1
|
Therapeutic effect of hepatocyte growth factor-overexpressing bone marrow-derived mesenchymal stem cells on CCl 4-induced hepatocirrhosis. Cell Death Dis 2018; 9:1186. [PMID: 30538216 PMCID: PMC6290007 DOI: 10.1038/s41419-018-1239-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 11/13/2018] [Accepted: 11/23/2018] [Indexed: 12/24/2022]
Abstract
Hepatocirrhosis is one of the most severe complications of chronic hepatic disease in terms of medical intervention, and the available therapies are limited and not very successful. In this study, bone marrow-derived mesenchymal stem cells (BM-MSCs) from host rats were transduced with an adenoviral vector labelled with green fluorescent protein (EGFP) to overexpress hepatocyte growth factor (HGF). The therapeutic effect of these modified stem cells (HGF-BM-MSC group) transplanted intravenously into hepatocirrhosis model rats treated with CCl4 was evaluated using serological, biochemical and histological approaches. We compared the rats in the HGF-BM-MSC group with those in the other groups (rats treated with BM-MSCs, rats treated with HGF and untreated rats (Controls)) in detail. The localisation of EGFP-tagged BM-MSCs in the injured liver was evaluated using a microscope, and the cells co-expressed hepatocyte nuclear factor 4α, albumin and cytokeratin 18. After treatment for 4 weeks, the HGF-BM-MSC, BM-MSC and HGF groups exhibited increased protein and mRNA levels of hepatocyte nuclear factor 4α, albumin and cytokeratin 18, but decreased levels of aspartate aminotransferase, alanine aminotransferase and total bilirubin. These findings indicate that BM-MSC transplantation and HGF application have great potential for the treatment of hepatocirrhosis.
Collapse
|
2
|
Ebrahimi H, Naderian M, Sohrabpour AA. New Concepts on Reversibility and Targeting of Liver Fibrosis; A Review Article. Middle East J Dig Dis 2018; 10:133-148. [PMID: 30186577 PMCID: PMC6119836 DOI: 10.15171/mejdd.2018.103] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/10/2018] [Indexed: 12/12/2022] Open
Abstract
Currently, liver fibrosis and its complications are regarded as critical health problems.
With the studies showing the reversible nature of liver fibrogenesis, scientists have focused
on understanding the underlying mechanism of this condition in order to develop new
therapeutic strategies. Although hepatic stellate cells are known as the primary cells
responsible for liver fibrogenesis, studies have shown contributing roles for other cells,
pathways, and molecules in the development of fibrosis depending on the etiology of
liver fibrosis. Hence, interventions could be directed in the proper way for each type of
liver diseases to better address this complication. There are two main approaches in clinical
reversion of liver fibrosis; eliminating the underlying insult and targeting the fibrosis
process, which have variable clinical importance in the treatment of this disease. In this
review, we present recent concepts in molecular pathways of liver fibrosis reversibility
and their clinical implications.
Collapse
Affiliation(s)
- Hedyeh Ebrahimi
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Naderian
- The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ali Sohrabpour
- Associate Professor, The Liver, Pancreatic, and Biliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
El-Lakkany NM, El-Maadawy WH, Seif El-Din SH, Saleh S, Safar MM, Ezzat SM, Mohamed SH, Botros SS, Demerdash Z, Hammam OA. Antifibrotic effects of gallic acid on hepatic stellate cells: In vitro and in vivo mechanistic study. J Tradit Complement Med 2018; 9:45-53. [PMID: 30671365 PMCID: PMC6335492 DOI: 10.1016/j.jtcme.2018.01.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 02/07/2023] Open
Abstract
Few studies reported the antifibrotic effects of gallic acid (GA) despite its known hepatoprotective and antioxidant activities. Accordingly, this study investigated the antifibrotic effects of GA through clarifying its mechanisms on hepatic stellate cells' (HSCs) activation, proliferation and/or apoptosis. In vitro effects of GA on HSC-T6 activation/proliferation, morphology and safety on hepatocytes were assessed. In vivo, hepatic fibrosis was induced via chronic thioacetamide (TAA)-intoxication. TAA-intoxicated rats were treated with silyamrin or GA. At end of experiment, liver functions, hepatic MDA, GSH, PDGF-BB, TGF-β1, TIMP-1 and hydroxyproline were determined. Histological analysis and Sirius red staining of hepatic sections, expressions of alpha-smooth muscle actin (α-SMA), proliferating cellular nuclear antigen (PCNA) and caspase-3 were examined. In vitro, GA resulted in a concentration and time-dependent inhibition in HSCs activation, proliferation (IC50= 45 and 19 μg/mL at 24 and 48 h respectively); restored the quiescent morphology of some activated HSCs plus its safety on hepatocytes. In vivo, GA reduced ALT, AST, MDA, PDGF-BB levels, collagen deposition and fibrosis score (S1 vs S4); increased caspase-3 expression and restored GSH stores, TGF-β1 level, α-SMA and PCNA expressions. In conclusion, GA counteracted the progression of hepatic fibrosis through reduction of HSCs proliferation/activation mutually with their apoptosis induction.
Collapse
Affiliation(s)
- Naglaa M El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Sayed H Seif El-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, Suez Desert Road, P.O. Box 43, ElSherouk City, Cairo 11837, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October, Giza 12566, Egypt
| | - Salwa H Mohamed
- Department of Immunology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Sanaa S Botros
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Zeinab Demerdash
- Department of Immunology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Olfat A Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| |
Collapse
|
4
|
El-Lakkany NM, El-Maadawy WH, Seif El-Din SH, Hammam OA, Mohamed SH, Ezzat SM, Safar MM, Saleh S. Rosmarinic acid attenuates hepatic fibrogenesis via suppression of hepatic stellate cell activation/proliferation and induction of apoptosis. ASIAN PAC J TROP MED 2017. [PMID: 28647181 DOI: 10.1016/j.apjtm.2017.05.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the antifibrotic role of rosmarinic acid (RA), a natural polyphenolic compound, on HSCs activation/proliferation and apoptosis in vitro and in vivo. METHODS The impact of RA on stellate cell line (HSC-T6) proliferation, activation and apoptosis was assessed along with its safety on primary hepatocytes. In vivo, rats were divided into: (i) normal; (ii) thioacetamide (TAA)-intoxicated rats for 12 weeks; (iii) TAA + silymarin or (iv) TAA + RA. At the end of experiment, liver functions, oxidative stress, inflammatory and profibrogenic markers, tissue inhibitor metalloproteinases type-1 (TIMP-1) and hydroxyproline (HP) levels were evaluated. Additionally, liver histopathology and immunohistochemical examinations of alpha-smooth muscle actin (α-SMA), caspase-3 and proliferation cellular nuclear antigen (PCNA) were determined. RESULTS RA exhibited anti-proliferative effects on cultured HSCs in a time and concentration dependent manner showing an IC50 of 276 μg/mL and 171 μg/mL for 24 h and 48 h, respectively, with morphological reversion of activated stellate cell morphology to quiescent form. It significantly improved ALT, AST, oxidative stress markers and reduced TIMP-1, HP levels, inflammatory markers and fibrosis score (S1 vs S4). Furthermore, reduction in α-SMA plus elevation in caspase-3 expressions of HSCs in vitro and in vivo associated with an inhibition in proliferation of damaged hepatocytes were recorded. CONCLUSIONS RA impeded the progression of liver fibrosis through inhibition of HSCs activation/proliferation and induction of apoptosis with preservation of hepatic architecture.
Collapse
Affiliation(s)
- Naglaa M El-Lakkany
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt.
| | - Walaa H El-Maadawy
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Sayed H Seif El-Din
- Department of Pharmacology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Olfat A Hammam
- Department of Pathology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Salwa H Mohamed
- Department of Immunology, Theodor Bilharz Research Institute, Warak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Marwa M Safar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Samira Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
5
|
Atta HM, Al-Hendy AA, Abdel Raheim SR, Abdel-Ghany H, Nasif KA, Abdellah AM, Zenhom NM, Kamel HS. Modified Adenovirus Reduces De Novo Peritoneal Adhesions in Rats and Limits Off-Target Transfection. Role of EZH2 in Adhesion Formation. J INVEST SURG 2016; 30:78-87. [PMID: 27690696 DOI: 10.1080/08941939.2016.1229366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AIM OF THE STUDY Adenovector encoding tissue plasminogen activator (tPA) was shown to reduce experimental peritoneal adhesion. We investigated the targeting potential of our modified adenovector, its ability to reduce adhesions and the epigenetic role of histone methyltransferase EZH2 in adhesion formation. MATERIALS AND METHODS Control lacZ, nonmodified tPA or modified tPA vectors were instilled in the peritoneal cavity after injury in de novo adhesions or after lysis of adhesions in recurrent adhesions. Adhesion severity was scored and adhesions and liver tissues were examined for adenovirus E4 gene and tPA mRNA expression. Levels of tPA, plasminogen activator inhibitor-1 (PAI-1), transforming growth factor-β1 (TGF-β1), and EZH2 expression were measured. RESULTS E4 transcripts were detected in adhesions of nonmodified and modified and in livers of nonmodified but not in livers of modified de novo adhesions. Both nonmodified (p = 0.021) and modified vectors (p = 0.036) reduced the severity of de novo adhesions compared to lacZ vector. Levels of tPA in nonmodified (p = 0.021) and modified adhesions (p = 0.001) were elevated while PAI-1 (p = 0.013 and p = 0.001, respectively) and TGF-β1 levels (p = 0.002 and p = 0.016, respectively) were reduced compared with lacZ group. All vectors were not expressed in recurrent adhesions and severity score were not different among groups. EZH2 levels were elevated in de novo nontreated (p = 0.001) and was further increased in recurrent (p = 0.001) nontreated adhesions compared with noninjured peritoneum. CONCLUSION Modified adenovirus successfully targeted de novo adhesions but not liver tissues and reduced the severity of de novo adhesions. EZH2 is involved in the development and progression of peritoneal adhesions.
Collapse
Affiliation(s)
- Hussein M Atta
- a Department of Surgery , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Ayman A Al-Hendy
- b Department of Obstetrics and Gynecology , Georgia Regents University , Augusta , Georgia , USA
| | - Salama R Abdel Raheim
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Hend Abdel-Ghany
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Khalid A Nasif
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Ahlam M Abdellah
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Nagwa M Zenhom
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| | - Heba S Kamel
- c Department of Biochemistry , Faculty of Medicine, Minia University , El-Minia , Egypt
| |
Collapse
|
6
|
Fang YL, Chen XG, W T G. Gene delivery in tissue engineering and regenerative medicine. J Biomed Mater Res B Appl Biomater 2014; 103:1679-99. [PMID: 25557560 DOI: 10.1002/jbm.b.33354] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/07/2014] [Accepted: 11/18/2014] [Indexed: 12/13/2022]
Abstract
As a promising strategy to aid or replace tissue/organ transplantation, gene delivery has been used for regenerative medicine applications to create or restore normal function at the cell and tissue levels. Gene delivery has been successfully performed ex vivo and in vivo in these applications. Excellent proliferation capabilities and differentiation potentials render certain cells as excellent candidates for ex vivo gene delivery for regenerative medicine applications, which is why multipotent and pluripotent cells have been intensely studied in this vein. In this review, gene delivery is discussed in detail, along with its applications to tissue engineering and regenerative medicine. A definition of a stem cell is compared to a definition of a stem property, and both provide the foundation for an in-depth look at gene delivery investigations from a germ lineage angle.
Collapse
Affiliation(s)
- Y L Fang
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - X G Chen
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| | - Godbey W T
- Department of Chemical & Biomolecular Engineering, Laboratory for Gene Therapy and Cellular Engineering, Tulane University, 300 Lindy Boggs Center, New Orleans, Louisiana, 70118
| |
Collapse
|
7
|
Mutant MMP-9 and HGF gene transfer enhance resolution of CCl4-induced liver fibrosis in rats: role of ASH1 and EZH2 methyltransferases repression. PLoS One 2014; 9:e112384. [PMID: 25380300 PMCID: PMC4224431 DOI: 10.1371/journal.pone.0112384] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 10/03/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatocyte growth factor (HGF) gene transfer inhibits liver fibrosis by regulating aberrant cellular functions, while mutant matrix metalloproteinase-9 (mMMP-9) enhances matrix degradation by neutralizing the elevated tissue inhibitor of metalloproteinase-1 (TIMP-1). It was shown that ASH1 and EZH2 methyltransferases are involved in development of liver fibrosis; however, their role in the resolution phase of liver fibrosis has not been investigated. This study evaluated the role of ASH1 and EZH2 in two mechanistically different therapeutic modalities, HGF and mMMP-9 gene transfer in CCl4 induced rat liver fibrosis. Liver fibrosis was induced in rats with twice a week intraperitoneal injection of CCl4 for 8 weeks. Adenovirus vectors encoding mMMP-9 or HGF genes were injected through tail vein at weeks six and seven and were sacrificed one week after the second injection. A healthy animal group was likewise injected with saline to serve as a negative control. Rats treated with mMMP-9 showed significantly lower fibrosis score, less Sirius red stained collagen area, reduced hydroxyproline and ALT concentration, decreased transforming growth factor beta 1 (TGF-β1) mRNA and lower labeling indices of α smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) stained cells compared with HGF- or saline-treated rats. Furthermore, TIMP-1 protein expression in mMMP-9 group was markedly reduced compared with all fibrotic groups. ASH1 and EZH2 protein expression was significantly elevated in fibrotic liver and significantly decreased in mMMP-9- and HGF-treated compared to saline-treated fibrotic livers with further reduction in the mMMP-9 group. Conclusion: Gene transfer of mMMP-9 and HGF reduced liver fibrosis in rats. ASH1 and EZH2 methyltransferases are significantly reduced in mMMP-9 and HGF treated rats which underlines the central role of these enzymes during fibrogenesis. Future studies should evaluate the role of selective pharmacologic inhibitors of ASH1 and EZH2 in resolution of liver fibrosis.
Collapse
|
8
|
Zhou YC, Chen S, Cao JJ, Chen SY, Xie YF, Niu QX. Adenovirus-mediated viral interleukin-10 gene transfer prevents concanavalin A-induced liver injury. Dig Liver Dis 2012; 44:398-405. [PMID: 22209949 DOI: 10.1016/j.dld.2011.11.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 11/14/2011] [Accepted: 11/25/2011] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIM Liver injury is closely associated with immune inflammation. Lacking immunostimulatory functions, viral interleukin-10 (vIL-10), a cellular IL-10 homologue, has been an attractive molecule for immunomodulatory therapy. We aimed to reveal a protective effect of the gene transfer of an adenoviral vector encoding vIL-10 on liver injury induced by concanavalin A. METHODS C57BL/6J mice were intravenously injected with adenoviral vector encoding vIL-10 before concanavalin A challenge. Liver injury was assessed. Interferon-γ and interleukin-4 levels were measured by ELISA. The activation of splenic and hepatic immune cells was analysed using an MTT assay. RESULTS Adenoviral vector encoding vIL-10 pretreatment significantly decreased concanavalin A-mediated elevations in serum alanine aminotransaminase and aspartate aminotransaminase activity, and necrotic area in liver tissues. The protective effect of adenoviral vector encoding vIL-10 was attributed to its inhibition of T cell activation, and production of interferon-γ and interleukin-4 by the immune cells. Recombinant mouse IL-10, a high homologous cytokine to vIL-10, effectively downregulated interferon-γ and interleukin-4 release by hepatic mononuclear cells. CONCLUSION Adenovirus vector-mediated vIL-10 gene transfer can prevent concanavalin A-induced hepatic injury, minimise pro-inflammatory cytokine release, and inhibit the activation of T lymphocytes.
Collapse
Affiliation(s)
- Yan-Chun Zhou
- Institute of Inflammation and Immune Diseases, Shantou University Medical College, Shantou, Guangdong, China
| | | | | | | | | | | |
Collapse
|
9
|
Kuramitsu K, Gallo D, Yoon M, Chin BY, Csizmadia E, Hanto DW, Otterbein LE. Carbon monoxide enhances early liver regeneration in mice after hepatectomy. Hepatology 2011; 53:2016-26. [PMID: 21433045 PMCID: PMC3103654 DOI: 10.1002/hep.24317] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocyte proliferation early after liver resection is critical in restoring liver mass and preserving function as the liver regenerates. Carbon monoxide (CO) generated by heme oxygenase-1 (HO-1) strongly influences cellular proliferation and both HO-1 and CO are accepted hepatoprotective molecules. Mice lacking functional HO-1 were unable to mount an appropriate regenerative response following partial hepatectomy (PHTx) compared to wildtype controls. We therefore hypothesized that exogenous administration of CO at low, nontoxic concentrations would modulate hepatocyte (HC) proliferation and liver regeneration. Animals treated with a low concentration of CO 1 hour prior to 70% hepatectomy demonstrated enhanced expression of hepatocyte growth factor (HGF) in the liver compared to controls that correlated with a more rapid onset of HC proliferation as measured by phospho-histone3 staining, increased expression of cyclins D1 and E, phosphorylated retinoblastoma, and decreased expression of the mitotic inhibitor p21. PHTx also increased activation of the HGF receptor c-Met, which was detected more then 9 hours earlier in the livers of CO-treated mice. Blockade of c-Met resulted in abrogation of the CO effects on HC proliferation. Corresponding with increased HC proliferation, treatment with CO maintained liver function with normal prothrombin times versus a 2-fold prolongation in controls. In a lethal 85% PHTx, CO-treated mice showed a greater survival rate compared to controls. In vitro, CO increased HGF expression in hepatic stellate cells, but not HC, and when cocultured together led to increased HC proliferation. In summary, we demonstrate that administration of exogenous CO enhances rapid and early HC proliferation and, importantly, preserves function following PHTx. Taken together, CO may offer a viable therapeutic option to facilitate rapid recovery following PHTx.
Collapse
Affiliation(s)
- Kaori Kuramitsu
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - David Gallo
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Myunghee Yoon
- Department of Surgery, Goepel Hospital and Kosin University, Busan, Korea
| | - Beek Y. Chin
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Eva Csizmadia
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Douglas W. Hanto
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Leo E. Otterbein
- Division of Transplantation, Department of Surgery, Transplant Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
10
|
Chen FM, An Y, Zhang R, Zhang M. New insights into and novel applications of release technology for periodontal reconstructive therapies. J Control Release 2011; 149:92-110. [DOI: 10.1016/j.jconrel.2010.10.021] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 10/13/2010] [Indexed: 02/09/2023]
|
11
|
Atta HM. Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 2010; 16:4019-30. [PMID: 20731015 PMCID: PMC2928455 DOI: 10.3748/wjg.v16.i32.4019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 02/06/2023] Open
Abstract
The liver is an exceptional organ, not only because of its unique anatomical and physiological characteristics, but also because of its unlimited regenerative capacity. Unfolding of the molecular mechanisms that govern liver regeneration has allowed researchers to exploit them to augment liver regeneration. Dramatic progress in the field, however, was made by the introduction of the powerful tool of gene therapy. Transfer of genetic materials, such as hepatocyte growth factor, using both viral and non-viral vectors has proved to be successful in augmenting liver regeneration in various animal models. For future clinical studies, ongoing research aims at eliminating toxicity of viral vectors and increasing transduction efficiency of non-viral vectors, which are the main drawbacks of these systems. Another goal of current research is to develop gene therapy that targets specific liver cells using receptors that are unique to and highly expressed by different liver cell types. The outcome of such investigations will, undoubtedly, pave the way for future successful clinical trials.
Collapse
|
12
|
Toward delivery of multiple growth factors in tissue engineering. Biomaterials 2010; 31:6279-308. [PMID: 20493521 DOI: 10.1016/j.biomaterials.2010.04.053] [Citation(s) in RCA: 456] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Accepted: 04/22/2010] [Indexed: 02/06/2023]
Abstract
Inspired by physiological events that accompany the "wound healing cascade", the concept of developing a tissue either in vitro or in vivo has led to the integration of a wide variety of growth factors (GFs) in tissue engineering strategies in an effort to mimic the natural microenvironments of tissue formation and repair. Localised delivery of exogenous GFs is believed to be therapeutically effective for replication of cellular components involved in tissue development and the healing process, thus making them important factors for tissue regeneration. However, any treatment aiming to mimic the critical aspects of the natural biological process should not be limited to the provision of a single GF, but rather should release multiple therapeutic agents at an optimised ratio, each at a physiological dose, in a specific spatiotemporal pattern. Despite several obstacles, delivery of more than one GF at rates mimicking an in vivo situation has promising potential for the clinical management of severely diseased tissues. This article summarises the concept of and early approaches toward the delivery of dual or multiple GFs, as well as current efforts to develop sophisticated delivery platforms for this ambitious purpose, with an emphasis on the application of biomaterials-based deployment technologies that allow for controlled spatial presentation and release kinetics of key biological cues. Additionally, the use of platelet-rich plasma or gene therapy is addressed as alternative, easy, cost-effective and controllable strategies for the release of high concentrations of multiple endogenous GFs, followed by an update of the current progress and future directions of research utilising release technologies in tissue engineering and regenerative medicine.
Collapse
|