first study involved longitudinal magnetic resonance (MR) imaging follow-up of BDL rats (n = 8) and control rats (n = 4) on days 8, 15, 21, and 29 after BDL. The second study involved MR imaging of another group of BDL and control rats (n = 5 for each) on days 24 and 38 after BDL. Hematoxylin-eosin and picrosirius red staining were performed in liver specimens from days 8, 15, 24, and 38 after BDL. Repeated-measures analysis of variance was used, and treatment groups were compared (Bonferroni adjustment). RESULTS On day 8, there were proliferation of bile duct and inflammatory cell infiltration around portal triads. While there was overlap, BDL rats (n = 8) demonstrated higher mean liver T1ρ values than did control rats (n = 4) on day 8 (46.7 msec ± 2.9 [standard deviation] vs 44.7 msec ± 1.2, P = .4). On day 15, BDL rats demonstrated liver fibrosis with a background of inflammatory infiltration. On day 15, mean T1ρ values in BDL rats could be largely separated from those in control rats (52.6 msec ± 6.0 vs 43.8 msec ± 1.5, P = .02). On day 24, BDL rats had liver T1ρ values 23.5% higher than in control rats (n = 5 for each group, P = .0007). Histomorphometric analysis showed that collagen content increased after surgery from days 8 to 24 (n = 6 for each group, P < .0001), with no further increase between days 24 and 38 (n = 6 for each group, P >.99). CONCLUSION In this model, liver fibrosis was detected with T1ρ MR imaging; the degree of fibrosis was correlated with degree of increase in T1ρ measurements. SUPPLEMENTAL MATERIAL http://radiology.rsna.org/lookup/suppl/doi:10.1148/radiol.11101638/-/DC1.
Collapse
Affiliation(s)
- Yi-Xiang J Wang
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang H, Zhang Y, Wang T, You H, Jia J. N-methyl-4-isoleucine cyclosporine attenuates CCl -induced liver fibrosis in rats by interacting with cyclophilin B and D. J Gastroenterol Hepatol 2011; 26:558-67. [PMID: 21332552 DOI: 10.1111/j.1440-1746.2010.06406.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIM N-methyl-4-isoleucine cyclosporine (NIM811), a new analogue of cyclosporine A, can inhibit collagen deposition in vitro and reduce liver necrosis in a bile-duct-ligation animal model. However, whether NIM811 effects on CCl(4) -induced rat liver fibrosis, and the related mechanism has not been determined. METHODS A liver fibrosis model was induced in Wistar rats using CCl(4) for 6 weeks. Meanwhile, two different doses of NIM811 (low-dose 10 mg/kg and high-dose 20 mg/kg) were given to the CCl(4) -treated rats. Liver fibrosis was then evaluated according to histopathological scoring and liver hydroxyproline content. Serum alanine aminotransferase, aspartate aminotransferase and albumin levels, expression of matrix metalloproteinase-13, tissue inhibitor of metalloproteinase-1, α-smooth muscle actin and cyclophilin B and D in liver tissue were determined. Cyclophilin B and D were also studied in an hepatic stellate cell line. RESULTS Hydroxyproline content was decreased in both NIM811 groups compared with the model (P < 0.05). Liver necrosis and fibrosis were also attenuated in the NIM811 groups. NIM811 suppressed the expression of tissue inhibitor of metalloproteinase-1, transforming growth factor beta mRNA and α-smooth muscle actin protein in liver tissue. Expression of cyclophilin B in the fibrosis model was increased compared with the normal group (P < 0.05), and was decreased significantly in the low-dose NIM811 treatment group (P < 0.05), which indicated that cyclophilin B might have a profibrotic effect. In vitro studies revealed that cyclophilin B and/or D knockout were associated with collagen inhibition. CONCLUSIONS NIM811 attenuates liver fibrosis in a CCl(4)-induced rat liver fibrosis model, which may be related to binding with cyclophilin B and D.
Collapse
Affiliation(s)
- Hui Wang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | | | | | | | | |
Collapse
|
18
|
Chávez E, Segovia J, Shibayama M, Tsutsumi V, Vergara P, Castro-Sánchez L, Salazar EP, Moreno MG, Muriel P. Antifibrotic and fibrolytic properties of celecoxib in liver damage induced by carbon tetrachloride in the rat. Liver Int 2010; 30:969-78. [PMID: 20524983 DOI: 10.1111/j.1478-3231.2010.02256.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) plays a pivotal role in liver fibrosis, because it activates hepatic stellate cells, stimulating extracellular matrix deposition. Cyclooxygenase-2 (COX-2) has been associated with TGF-beta because its inhibition decreases TGF-beta expression and collagen production in some cultured cell types. AIM The aim of this work was to evaluate the ability of celecoxib (a selective COX-2 inhibitor) to prevent and to reverse the liver fibrosis induced by CCl(4). METHODS We established experimental groups of rats including vehicle and drug controls, damage induced by chronic CCl(4) administration and CCl(4) plus pharmacological treatment in both prevention and reversion models. We determined: alanine aminotransferase, alkaline phosphatase, gamma-glutamyl transpeptidase, COX and metalloproteinase-2 and -9 activities, lipid peroxidation, glutathione levels, glycogen and collagen content and TGF-beta expression. RESULTS Celecoxib prevented and aided to the recovery of livers with necrotic and cholestatic damage. Celecoxib exhibited anti-oxidant properties by restoring the redox equilibrium (lipid peroxidation and glutathione levels). Glycogen was decreased by CCl(4), while celecoxib partially prevented and reversed this effect. Celecoxib inhibited COX-2 activity, decreased TGF-beta expression, induced metalloproteinase-2 activity and, consequently, prevented and reversed collagen accumulation. CONCLUSION Our findings indicate that celecoxib exerts strong antifibrogenic and fibrolytic effects in the CCl(4) model of cirrhosis.
Collapse
Affiliation(s)
- Enrique Chávez
- Departamento de Farmacología, Cinvestav-IPN., México, D.F. México
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kapoor S, Bahde R. Inability of celecoxib to prevent fibrosis in bile duct-ligated rat liver. Liver Int 2009; 29:1125; author reply 1125-6. [PMID: 19508621 DOI: 10.1111/j.1478-3231.2009.02019.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|