1
|
Pio L, O'Neill AF, Woodley H, Murphy AJ, Tiao G, Franchi-Abella S, Fresneau B, Watanabe K, Alaggio R, Lopez-Terrada D, Hiyama E, Branchereau S. Hepatoblastoma. Nat Rev Dis Primers 2025; 11:36. [PMID: 40404742 DOI: 10.1038/s41572-025-00620-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/17/2025] [Indexed: 05/24/2025]
Abstract
Hepatoblastoma is the most common primary liver cancer in children, with an incidence of approximately 1.5 cases per million children per year. Most cases are sporadic, typically presenting at a median age of 18 months, with only 5% occurring after 4 years of age. Clinical presentation often includes an abdominal mass and, less commonly, abdominal pain, weight loss, jaundice and precocious puberty. Low birth weight is a significant risk factor, along with genetic conditions such as Beckwith-Wiedemann syndrome, Simpson-Golabi-Behmel syndrome, familial adenomatous polyposis and trisomy 18. Screening protocols for hepatoblastoma are recommended for children with predisposing conditions. Medical imaging is crucial for hepatoblastoma diagnosis and staging, with abdominal ultrasonography being the initial modality of choice, followed by abdominal contrast MRI for detailed evaluation and monitoring. Chest computer tomography is indicated to evaluate potential lung metastases. The Pretreatment Extent of Disease (PRETEXT) system is employed for hepatoblastoma staging and for guiding treatment strategies such as surgical resection and chemotherapy. Patients with advanced hepatoblastoma may require liver transplantation. Advancements in surgery and chemotherapy have improved survival rates, with 5-year survival rates exceeding 80-90% in localized disease. However, challenges remain in treating individuals with high-risk and metastatic hepatoblastoma. Ongoing research into treatment stratification, the introduction of novel therapies, including targeted and immune therapies, and the application of otoprotectants are essential to address refractory or recurrent hepatoblastoma and to increase the overall survival of patients. Long-term quality of life and the management of treatment-related sequelae are becoming increasingly important as survival rates improve.
Collapse
Affiliation(s)
- Luca Pio
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Paediatric Surgery Unit, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.
| | - Allison F O'Neill
- Department of Paediatric Oncology, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Helen Woodley
- Department of Paediatric Radiology, Leeds Children's Hospital, Leeds, UK
| | - Andrew J Murphy
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gregory Tiao
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Stefanie Franchi-Abella
- Department of Paediatric Radiology, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Brice Fresneau
- Department of Children and Adolescents Oncology, Gustave Roussy, University Paris Saclay and Radiation Epidemiology Team, CESO, Inserm U1018, Villejuif, France
| | - Kenichiro Watanabe
- Department of Hematology and Oncology, Shizuoka Children's Hospital, Shizuoka, Japan
| | - Rita Alaggio
- Pathology Department, Ospedale Paediatrico Bambino Gesù IRCCS, Rome, Italy
| | - Dolores Lopez-Terrada
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Eiso Hiyama
- Department of Biomedical Science, Natural Science Center for Basic Research and Development (N-BARD), Hiroshima University, Hiroshima, Japan
| | - Sophie Branchereau
- Paediatric Surgery Unit, Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| |
Collapse
|
2
|
Fan L, Na J, Shi T, Liao Y. Hepatoblastoma: From Molecular Mechanisms to Therapeutic Strategies. Curr Oncol 2025; 32:149. [PMID: 40136353 PMCID: PMC11941340 DOI: 10.3390/curroncol32030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/23/2025] [Accepted: 03/02/2025] [Indexed: 03/27/2025] Open
Abstract
Hepatoblastoma (HB) is the most common malignant liver tumor in children under five years of age. Although globally rare, it accounts for a large proportion of liver cancer in children and has poor survival rates in high-risk and metastatic cases. This review discusses the molecular mechanisms, diagnostic methods, and therapeutic strategies of HB. Mutations in the CTNNB1 gene and the activation of the Wnt/β-catenin pathway are essential genetic factors. Furthermore, genetic syndromes like Beckwith-Wiedemann syndrome (BWS) and Familial Adenomatous Polyposis (FAP) considerably heighten the risk of associated conditions. Additionally, epigenetic mechanisms, such as DNA methylation and the influence of non-coding RNAs (ncRNAs), are pivotal drivers of tumor development. Diagnostics include serum biomarkers, immunohistochemistry (IHC), and imaging techniques. Standard treatments are chemotherapy, surgical resection, and liver transplantation (LT). Emerging therapies like immunotherapy and targeted treatments offer hope against chemotherapy resistance. Future research will prioritize personalized medicine, novel biomarkers, and molecular-targeted therapies to improve survival outcomes.
Collapse
Affiliation(s)
- Ling Fan
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Jintong Na
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| | - Tieliu Shi
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
- Center for Bioinformatics and Computational Biology, Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science (MOE), School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yuan Liao
- State Key Laboratory of Targeting Oncology, Guangxi Medical University, Nanning 530021, China; (L.F.); (J.N.)
- National Center for International Research of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Guangxi Key Laboratory of Bio-Targeting Theranostics, Guangxi Medical University, Nanning 530021, China
- Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning 530021, China
- Guangxi Talent Highland of Major New Drugs Innovation and Development, Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
3
|
Zheng J, Wang S, Xia L, Sun Z, Chan KM, Bernards R, Qin W, Chen J, Xia Q, Jin H. Hepatocellular carcinoma: signaling pathways and therapeutic advances. Signal Transduct Target Ther 2025; 10:35. [PMID: 39915447 PMCID: PMC11802921 DOI: 10.1038/s41392-024-02075-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 02/09/2025] Open
Abstract
Liver cancer represents a major global health concern, with projections indicating that the number of new cases could surpass 1 million annually by 2025. Hepatocellular carcinoma (HCC) constitutes around 90% of liver cancer cases and is primarily linked to factors incluidng aflatoxin, hepatitis B (HBV) and C (HCV), and metabolic disorders. There are no obvious symptoms in the early stage of HCC, which often leads to delays in diagnosis. Therefore, HCC patients usually present with tumors in advanced and incurable stages. Several signaling pathways are dis-regulated in HCC and cause uncontrolled cell propagation, metastasis, and recurrence of HCC. Beyond the frequently altered and therapeutically targeted receptor tyrosine kinase (RTK) pathways in HCC, pathways involved in cell differentiation, telomere regulation, epigenetic modification and stress response also provide therapeutic potential. Investigating the key signaling pathways and their inhibitors is pivotal for achieving therapeutic advancements in the management of HCC. At present, the primary therapeutic approaches for advanced HCC are tyrosine kinase inhibitors (TKI), immune checkpoint inhibitors (ICI), and combination regimens. New trials are investigating combination therapies involving ICIs and TKIs or anti-VEGF (endothelial growth factor) therapies, as well as combinations of two immunotherapy regimens. The outcomes of these trials are expected to revolutionize HCC management across all stages. Here, we provide here a comprehensive review of cellular signaling pathways, their therapeutic potential, evidence derived from late-stage clinical trials in HCC and discuss the concepts underlying earlier clinical trials, biomarker identification, and the development of more effective therapeutics for HCC.
Collapse
Affiliation(s)
- Jiaojiao Zheng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Siying Wang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Lei Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Zhen Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Kui Ming Chan
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, PR China
| | - René Bernards
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
- Division of Molecular Carcinogenesis, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Wenxin Qin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Jinhong Chen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, PR China.
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Haojie Jin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
4
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
5
|
Devan AR, Nair B, Pradeep GK, Alexander R, Vinod BS, Nath LR, Calina D, Sharifi-Rad J. The role of glypican-3 in hepatocellular carcinoma: Insights into diagnosis and therapeutic potential. Eur J Med Res 2024; 29:490. [PMID: 39369212 PMCID: PMC11453014 DOI: 10.1186/s40001-024-02073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/22/2024] [Indexed: 10/07/2024] Open
Abstract
Glypican-3 (GPC-3) is predominantly found in the placenta and fetal liver, with limited expression in adult tissues. Its re-expression in hepatocellular carcinoma (HCC) and secretion into the serum highlights its potential as a diagnostic marker. GPC-3 is involved in important cellular processes such as proliferation, metastasis, apoptosis, and epithelial-mesenchymal transition through various signaling pathways including Wnt, IGF, YAP, and Hedgehog. To review the structure, biosynthesis, and post-translational modifications of GPC-3, and to elucidate its signaling mechanisms and role as a pro-proliferative protein in HCC, emphasizing its diagnostic and therapeutic potential. A comprehensive literature review was conducted, focusing on the expression of GPC-3 in various tumors, with a special emphasis on HCC. The review synthesized findings from experimental studies and clinical trials, analyzing the overexpression of GPC-3 in HCC, its differentiation from other liver diseases, and its potential as a diagnostic and therapeutic target. GPC-3 overexpression in HCC is linked to aggressive tumor behavior and poor prognosis, including shorter overall and disease-free survival. Additionally, GPC-3 has emerged as a promising therapeutic target. Ongoing investigations, including immunotherapies such as monoclonal antibodies and CAR-T cell therapies, demonstrate potential in inhibiting tumor growth and improving clinical outcomes. The review details the multifaceted roles of GPC-3 in tumorigenesis, including its impact on tumor-associated macrophages, glucose metabolism, and epithelial-mesenchymal transition, all contributing to HCC progression. GPC-3's re-expression in HCC and its involvement in key tumorigenic processes underscore its value as a biomarker for early diagnosis and a target for therapeutic intervention. Further research is warranted to fully exploit GPC-3's diagnostic and therapeutic potential in HCC management.
Collapse
Affiliation(s)
- Aswathy R Devan
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Govind K Pradeep
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Roshini Alexander
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India
| | - Balachandran S Vinod
- Department of Biochemistry, Sree Narayana College, Kollam, Kerala, 691001, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P.O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
6
|
Liu S. AHR regulates liver enlargement and regeneration through the YAP signaling pathway. Heliyon 2024; 10:e37265. [PMID: 39296106 PMCID: PMC11408047 DOI: 10.1016/j.heliyon.2024.e37265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/29/2024] [Indexed: 09/21/2024] Open
Abstract
The aryl hydrocarbon receptor (AHR) is a transcription factor activated by ligands that participates in many important physiological processes. Although AHR activation is associated with hepatomegaly, the underlying mechanism remains unclear. This study evaluated the effects of AHR activation on liver enlargement and regeneration in various transgenic mice and animal models. Activation of AHR by the non-toxic ligand YH439 significantly induced liver/body weight ratio in wild-type mice (1.37-fold) and AHRfl/fl.ALB-CreERT2 mice (1.54-fold). However, these effects not present in AHRΔHep mice. Additionally, the activation of AHR promotes hepatocyte enlargement (1.43-fold or 1.41-fold) around the central vein (CV) and increases number of Ki67+ cells (42.5-fold or 48.8-fold) around the portal vein (PV) in wild-type mice and AHRfl/fl.ALB-CreERT2 mice. In the 70 % partial hepatectomy (PHx) model, YH439 significantly induced hepatocyte enlargement (1.40-fold) and increased number of Ki67+ cells (3.97-fold) in AHRfl/fl.ALB-CreERT2 mice. However, these effects were not observed in AHRΔHep mice. Co-immunoprecipitation results suggested a potential protein-protein interaction between AHR and Yes-associated protein (YAP). Disruption of the association between YAP and transcription enhancer domain family member (TEAD) significantly inhibited AHR-induced liver enlargement and regeneration. Furthermore, AHR failed to induce liver enlargement and regeneration in YAPΔHep mice. Blocking the YAP signaling pathway effectively eliminated AHR-induced liver enlargement and regeneration. This study revealed the molecular mechanism of AHR regulation of liver size and regeneration through the activation of AHR-TEAD signaling pathway, thereby offering novel insights into the physiological role of AHR. These findings provide a theoretical foundation for the prevention and treatment of disorders associated with liver regeneration.
Collapse
Affiliation(s)
- Shenghui Liu
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| |
Collapse
|
7
|
Wehrle CJ, Panconesi R, Satish S, Maspero M, Jiao C, Sun K, Karakaya O, Allkushi E, Modaresi Esfeh J, Whitsett Linganna M, Ma WW, Fujiki M, Hashimoto K, Miller C, Kwon DCH, Aucejo F, Schlegel A. The Impact of Biliary Injury on the Recurrence of Biliary Cancer and Benign Disease after Liver Transplantation: Risk Factors and Mechanisms. Cancers (Basel) 2024; 16:2789. [PMID: 39199562 PMCID: PMC11352383 DOI: 10.3390/cancers16162789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/02/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Liver transplantation is known to generate significant inflammation in the entire organ based on the metabolic profile and the tissue's ability to recover from the ischemia-reperfusion injury (IRI). This cascade contributes to post-transplant complications, affecting both the synthetic liver function (immediate) and the scar development in the biliary tree. The new occurrence of biliary strictures, and the recurrence of malignant and benign liver diseases, such as cholangiocarcinoma (CCA) and primary sclerosing cholangitis (PSC), are direct consequences linked to this inflammation. The accumulation of toxic metabolites, such as succinate, causes undirected electron flows, triggering the releases of reactive oxygen species (ROS) from a severely dysfunctional mitochondrial complex 1. This initiates the inflammatory IRI cascade, with subsequent ischemic biliary stricturing, and the upregulation of pro-tumorigenic signaling. Such inflammation is both local and systemic, promoting an immunocompromised status that can lead to the recurrence of underlying liver disease, both malignant and benign in nature. The traditional treatment for CCA was resection, when possible, followed by cytotoxic chemotherapy. Liver transplant oncology is increasingly recognized as a potentially curative approach for patients with intrahepatic (iCCA) and perihilar (pCCA) cholangiocarcinoma. The link between IRI and disease recurrence is increasingly recognized in transplant oncology for hepatocellular carcinoma. However, smaller numbers have prevented similar analyses for CCA. The mechanistic link may be even more critical in this disease, as IRI causes the most profound damage to the intrahepatic bile ducts. This article reviews the underlying mechanisms associated with biliary inflammation and biliary pathology after liver transplantation. One main focus is on the link between transplant-related IRI-associated inflammation and the recurrence of cholangiocarcinoma and benign liver diseases of the biliary tree. Risk factors and protective strategies are highlighted.
Collapse
Affiliation(s)
- Chase J. Wehrle
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Rebecca Panconesi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Sangeeta Satish
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Marianna Maspero
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, 20133 Milan, Italy
| | - Chunbao Jiao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Keyue Sun
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Omer Karakaya
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| | - Erlind Allkushi
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Jamak Modaresi Esfeh
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Maureen Whitsett Linganna
- Department of Gastroenterology and Transplant Hepatology, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Wen Wee Ma
- Novel Therapeutics Center, Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Masato Fujiki
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Koji Hashimoto
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Charles Miller
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - David C. H. Kwon
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Federico Aucejo
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
| | - Andrea Schlegel
- Transplantation Center, Cleveland Clinic, Cleveland, OH 44195, USA; (C.J.W.); (F.A.)
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; (R.P.); (C.J.)
| |
Collapse
|
8
|
Zhu G, Xie Y, Bian Z, Ma J, Zhen N, Chen T, Zhu J, Mao S, Tang X, Liu L, Gu S, Ding M, Pan Q. N6-methyladenosine modification of LATS2 promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Int J Biol Sci 2024; 20:4146-4161. [PMID: 39247829 PMCID: PMC11379071 DOI: 10.7150/ijbs.92413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/15/2024] [Indexed: 09/10/2024] Open
Abstract
Ferroptosis has attracted extensive interest from cancer researchers due to its substantial potential as a therapeutic target. The role of LATS2, a core component of the Hippo pathway cascade, in ferroptosis initiation in hepatoblastoma (HB) has not yet been investigated. Furthermore, the underlying mechanism of decreased LATS2 expression remains largely unknown. In the present study, we demonstrated decreased LATS2 expression in HB and that LATS2 overexpression inhibits HB cell proliferation by inducing ferroptosis. Increased LATS2 expression reduced glycine and cysteine concentrations via the ATF4/PSAT1 axis. Physical binding between YAP1/ATF4 and the PSAT1 promoter was confirmed through ChIP‒qPCR. Moreover, METTL3 was identified as the writer of the LATS2 mRNA m6A modification at a specific site in the 5' UTR. Subsequently, YTHDF2 recognizes the m6A modification site and recruits the CCR4-NOT complex, leading to its degradation by mRNA deadenylation. In summary, N6-methyladenosine modification of LATS2 facilitates its degradation. Reduced LATS2 expression promotes hepatoblastoma progression by inhibiting ferroptosis through the YAP1/ATF4/PSAT1 axis. Targeting LATS2 is a potential strategy for HB therapy.
Collapse
Affiliation(s)
- Guoqing Zhu
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Yi Xie
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Zhixuan Bian
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Ji Ma
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Ni Zhen
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Tianshu Chen
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Jiabei Zhu
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Siwei Mao
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Xiaochen Tang
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Li Liu
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Song Gu
- Department of Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Miao Ding
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
| | - Qiuhui Pan
- Clinical Laboratory, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P. R. China
- Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai 200127, P. R. China. Address: Dongfang Road No. 1678, Pudong New District, Shanghai 200127, P. R. China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya 572000, P. R. China
| |
Collapse
|
9
|
Lee NY, Choi MG, Lee EJ, Koo JH. Interplay between YAP/TAZ and metabolic dysfunction-associated steatotic liver disease progression. Arch Pharm Res 2024; 47:558-570. [PMID: 38874747 PMCID: PMC11217110 DOI: 10.1007/s12272-024-01501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an increasingly pressing global health challenge, with increasing mortality rates showing an upward trend. Two million deaths occur annually from cirrhosis and liver cancer together each year. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, critically regulate tissue homeostasis and disease progression in the liver. While initial studies have shown that YAP expression is normally restricted to cholangiocytes in healthy livers, the activation of YAP/TAZ is observed in other hepatic cells during chronic liver disease. The disease-driven dysregulation of YAP/TAZ appears to be a critical element in the MASLD progression, contributing to hepatocyte dysfunction, inflammation, and fibrosis. In this study, we focused on the complex roles of YAP/TAZ in MASLD and explored how the YAP/TAZ dysregulation of YAP/TAZ drives steatosis, inflammation, fibrosis, and cirrhosis. Finally, the cell-type-specific functions of YAP/TAZ in different types of hepatic cells, such as hepatocytes, hepatic stellate cells, hepatic macrophages, and biliary epithelial cells are discussed, highlighting the multifaceted impact of YAP/TAZ on liver physiology and pathology.
Collapse
Affiliation(s)
- Na Young Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Myeung Gi Choi
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Eui Jin Lee
- College of Pharmacy, Seoul National University, Seoul, 08826, Korea
| | - Ja Hyun Koo
- Research Institute of Pharmaceutical Sciences and Natural Products Research Institute, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
10
|
Maspero M, Yilmaz S, Cazzaniga B, Raj R, Ali K, Mazzaferro V, Schlegel A. The role of ischaemia-reperfusion injury and liver regeneration in hepatic tumour recurrence. JHEP Rep 2023; 5:100846. [PMID: 37771368 PMCID: PMC10523008 DOI: 10.1016/j.jhepr.2023.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/20/2023] [Accepted: 07/01/2023] [Indexed: 09/30/2023] Open
Abstract
The risk of cancer recurrence after liver surgery mainly depends on tumour biology, but preclinical and clinical evidence suggests that the degree of perioperative liver injury plays a role in creating a favourable microenvironment for tumour cell engraftment or proliferation of dormant micro-metastases. Understanding the contribution of perioperative liver injury to tumour recurrence is imperative, as these pathways are potentially actionable. In this review, we examine the key mechanisms of perioperative liver injury, which comprise mechanical handling and surgical stress, ischaemia-reperfusion injury, and parenchymal loss leading to liver regeneration. We explore how these processes can trigger downstream cascades leading to the activation of the immune system and the pro-inflammatory response, cellular proliferation, angiogenesis, anti-apoptotic signals, and release of circulating tumour cells. Finally, we discuss the novel therapies under investigation to decrease ischaemia-reperfusion injury and increase regeneration after liver surgery, including pharmaceutical agents, inflow modulation, and machine perfusion.
Collapse
Affiliation(s)
- Marianna Maspero
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
| | - Sumeyye Yilmaz
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Beatrice Cazzaniga
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Roma Raj
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Khaled Ali
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vincenzo Mazzaferro
- General Surgery and Liver Transplantation Unit, IRCCS Istituto Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Italy
| | - Andrea Schlegel
- Transplantation Center, Digestive Disease and Surgery Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Immunology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
11
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|
12
|
Mao S, Liu Q, Wu H, Zhu J, Xie Y, Ma J, Zhen N, Pan Q. Phase separation of YAP mediated by coiled-coil domain promotes hepatoblastoma proliferation via activation of transcription. J Gastroenterol Hepatol 2023; 38:1398-1407. [PMID: 36908026 DOI: 10.1111/jgh.16173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
AIM AND BACKGROUND Yes-associated protein (YAP), a key transcriptional co-activator associated with cell fate and tumor progression, has been reported to be a powerful driver of hepatoblastoma (HB). In this study, we investigated the mechanism underlying oncogenic role of YAP in HB. METHODS The expression of YAP in HB tissues was measured through WB and qRT-PCR. The IHC and IF were performed to determine the distribution of YAP. The phase separation of YAP was proved by living cell imaging and FRAP experiment. The effect of YAP phase separation in HB cells in vitro an in vivo were tested using CCK8, flow cytometry, and xenograft tumors. RESULTS YAP was overexpressed and activated in HB. Nuclear YAP formed an active transcriptional site via LLPS to recruit the crucial transcription factor TEAD4. Thus, YAP phase separation facilitated transcription of oncogenic genes and subsequently mediated chemoresistance of HB. Mechanistically, the phase separation ability of YAP depends on the coiled-coil domain, which is a typical phase separation domain. The electrostatic interactions and hydrophobic interactions within YAP are also vital to YAP phase separation. More importantly, YAP inhibitor verteporfin is potential treatment for HB and combination with cisplatin enhanced therapeutic efficacy. CONCLUSIONS Highly expressed and active YAP exerts an oncogenic effect in HB via phase separation and provides new insights for the treatment of HB.
Collapse
Affiliation(s)
- Siwei Mao
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qianrui Liu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Han Wu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jiabei Zhu
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yi Xie
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ji Ma
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
| | - Ni Zhen
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qiuhui Pan
- Department of Laboratory Medicine, Shanghai Children's Medical Center, School of medicine, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Laboratory of Clinical Molecular Diagnostics for Pediatrics, Shanghai, China
- Sanya Women and Children's Hospital Managed by Shanghai Children's Medical Center, Sanya, Hainan, China
| |
Collapse
|
13
|
Zou C, Tan H, Zeng J, Liu M, Zhang G, Zheng Y, Zhang Z. Hepatitis C virus nonstructural protein 4B induces lipogenesis via the Hippo pathway. Arch Virol 2023; 168:113. [PMID: 36920600 PMCID: PMC10017664 DOI: 10.1007/s00705-023-05743-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/07/2023] [Indexed: 03/16/2023]
Abstract
Hepatitis C virus (HCV) infection causes abnormal lipid metabolism in hepatocytes, which leads to hepatic steatosis and even hepatocellular carcinoma. HCV nonstructural protein 4B (NS4B) has been reported to induce lipogenesis, but the underlying mechanism is unclear. In this study, western blots were performed to investigate the effect of NS4B protein levels on key effectors of the Hippo and AKT signaling pathways. Yes-associated protein (YAP) and moesin-ezrin-radixin-like protein (Merlin) are effectors of the Hippo pathway. NS4B downregulated Merlin and phosphorylated YAP (p-YAP) protein expression while increasing the expression of the key AKT pathway proteins p-AKT and NF-κB. By observing the levels of AKT pathway proteins when Merlin was overexpressed or silenced, it was determined that Merlin mediates the AKT pathway. We suggest that HCV NS4B may mediate the AKT signaling pathway by inhibiting the Hippo pathway. Lipid droplets were observed in Huh7.5 cells overexpressing NS4B, and they increased significantly in number when Merlin was silenced. Overexpression of NS4B and Merlin silencing enhanced the expression of sterol regulatory element binding proteins (SREBPs), which have been demonstrated to be key regulatory factors controlling fatty acid synthesis. NS4B and Merlin silencing also enhanced the in vitro proliferative capacity of hepatocellular carcinoma cells. In conclusion, NS4B induces lipogenesis via the effect of the Hippo-YAP pathway on the AKT signaling pathway and thereby plays a significant role in the pathogenesis of HCV-associated diseases.
Collapse
Affiliation(s)
- Chen Zou
- Department of Pathology, The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China. .,Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China.
| | - Hongxi Tan
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Jun Zeng
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Minqi Liu
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Guangping Zhang
- Huadu District People's Hospital of Guangzhou, Guangzhou, 510600, China
| | - Yi Zheng
- Center for Medical Experiments, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518016, China
| | - Zhanfeng Zhang
- Department of Laboratory Science, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510600, China.
| |
Collapse
|
14
|
Gromowski T, Lukacs-Kornek V, Cisowski J. Current view of liver cancer cell-of-origin and proposed mechanisms precluding its proper determination. Cancer Cell Int 2023; 23:3. [PMID: 36609378 PMCID: PMC9824961 DOI: 10.1186/s12935-022-02843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023] Open
Abstract
Hepatocellular carcinoma and intrahepatic cholangiocarcinoma are devastating primary liver cancers with increasing prevalence in many parts of the world. Despite intense investigation, many aspects of their biology are still largely obscure. For example, numerous studies have tackled the question of the cell-of-origin of primary liver cancers using different experimental approaches; they have not, however, provided a clear and undisputed answer. Here, we will review the evidence from animal models supporting the role of all major types of liver epithelial cells: hepatocytes, cholangiocytes, and their common progenitor as liver cancer cell-of-origin. Moreover, we will also propose mechanisms that promote liver cancer cell plasticity (dedifferentiation, transdifferentiation, and epithelial-to-mesenchymal transition) which may contribute to misinterpretation of the results and which make the issue of liver cancer cell-of-origin particularly complex.
Collapse
Affiliation(s)
- Tomasz Gromowski
- grid.5522.00000 0001 2162 9631Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Veronika Lukacs-Kornek
- grid.10388.320000 0001 2240 3300Institute of Experimental Immunology, University Hospital of the Rheinische Friedrich-Wilhelms-University, Bonn, Germany
| | - Jaroslaw Cisowski
- Department of General Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
15
|
Nambiar SM, Lee J, Yanum JA, Garcia V, Jiang H, Dai G. Maternal hepatocytes heterogeneously and dynamically exhibit developmental phenotypes partially via yes-associated protein 1 during pregnancy. Am J Physiol Gastrointest Liver Physiol 2023; 324:G38-G50. [PMID: 36283963 PMCID: PMC9799147 DOI: 10.1152/ajpgi.00197.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 02/08/2023]
Abstract
Pregnancy induces reprogramming of maternal physiology to support fetal development and growth. Maternal hepatocytes undergo hypertrophy and hyperplasia to drive maternal liver growth and alter their gene expression profiles simultaneously. This study aimed to further understand maternal hepatocyte adaptation to pregnancy. Timed pregnancies were generated in mice. In a nonpregnant state, most hepatocytes expressed Cd133, α-fetal protein (Afp) and epithelial cell adhesion molecule (Epcam) mRNAs, whereas overall, at the protein level, they exhibited a CD133-/AFP- phenotype; however, pericentral hepatocytes were EpCAM+. As pregnancy advanced, although most maternal hepatocytes retained Cd133, Afp, and Epcam mRNA expression, they generally displayed a phenotype of CD133+/AFP+, and EpCAM protein expression was switched from pericentral to periportal maternal hepatocytes. In addition, we found that the Hippo/yes-associated protein (YAP) pathway does not respond to pregnancy. Yap1 gene deletion specifically in maternal hepatocytes did not affect maternal liver growth or metabolic zonation. However, the absence of Yap1 gene eliminated CD133 protein expression without interfering with Cd133 transcript expression in maternal livers. We demonstrated that maternal hepatocytes acquire heterogeneous and dynamic developmental phenotypes, resembling fetal hepatocytes, partially via YAP1 through a posttranscriptional mechanism. Moreover, maternal liver is a new source of AFP. In addition, maternal liver grows and maintains its metabolic zonation independent of the Hippo/YAP1 pathway. Our findings revealed a novel and gestation-dependent phenotypic plasticity in adult hepatocytes.NEW & NOTEWORTHY We found that maternal hepatocytes exhibit developmental phenotypes in a temporal and spatial manner, similarly to fetal hepatocytes. They acquire this new property partially via yes-associated protein 1.
Collapse
Affiliation(s)
- Shashank Manohar Nambiar
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Joonyong Lee
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Jennifer Abla Yanum
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Veronica Garcia
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Huaizhou Jiang
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| | - Guoli Dai
- Department of Biology, School of Science, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana
| |
Collapse
|
16
|
Gong W, Han Z, Fang F, Chen L. Yap Expression Is Closely Related to Tumor Angiogenesis and Poor Prognosis in Hepatoblastoma. Fetal Pediatr Pathol 2022; 41:929-939. [PMID: 34978260 DOI: 10.1080/15513815.2021.2020384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background: Hepatoblastoma (HB) is malignant embryonal tumor typically arising in infants and young children. Yes-associated protein (YAP) is aberrantly activated in various tumors; however, the role of YAP in hepatoblastoma is still unexplored. Methods: We assessed YAP expression in hepatoblastoma using immunohistochemistry. The relationships to clinicopathology and survival were analyzed. Results: Positive rate of YAP expression was higher in hepatoblastoma than in adjacent tissues. YAP overexpression was significantly correlated with lymph node metastasis and vascular invasion. Both epithelial and mixed histological types expressed YAP, but high expression was more frequent in MT. YAP expression correlated with VEGF expression, high microvascular density and low overall survival. Multivariable Cox regression analysis revealed that YAP was an independent prognostic factor for survival in children with hepatoblastoma. Conclusion: In hepatoblastoma, YAP may promote VEGF induced angiogenesis and metastases, with resulting poorer prognosis, representing a potential adverse prognostic marker.
Collapse
Affiliation(s)
- Wenchen Gong
- Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.,National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Zhiqiang Han
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Anesthesiology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Fang
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China.,Department of Hepatobiliary Cancer, Liver Cancer Research Center, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
17
|
Wang J, Ge F, Yuan T, Qian M, Yan F, Yang B, He Q, Zhu H. The molecular mechanisms and targeting strategies of transcription factors in cholangiocarcinoma. Expert Opin Ther Targets 2022; 26:781-789. [PMID: 36243001 DOI: 10.1080/14728222.2022.2137020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/13/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cholangiocarcinoma consists of a cluster of malignant biliary tumors that tend to have a poor prognosis, ranking as the second most prevalent type of liver cancer, and their incidence rate has increased globally recently. The high-frequency driving mutations of cholangiocarcinoma, such as KRAS/IDH1/ARID1A/P53, imply the epigenetic instability of cholangiocarcinoma, leading to the dysregulation of various related transcription factors, thus affecting the occurrence and development of cholangiocarcinoma. Increasingly evidence indicates that the high heterogeneity and malignancy of cholangiocarcinoma are closely related to the dysregulation of transcription factors which promote cell proliferation, invasion, migration, angiogenesis, and drug resistance through reprogrammed transcriptional networks. It is of great significance to further explore and summarize the role of transcription factors in cholangiocarcinoma. AREAS COVERED This review summarizes the oncogenic or tumor suppressive roles of key transcription factors in regulating cholangiocarcinoma progression and the potential targeting strategies of transcription factors in cholangiocarcinoma. EXPERT OPINION Cholangiocarcinoma is a type of cancer highly influenced by transcriptional regulation, specifically transcription factors and epigenetic regulatory factors. Targeting transcription factors could be a potential and important strategy that is likely to impact future cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Jiao Wang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fujing Ge
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- The Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Estrogen Regulates the Expression and Localization of YAP in the Uterus of Mice. Int J Mol Sci 2022; 23:ijms23179772. [PMID: 36077170 PMCID: PMC9456404 DOI: 10.3390/ijms23179772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
The dynamics of uterine endometrium is important for successful establishment and maintenance of embryonic implantation and development, along with extensive cell differentiation and proliferation. The tissue event is precisely and complicatedly regulated as several signaling pathways are involved including two main hormones, estrogen and progesterone signaling. We previously showed a novel signaling molecule, Serine/threonine protein kinase 3/4 (STK3/4), which is responded to hormone in the mouse uterine epithelium. However, the role and regulation of its target, YES-associated protein (YAP) remains unknown. In this study, we investigated the expression and regulation of YAP in mouse endometrium. We found that YAP was periodically expressed in the endometrium during the estrous cycle. Furthermore, periodic expression of YAP was shown to be related to the pathway under hormone treatment. Interestingly, estrogen was shown to positively modulate YAP via endometrial epithelial receptors. In addition, the knockdown of YAP showed that YAP regulated various target genes in endometrial cells. The knockdown of YAP down-regulated numerous targets including ADAMTS1, AMOT, AMOTL1, ANKRD1, CTNNA1, MCL1. On the other hand, the expressions of AREG and AXL were increased by its knockdown. These findings imply that YAP responds via Hippo signaling under various intrauterine signals and is considered to play a role in the expression of factors important for uterine endometrium dynamic regulation.
Collapse
|
19
|
Li M, Zhou X, Wang W, Ji B, Shao Y, Du Q, Yao J, Yang Y. Selecting an Appropriate Experimental Animal Model for Cholangiocarcinoma Research. J Clin Transl Hepatol 2022; 10:700-710. [PMID: 36062286 PMCID: PMC9396327 DOI: 10.14218/jcth.2021.00374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/05/2021] [Accepted: 01/03/2022] [Indexed: 12/04/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive biliary tree malignancy with intrahepatic and extra-hepatic subtypes that differ in molecular pathogeneses, epidemiology, clinical manifestations, treatment, and prognosis. The overall prognosis and patient survival remains poor because of lack of early diagnosis and effective treatments. Preclinical in vivo studies have become increasingly paramount as they are helpful not only for the study of the fundamental molecular mechanisms of CCA but also for developing novel and effective therapeutic approaches of this fatal cancer. Recent advancements in cell and molecular biology have made it possible to mimic the pathogenicity of human CCA in chemical-mechanical, infection-induced inflammatory, implantation, and genetically engineered animal models. This review is intended to help investigators understand the particular strengths and weaknesses of the currently used in vivo animal models of human CCA and their related modeling techniques to aid in the selection of the one that is the best for their research needs.
Collapse
Affiliation(s)
- Man Li
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Xueli Zhou
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Baoan Ji
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, USA
| | - Yu Shao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Qianyu Du
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jinghao Yao
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Yan Yang
- Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
- Correspondence to: Yan Yang, Department of Medical Oncology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, China. ORCID: https://orcid.org/0000-0003-0887-2770. Tel: +86-552-3086178, Fax: +86-552-3074480, E-mail:
| |
Collapse
|
20
|
Cigliano A, Zhang S, Ribback S, Steinmann S, Sini M, Ament CE, Utpatel K, Song X, Wang J, Pilo MG, Berger F, Wang H, Tao J, Li X, Pes GM, Mancarella S, Giannelli G, Dombrowski F, Evert M, Calvisi DF, Chen X, Evert K. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:192. [PMID: 35655220 PMCID: PMC9164528 DOI: 10.1186/s13046-022-02394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. Methods We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. Results Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. Conclusions Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesis Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02394-2.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marcella Sini
- Experimental Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cindy E Ament
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Maria G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Fabian Berger
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, 250031, China
| | - Giovanni M Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.
| |
Collapse
|
21
|
Russell JO, Camargo FD. Hippo signalling in the liver: role in development, regeneration and disease. Nat Rev Gastroenterol Hepatol 2022; 19:297-312. [PMID: 35064256 PMCID: PMC9199961 DOI: 10.1038/s41575-021-00571-w] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
The Hippo signalling pathway has emerged as a major player in many aspects of liver biology, such as development, cell fate determination, homeostatic function and regeneration from injury. The regulation of Hippo signalling is complex, with activation of the pathway by diverse upstream inputs including signals from cellular adhesion, mechanotransduction and crosstalk with other signalling pathways. Pathological activation of the downstream transcriptional co-activators yes-associated protein 1 (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ, encoded by WWTR1), which are negatively regulated by Hippo signalling, has been implicated in multiple aspects of chronic liver disease, such as the development of liver fibrosis and tumorigenesis. Thus, development of pharmacological inhibitors of YAP-TAZ signalling has been an area of great interest. In this Review, we summarize the diverse roles of Hippo signalling in liver biology and highlight areas where outstanding questions remain to be investigated. Greater understanding of the mechanisms of Hippo signalling in liver function should help facilitate the development of novel therapies for the treatment of liver disease.
Collapse
Affiliation(s)
- Jacquelyn O Russell
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Fernando D Camargo
- Stem Cell Program, Boston Children's Hospital, Boston, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
22
|
Zheng X, Liu X, Lei Y, Wang G, Liu M. Glypican-3: A Novel and Promising Target for the Treatment of Hepatocellular Carcinoma. Front Oncol 2022; 12:824208. [PMID: 35251989 PMCID: PMC8889910 DOI: 10.3389/fonc.2022.824208] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Glypican-3 (GPC3) is a membrane-associated proteoglycan that is specifically up-regulated in hepatocellular carcinoma (HCC) although rarely or not expressed in normal liver tissues, making it a perfect diagnostic and treatment target for HCC. Several GPC3-based clinical trials are ongoing and recently several innovative GPC3-targeted therapeutic methods have emerged with exciting results, including GPC3 vaccine, anti-GPC3 immunotoxin, combined therapy with immune checkpoint blockades (ICBs), and chimeric antigen receptor (CAR) T or NK cells. Here, we review the value of GPC3 in the diagnosis and prognosis of HCC, together with its signaling pathways, with a specific focus on GPC3-targeted treatments of HCC and some prospects for the future GPC3-based therapeutic strategies in HCC.
Collapse
Affiliation(s)
- Xiufeng Zheng
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Xun Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Yanna Lei
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Poudel S, Cabrera DP, Bhushan B, Manley MW, Gunewardena S, Jaeschke H, Apte U. Hepatocyte-Specific Deletion of Yes-Associated Protein Improves Recovery From Acetaminophen-Induced Acute Liver Injury. Toxicol Sci 2021; 184:276-285. [PMID: 34546377 PMCID: PMC8633918 DOI: 10.1093/toxsci/kfab115] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Overdose of acetaminophen (APAP) is the major cause of acute liver failure (ALF) in the Western world with very limited treatment options. Previous studies from our groups and others have shown that timely activation of liver regeneration is a critical determinant of transplant-free survival of APAP-induced ALF patients. Here, we report that hepatocyte-specific deletion of Yes-associated protein (Yap), the downstream mediator of the Hippo Kinase signaling pathway results in faster recovery from APAP-induced acute liver injury. Initial studies performed with male C57BL/6J mice showed a rapid activation of Yap and its target genes within first 24 h after APAP administration. Treatment of hepatocyte-specific Yap knockout (Yap-KO) mice with 300 mg/kg APAP resulted in equal initial liver injury but a significantly accelerated recovery in Yap-KO mice. The recovery was accompanied by significantly rapid hepatocyte proliferation supported by faster activation of Wnt/β-catenin pathway. Furthermore, Yap-KO mice had significantly earlier and higher pro-regenerative inflammatory response following APAP overdose. Global gene expression analysis indicated that Yap-KO mice had a robust activation of transcription factors involved in response to endoplasmic reticulum stress (XBP1) and maintaining hepatocyte differentiation (HNF4α). In conclusion, these data indicate that inhibition of Yap in hepatocytes results in rapid recovery from APAP overdose due to an earlier activation of liver regeneration.
Collapse
Affiliation(s)
- Samikshya Poudel
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Diego Paine Cabrera
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Bharat Bhushan
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Michael W Manley
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
24
|
Tóth M, Wehling L, Thiess L, Rose F, Schmitt J, Weiler SME, Sticht C, De La Torre C, Rausch M, Albrecht T, Grabe N, Duwe L, Andersen JB, Köhler BC, Springfeld C, Mehrabi A, Kulu Y, Schirmacher P, Roessler S, Goeppert B, Breuhahn K. Co-expression of YAP and TAZ associates with chromosomal instability in human cholangiocarcinoma. BMC Cancer 2021; 21:1079. [PMID: 34615513 PMCID: PMC8496054 DOI: 10.1186/s12885-021-08794-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/25/2022] Open
Abstract
Background Activation of the oncogene yes-associated protein (YAP) is frequently detected in intrahepatic cholangiocarcinoma (iCCA); however, the expression pattern and the functional impact of its paralogue WW domain-containing transcription regulator 1 (WWTR1; synonym: TAZ) are not well described in different CCA subtypes. Methods Immunohistochemical analysis of YAP and TAZ in iCCA and extrahepatic CCA (eCCA) cohorts was performed. YAP/TAZ shuttling and their functional impact on CCA cell lines were investigated. Target genes expression after combined YAP/TAZ inhibition was analyzed. Results Immunohistochemical analysis of iCCA and eCCA revealed YAP or TAZ positivity in up to 49.2%; however, oncogene co-expression was less frequent (up to 23%). In contrast, both proteins were jointly detectable in most CCA cell lines and showed nuclear/cytoplasmic shuttling in a cell density-dependent manner. Next to the pro-proliferative function of YAP/TAZ, both transcriptional co-activators cooperated in the regulation of a gene signature that indicated the presence of chromosomal instability (CIN). A correlation between YAP and the CIN marker phospho-H2A histone family member X (pH2AX) was particularly observed in tissues from iCCA and distal CCA (dCCA). The presence of the CIN genes in about 25% of iCCA was statistically associated with worse prognosis. Conclusions YAP and TAZ activation is not uncoupled from cell density in CCA cells and both factors cooperatively contribute to proliferation and expression of CIN-associated genes. The corresponding group of CCA patients is characterized by CIN and may benefit from YAP/TAZ-directed therapies. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08794-5.
Collapse
Affiliation(s)
- Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Lilija Wehling
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Centre for Organismal Studies/BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lena Thiess
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Jennifer Schmitt
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Carsten Sticht
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Melina Rausch
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Niels Grabe
- Hamamatsu Tissue Imaging and Analysis Center (TIGA), BioQuant, Heidelberg University, Heidelberg, Germany
| | - Lea Duwe
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany;, Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases, University Hospital Heidelberg, Heidelberg, Germany;, Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Arianeb Mehrabi
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Yakup Kulu
- Department of General Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.
| |
Collapse
|
25
|
Campbell SA, Stephan TL, Lotto J, Cullum R, Drissler S, Hoodless PA. Signalling pathways and transcriptional regulators orchestrating liver development and cancer. Development 2021; 148:272023. [PMID: 34478514 DOI: 10.1242/dev.199814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver development is controlled by key signals and transcription factors that drive cell proliferation, migration, differentiation and functional maturation. In the adult liver, cell maturity can be perturbed by genetic and environmental factors that disrupt hepatic identity and function. Developmental signals and fetal genetic programmes are often dysregulated or reactivated, leading to dedifferentiation and disease. Here, we highlight signalling pathways and transcriptional regulators that drive liver cell development and primary liver cancers. We also discuss emerging models derived from pluripotent stem cells, 3D organoids and bioengineering for improved studies of signalling pathways in liver cancer and regenerative medicine.
Collapse
Affiliation(s)
| | - Tabea L Stephan
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada.,Program in Cell and Developmental Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada.,School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
26
|
Qian X, Zhang W, Yang H, Zhang L, Kang N, Lai J. Role of Yes-associated Protein-1 in Gastrointestinal Cancers and Hepatocellular Carcinoma. EXPLORATORY RESEARCH AND HYPOTHESIS IN MEDICINE 2021; 6:110-117. [PMID: 34589656 PMCID: PMC8478289 DOI: 10.14218/erhm.2021.00017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Yes-associated protein-1 (YAP1) is a potent transcriptional co-activator and functions as an important downstream effector of the Hippo signaling pathway, which is key to regulating cell proliferation, apoptosis, and organ growth. YAP1 has been implicated as an oncogene for various human cancers including gastrointestinal cancers and hepatocellular carcinoma (HCC). YAP1 promotes tumorigenesis and cancer progression by multiple mechanisms, such as by promoting malignant phenotypes, expanding cancer stem cells, and inducing epithelial-mesenchymal transition. YAP1 overexpression or its activated forms are associated with advanced pathological grades and poor prognosis of cancer, and therefore targeting YAP1 may open a fertile avenue for cancer therapy. In this review, we summarize the recent evidence regarding the role of YAP1 in the carcinogenesis of gastrointestinal cancers and HCC.
Collapse
Affiliation(s)
- Xia Qian
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Wei Zhang
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Hua Yang
- Department of Ophthalmology, Emory Eye Center, Emory University, Atlanta, GA, USA
| | - Lanjing Zhang
- Department of Pathology, Princeton Medical center, Rutgers University, Plainsboro, NJ, USA
| | - Ningling Kang
- Tumor Microenvironment and Metastasis, Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Jinping Lai
- Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA, USA
- Correspondence to: Jinping Lai, Department of Pathology and Laboratory Medicine, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95825, USA. Tel:+1 916-973-7260, Fax:+1 916-973-7283,
| |
Collapse
|
27
|
Nguyen-Lefebvre AT, Selzner N, Wrana JL, Bhat M. The hippo pathway: A master regulator of liver metabolism, regeneration, and disease. FASEB J 2021; 35:e21570. [PMID: 33831275 DOI: 10.1096/fj.202002284rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 03/04/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022]
Abstract
The liver is the only visceral organ in the body with a tremendous capacity to regenerate in response to insults that induce inflammation, cell death, and injury. Liver regeneration is a complicated process involving a well-orchestrated activation of non-parenchymal cells in the injured area and proliferation of undamaged hepatocytes. Furthermore, the liver has a Hepatostat, defined as adjustment of its volume to that required for homeostasis. Understanding the mechanisms that control different steps of liver regeneration is critical to informing therapies for liver repair, to help patients with liver disease. The Hippo signaling pathway is well known for playing an essential role in the control and regulation of liver size, regeneration, stem cell self-renewal, and liver cancer. Thus, the Hippo pathway regulates dynamic cell fates in liver, and in absence of its downstream effectors YAP and TAZ, liver regeneration is severely impaired, and the proliferative expansion of liver cells blocked. We will mainly review upstream mechanisms activating the Hippo signaling pathway following partial hepatectomy in mouse model and patients, its roles during different steps of liver regeneration, metabolism, and cancer. We will also discuss how targeting the Hippo signaling cascade might improve liver regeneration and suppress liver tumorigenesis.
Collapse
Affiliation(s)
- Anh Thu Nguyen-Lefebvre
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada
| | - Nazia Selzner
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| | | | - Mamatha Bhat
- Department of Medicine, Multi-Organ Transplant Program, Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
28
|
Lu X, Peng B, Chen G, Pes MG, Ribback S, Ament C, Xu H, Pal R, Rodrigues PM, Banales JM, Evert M, Calvisi DF, Chen X, Fan B, Wang J. YAP Accelerates Notch-Driven Cholangiocarcinogenesis via mTORC1 in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1651-1667. [PMID: 34129844 DOI: 10.1016/j.ajpath.2021.05.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 02/08/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a lethal malignant neoplasm with limited therapeutic options. Previous studies have found that Notch1 overexpression alone suffices to induce iCCA in the mouse, albeit after long latency. The current study found that activation of the Yes-associated protein (Yap) proto-oncogene occurs during Notch1-driven iCCA progression. After co-expressing activated Notch1 intracellular domain (Nicd) and Yap (YapS127A) in the mouse liver, rapid iCCA formation and progression occurred in Nicd/Yap mice. Mechanistically, an increased expression of amino acid transporters and activation of the mammalian target of rapamycin complex 1 (mTORC1) signaling pathway was detected in Nicd/Yap mouse liver tumors. Significantly, the genetic deletion of Raptor, the major mTORC1 component, completely suppressed iCCA development in Nicd/Yap mice. Elevated expression of Notch1, YAP, amino acid transporters, and members of the mTORC1 pathway was also detected ubiquitously in a collection of human iCCA specimens. Their levels were associated with a poor patient outcome. This study demonstrates that Notch and YAP concomitant activation is frequent in human cholangiocarcinogenesis. Notch and YAP synergize to promote iCCA formation by activating the mTORC1 pathway.
Collapse
Affiliation(s)
- Xinjun Lu
- Department of Hepatic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Baogang Peng
- Department of Hepatic Surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ge Chen
- University of Bristol, Bristol, United Kingdom
| | - Mario G Pes
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Hongwei Xu
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California; Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Sichuan, China
| | - Rajesh Pal
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain; National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd), ISCIII, Madrid, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California
| | - Biao Fan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, California; School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
29
|
Kim N, Kim S, Lee MW, Jeon HJ, Ryu H, Kim JM, Lee HJ. MITF Promotes Cell Growth, Migration and Invasion in Clear Cell Renal Cell Carcinoma by Activating the RhoA/YAP Signal Pathway. Cancers (Basel) 2021; 13:2920. [PMID: 34208068 PMCID: PMC8230652 DOI: 10.3390/cancers13122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 06/08/2021] [Indexed: 12/16/2022] Open
Abstract
Microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor involved in the lineage-specific regulation of melanocytes, osteoclasts and mast cells. MITF is also involved in the progression of melanomas and other carcinomas, including the liver, pancreas and lung. However, the role of MITF in clear cell renal cell carcinoma (ccRCC) is largely unknown. This study investigates the functional role of MITF in cancer and the molecular mechanism underlying disease progression in ccRCC. MITF knockdown inhibited cell proliferation and shifted the cell cycle in ccRCC cells. In addition, MITF knockdown reduced wound healing, cell migration and invasion compared with the controls. Conversely, MITF overexpression in SN12C and SNU482 cells increased cell migration and invasion. Overexpression of MITF activated the RhoA/YAP signaling pathway, which regulates cell proliferation and invasion, and increased YAP signaling promoted cell cycle-related protein expression. Additionally, tumor formation was impaired by MITF knockdown and enhanced by MITF overexpression in vivo. In summary, MITF expression was associated with aggressive tumor behavior, and increased the migratory and invasive capabilities of ccRCC cells. These effects were reversed by MITF suppression. These results suggest that MITF is a potential therapeutic target for the treatment of ccRCC.
Collapse
Affiliation(s)
- Nayoung Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (N.K.); (S.K.)
| | - Solbi Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (N.K.); (S.K.)
| | - Myung-Won Lee
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (M.-W.L.); (H.R.)
| | - Heung-Jin Jeon
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 34134, Korea;
| | - Hyewon Ryu
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (M.-W.L.); (H.R.)
| | - Jin-Man Kim
- Department of Pathology, College of Medicine, Chungnam National University, Daejeon 34134, Korea;
| | - Hyo-Jin Lee
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (N.K.); (S.K.)
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 34134, Korea; (M.-W.L.); (H.R.)
- Infection Control Convergence Research Center, College of Medicine, Chungnam National University, Daejeon 34134, Korea;
| |
Collapse
|
30
|
Prochownik EV. Reconciling the Biological and Transcriptional Variability of Hepatoblastoma with Its Mutational Uniformity. Cancers (Basel) 2021; 13:cancers13091996. [PMID: 33919162 PMCID: PMC8122429 DOI: 10.3390/cancers13091996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/16/2021] [Indexed: 01/20/2023] Open
Abstract
Simple Summary Hepatoblastoma (HB), the most common form of childhood liver cancer, is associated with dual mutation and/or dysregulation of the Wnt/β-catenin and Hippo pathways in ~50% of cases. However, this mutational simplicity cannot explain HB’s biological and histologic diversity. This discussion focuses upon recent work showing that specific β-catenin mutants are key determinants of this HB variability as well as their metabolic and transcriptional signatures. Dysregulation of the anti-oxidant NFE2L2 pathway also contributes to tumorigenesis by being directly transforming in association with either of the other two factors. The transcriptional overlap of tumors generated by pairs of factors identifies crucial targets that likely mediate HB tumorigenesis, behavior and appearance. Abstract Hepatoblastoma (HB), the most common childhood liver cancer, is associated with seven distinct histologic subtypes and variable degrees of clinical aggressiveness and presentation. Yet it is among the least genomically altered tumors known, with about half of HBs showing mutation and/or dysregulation of the Wnt/β-catenin and Hippo pathways. This raises the question of how this mutational simplicity can generate such biological and histologic complexity. Recent work shows that the identity of the underlying β-catenin mutation is a major contributor. Mutation or over-expression of the NFE2L2/NRF2 transcription factor, previously thought only to promote anti-oxidant responses, has also recently been shown to accelerate the growth of HBs generated by mutations in the Wnt/β-catenin and Hippo pathways while imparting novel features such as the tumor-associated cysts and necrosis. Moreover, patient-associated NFE2L2 mutations are overtly transforming when co-expressed with either mutant β-catenin or a Hippo pathway effector. The finding that tumorigenesis can be driven by any two arms of the β-catenin/Hippo/NFE2L2 axis has permitted the identification of a small subset of coordinately regulated tumor-specific transcripts, some of whose levels correlate with inferior long-term outcomes in HB and other cancers. Collectively, these findings begin to provide for more refined and molecularly based classification, survival algorithms and design of chemotherapeutic regimens.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, The University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, USA
- The University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA 15232, USA
- The University of Pittsburgh Liver Research Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
31
|
Zhang Y, Liang B, Song X, Wang H, Evert M, Zhou Y, Calvisi DF, Tang L, Chen X. Loss of Apc Cooperates with Activated Oncogenes to Induce Liver Tumor Formation in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:930-946. [PMID: 33545120 DOI: 10.1016/j.ajpath.2021.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/03/2021] [Accepted: 01/14/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) and hepatoblastoma are the major types of primary liver cancer in adulthood and childhood, respectively. Wnt/β-catenin signaling deregulation is one of the most frequent genetic events in hepatocarcinogenesis. APC regulator of WNT signaling pathway (APC) encodes an inhibitor of the Wnt cascade and acts as a tumor suppressor. Germline defects of the APC gene lead to familial adenomatous polyposis, and its somatic mutations occur in multiple tumor types. However, the contribution of APC in hepatocarcinogenesis remains unclear. Therefore, APC mutations and expression patterns were examined in human HCC and hepatoblastoma samples. Whether loss of Apc alone or in cooperation with other oncogenes triggers liver tumor development in vivo was also investigated. sgApc alone could not drive liver tumor formation, but synergized with activated oncogenes (YapS127A, TazS89A, and c-Met) to induce hepatocarcinogenesis. Mechanistically, Apc deletion induced the activation of β-catenin and its downstream targets in mouse liver tumors. Furthermore, Ctnnb1 ablation or TCF4-mediated transcription blockade completely prevented liver tumor formation, indicating the requirement of a functional β-catenin pathway for loss of Apc-driven hepatocarcinogenesis. This study shows that a subset of HCC patients with loss-of-function APC mutations might benefit from therapeutic strategies targeting the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Bioengineering University of California, San Francisco, California
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinhua Song
- Department of Bioengineering University of California, San Francisco, California
| | - Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yi Zhou
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Xin Chen
- Department of Bioengineering University of California, San Francisco, California; Department of Therapeutic Sciences and Liver Center, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
32
|
Xia L, Chen X, Yang J, Zhu S, Zhang L, Yin Q, Hong Y, Chen H, Chen G, Li H. Long Non-Coding RNA-PAICC Promotes the Tumorigenesis of Human Intrahepatic Cholangiocarcinoma by Increasing YAP1 Transcription. Front Oncol 2021; 10:595533. [PMID: 33552968 PMCID: PMC7856545 DOI: 10.3389/fonc.2020.595533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 12/16/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a heterogeneous hepatobiliary tumor with poor prognosis, and it lacks reliable prognostic biomarkers and effective therapeutic targets. Long non-coding RNAs (lncRNAs) have been documented to be involved in the progression of various cancers. However, the role of lncRNAs in ICC remains largely unknown. In the present work, we used bioinformatics analysis to identify the differentially expressed lncRNAs in human ICC tissues, among which lncRNA-PAICC was found to be an independent prognostic marker in ICC. Moreover, lncRNA-PAICC promoted the proliferation and invasion of ICC cells. Mechanistically, lncRNA-PAICC acted as a competitive endogenous RNA (ceRNA) that directly sponged the tumor suppressive microRNAs miR-141-3p and miR-27a-3p. The competitive binding property was essential for lncRNA-PAICC to promote tumor growth and metastasis through activating the Hippo pathway. In summary, our results highlighted the important role of the lncRNA-PAICC-miR-141-3p/27a-3p-Yap1 axis in ICC, which offers a novel perspective on the molecular pathogenesis and may serve as a potential target for antimetastatic molecular therapies of ICC.
Collapse
Affiliation(s)
- Long Xia
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Hepatobiliary Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiaolong Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jiarui Yang
- Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shuguang Zhu
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lei Zhang
- Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Biliary-Pancreatic Surgery, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qi Yin
- Department of Project, CookGen Biosciences Center, Guangzhou, China
| | - Yueyu Hong
- Department of Bioinformation, Forevergen Biosciences Co., Ltd, Guangzhou, China
| | - Haoqi Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Guihua Chen
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hua Li
- Department of Hepatic Surgery and Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Hepatoblastoma (HB) is the predominant primary liver tumor in children. While the prognosis is favorable when the tumor can be resected, the outcome is dismal for patients with progressed HB. Therefore, a better understanding of the molecular mechanisms responsible for HB is imperative for early detection and effective treatment. Sequencing analysis of human HB specimens unraveled the pivotal role of Wnt/β-catenin pathway activation in this disease. Nonetheless, β-catenin activation alone does not suffice to induce HB, implying the need for additional alterations. Perturbations of several pathways, including Hippo, Hedgehog, NRF2/KEAP1, HGF/c-Met, NK-1R/SP, and PI3K/AKT/mTOR cascades and aberrant activation of c-MYC, n-MYC, and EZH2 proto-oncogenes, have been identified in HB, although their role requires additional investigation. Here, we summarize the current knowledge on HB molecular pathogenesis, the relevance of the preclinical findings for the human disease, and the innovative therapeutic strategies that could be beneficial for the treatment of HB patients.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Antonio Solinas
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Stefano Cairo
- XenTech, Evry, France,Istituto di Ricerca Pediatrica, Padova, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
34
|
Garcia-Lezana T, Lopez-Canovas JL, Villanueva A. Signaling pathways in hepatocellular carcinoma. Adv Cancer Res 2020; 149:63-101. [PMID: 33579428 DOI: 10.1016/bs.acr.2020.10.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite the recent introduction of new effective systemic agents, the survival of patients with hepatocellular carcinoma (HCC) at advanced stages remains dismal. This underscores the need for new therapies, which has spurred extensive research on the identification of the main drivers of pathway de-regulation as a source of novel therapeutic targets. Frequently altered pathways in HCC involve growth factor receptors (e.g., VEGFR, FGFR, TGFA, EGFR, IGFR) and/or its cytoplasmic intermediates (e.g., PI3K-AKT-mTOR, RAF/ERK/MAPK) as well as key pathways in cell differentiation (e.g., Wnt/β-catenin, JAK/STAT, Hippo, Hedgehog, Notch). Somatic mutations, chromosomal aberrations and epigenetic changes are common mechanisms for pathway deregulation in HCC. Aberrant pathway activation has also been explored as a biomarker to predict response to specific therapies, but currently, these strategies are not implemented when deciding systemic therapies in HCC patients. Beyond the well-established molecular cascades, there are numerous emerging signaling pathways also deregulated in HCC (e.g., tumor microenvironment, non-coding RNA, intestinal microbiota), which have opened new avenues for therapeutic exploration.
Collapse
Affiliation(s)
- Teresa Garcia-Lezana
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Juan Luis Lopez-Canovas
- Department of Cell Biology, Physiology and Immunology, Maimonides Institute of Biomedical Research of Córdoba (IMIBIC), University of Córdoba, Córdoba, Spain
| | - Augusto Villanueva
- Division of Liver Diseases, Liver Cancer Program, Department of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States; Division of Hematology and Medical Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| |
Collapse
|
35
|
Cho Y, Park MJ, Kim K, Kim SW, Kim W, Oh S, Lee JH. Reactive oxygen species-induced activation of Yes-associated protein-1 through the c-Myc pathway is a therapeutic target in hepatocellular carcinoma. World J Gastroenterol 2020; 26:6599-6613. [PMID: 33268949 PMCID: PMC7673967 DOI: 10.3748/wjg.v26.i42.6599] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/27/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The Hippo signaling pathway regulates organ size by regulating cell proliferation and apoptosis with terminal effectors including Yes-associated protein-1 (YAP-1). Dysregulation in Hippo pathway has been proposed as one of the therapeutic targets in hepatocarcinogenesis. The levels of reactive oxygen species (ROS) increase during the progression from early to advanced hepatocellular carcinoma (HCC).
AIM To study the activation of YAP-1 by ROS-induced damage in HCC and the involved signaling pathway.
METHODS The expression of YAP-1 in HCC cells (Huh-7, HepG2, and SNU-761) was quantified using real-time polymerase chain reaction and immunoblotting. Human HCC cells were treated with H2O2, which is a major component of ROS in living organisms, and with either YAP-1 small interfering RNA (siRNA) or control siRNA. To investigate the role of YAP-1 in HCC cells under oxidative stress, MTS assays were performed. Immunoblotting was performed to evaluate the signaling pathway responsible for the activation of YAP-1. Eighty-eight surgically resected frozen HCC tissue samples and 88 nontumor liver tissue samples were used for gene expression analyses.
RESULTS H2O2 treatment increased the mRNA and protein expression of YAP-1 in HCC cells (Huh-7, HepG2, and SNU-761). Suppression of YAP-1 using siRNA transfection resulted in a significant decrease in tumor proliferation during H2O2 treatment both in vitro and in vivo (both P < 0.05). The oncogenic action of YAP-1 occurred via the activation of the c-Myc pathway, leading to the upregulation of components of the unfolded protein response (UPR), including 78-kDa glucose-regulated protein and activating transcription factor-6 (ATF-6). The YAP-1 mRNA levels in human HCC tissues were upregulated by 2.6-fold compared with those in nontumor tissues (P < 0.05) and were positively correlated with the ATF-6 Levels (Pearson’s coefficient = 0.299; P < 0.05).
CONCLUSION This study shows a novel connection between YAP-1 and the UPR through the c-Myc pathway during oxidative stress in HCC. The ROS-induced activation of YAP-1 via the c-Myc pathway, which leads to the activation of the UPR pathway, might be a therapeutic target in HCC.
Collapse
Affiliation(s)
- Yuri Cho
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, South Korea
| | - Min Ji Park
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, South Korea
| | - Koeun Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, South Korea
| | - Sun Woong Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, South Korea
| | - Wonjin Kim
- Department of Internal Medicine, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul 06135, South Korea
| | - Sooyeon Oh
- Department of Internal Medicine, Chaum Life Center, CHA University School of Medicine, Seoul 06062, South Korea
| | - Joo Ho Lee
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam 13496, Bundang gu, South Korea
| |
Collapse
|
36
|
Buckarma EH, Werneburg NW, Conboy CB, Kabashima A, O'Brien DR, Wang C, Ilyas SI, Smoot RL. The YAP-Interacting Phosphatase SHP2 Can Regulate Transcriptional Coactivity and Modulate Sensitivity to Chemotherapy in Cholangiocarcinoma. Mol Cancer Res 2020; 18:1574-1588. [PMID: 32646966 PMCID: PMC7541657 DOI: 10.1158/1541-7786.mcr-20-0165] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/15/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023]
Abstract
The Hippo pathway effector Yes-associated protein (YAP) is localized to the nucleus and transcriptionally active in a number of tumor types, including a majority of human cholangiocarcinomas. YAP activity has been linked to chemotherapy resistance and has been shown to rescue KRAS and BRAF inhibition in RAS/RAF-driven cancers; however, the underlying mechanisms of YAP-mediated chemoresistance have yet to be elucidated. Herein, we report that the tyrosine phosphatase SHP2 directly regulates the activity of YAP by dephosphorylating pYAPY357 even in the setting of RAS/RAF mutations, and that diminished SHP2 phosphatase activity is associated with chemoresistance in cholangiocarcinomas. A screen for YAP-interacting tyrosine phosphatases identified SHP2, and characterization of cholangiocarcinomas cell lines demonstrated an inverse relationship between SHP2 levels and pYAPY357. Human sequencing data demonstrated lower SHP2 levels in cholangiocarcinomas tumors as compared with normal liver. Cell lines with low SHP2 expression and higher levels of pYAPY357 were resistant to gemcitabine and cisplatin. In cholangiocarcinomas cells with high levels of SHP2, pharmacologic inhibition or genetic deletion of SHP2 increased YAPY357 phosphorylation and expression of YAP target genes, including the antiapoptotic regulator MCL1, imparting resistance to gemcitabine and cisplatin. In vivo evaluation of chemotherapy sensitivity demonstrated significant resistance in xenografts with genetic deletion of SHP2, which could be overcome by utilizing an MCL1 inhibitor. IMPLICATIONS: These findings demonstrate a role for SHP2 in regulating YAP activity and chemosensitivity, and suggest that decreased phosphatase activity may be a mechanism of chemoresistance in cholangiocarcinoma via a MCL1-mediated mechanism.
Collapse
Affiliation(s)
| | - Nathan W Werneburg
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | | | - Ayano Kabashima
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Daniel R O'Brien
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Chen Wang
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Sumera I Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota
| | - Rory L Smoot
- Department of Surgery, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
37
|
Liu Y, Wang X, Yang Y. Hepatic Hippo signaling inhibits development of hepatocellular carcinoma. Clin Mol Hepatol 2020; 26:742-750. [PMID: 32981290 PMCID: PMC7641559 DOI: 10.3350/cmh.2020.0178] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 09/10/2020] [Indexed: 12/21/2022] Open
Abstract
Primary liver cancer is one of the most common cancer worldwide. Hepatocellular carcinoma (HCC) in particular, is the second leading cause of cancer deaths in the world. The Hippo signaling pathway has emerged as a major oncosuppressive pathway that plays critical roles inhibiting hepatocyte proliferation, survival, and HCC formation. A key component of the Hippo pathway is the inhibition of yes-associated protein (YAP)/transcriptional co-activator with PDZ-binding motif (TAZ) transcription factors by the Hippo kinase cascade. Aberrant activation of YAP or TAZ has been found in several human cancers including HCC. It is also well established that YAP/TAZ activation in hepatocytes causes HCC in mouse models, indicating that YAP/TAZ are potential therapeutic targets for human liver cancer. In this review, we summarize the recent findings regarding the multifarious roles of Hippo/YAP/TAZ in HCC development, and focus on their cell autonomous roles in controlling hepatocyte proliferation, differentiation, survival and metabolism as well as their non-cell autonomous in shaping the tumor microenvironment.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Xiaohui Wang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA.,Harvard Stem Cell Institute, Boston, MA, USA.,Program in Gastrointestinal Malignancies, Dana-Farber/Harvard Cancer Center, Boston, MA, USA
| |
Collapse
|
38
|
Banales JM, Marin JJG, Lamarca A, Rodrigues PM, Khan SA, Roberts LR, Cardinale V, Carpino G, Andersen JB, Braconi C, Calvisi DF, Perugorria MJ, Fabris L, Boulter L, Macias RIR, Gaudio E, Alvaro D, Gradilone SA, Strazzabosco M, Marzioni M, Coulouarn C, Fouassier L, Raggi C, Invernizzi P, Mertens JC, Moncsek A, Ilyas SI, Heimbach J, Koerkamp BG, Bruix J, Forner A, Bridgewater J, Valle JW, Gores GJ. Cholangiocarcinoma 2020: the next horizon in mechanisms and management. Nat Rev Gastroenterol Hepatol 2020; 17:557-588. [PMID: 32606456 PMCID: PMC7447603 DOI: 10.1038/s41575-020-0310-z] [Citation(s) in RCA: 1475] [Impact Index Per Article: 295.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma (CCA) includes a cluster of highly heterogeneous biliary malignant tumours that can arise at any point of the biliary tree. Their incidence is increasing globally, currently accounting for ~15% of all primary liver cancers and ~3% of gastrointestinal malignancies. The silent presentation of these tumours combined with their highly aggressive nature and refractoriness to chemotherapy contribute to their alarming mortality, representing ~2% of all cancer-related deaths worldwide yearly. The current diagnosis of CCA by non-invasive approaches is not accurate enough, and histological confirmation is necessary. Furthermore, the high heterogeneity of CCAs at the genomic, epigenetic and molecular levels severely compromises the efficacy of the available therapies. In the past decade, increasing efforts have been made to understand the complexity of these tumours and to develop new diagnostic tools and therapies that might help to improve patient outcomes. In this expert Consensus Statement, which is endorsed by the European Network for the Study of Cholangiocarcinoma, we aim to summarize and critically discuss the latest advances in CCA, mostly focusing on classification, cells of origin, genetic and epigenetic abnormalities, molecular alterations, biomarker discovery and treatments. Furthermore, the horizon of CCA for the next decade from 2020 onwards is highlighted.
Collapse
Affiliation(s)
- Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain.
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Angela Lamarca
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pedro M Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
| | - Shahid A Khan
- Department of Surgery and Cancer, Imperial College London, Hammersmith Hospital, London, UK
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Jesper B Andersen
- Biotech Research and Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Maria J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute - Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastian, Spain
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
| | - Luca Fabris
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Luke Boulter
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Rocio I R Macias
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Experimental Hepatology and Drug Targeting (HEVEFARM), IBSAL, University of Salamanca, Salamanca, Spain
| | - Eugenio Gaudio
- Division of Human Anatomy, Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | | | - Mario Strazzabosco
- Department of Molecular Medicine, University of Padua School of Medicine, Padua, Italy
- Digestive Disease Section, Yale University School of Medicine, New Haven, CT, USA
| | - Marco Marzioni
- Clinic of Gastroenterology and Hepatology, Universita Politecnica delle Marche, Ancona, Italy
| | | | - Laura Fouassier
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine (CRSA), Paris, France
| | - Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pietro Invernizzi
- Division of Gastroenterology and Center of Autoimmune Liver Diseases, Department of Medicine and Surgery, San Gerardo Hospital, University of Milano, Bicocca, Italy
| | - Joachim C Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zürich, Switzerland
| | - Sumera I. Ilyas
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | | | | | - Jordi Bruix
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alejandro Forner
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, "Instituto de Salud Carlos III"), San Sebastian, Spain
- Barcelona Clinic Liver Cancer (BCLC) group, Liver Unit, Hospital Clínic of Barcelona, Fundació Clínic per a la Recerca Biomédica (FCRB), IDIBAPS, University of Barcelona, Barcelona, Spain
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Juan W Valle
- Department of Medical Oncology, The Christie NHS Foundation Trust, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
39
|
LINC00689 participates in proliferation, chemoresistance and metastasis via miR-31-5p/YAP/β-catenin axis in colorectal cancer. Exp Cell Res 2020; 395:112176. [PMID: 32682784 DOI: 10.1016/j.yexcr.2020.112176] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 12/27/2022]
Abstract
As a kind of high-incidence malignant tumors in the digestive tract, colorectal cancer (CRC) has extremely morbidity and mortality in the population. LncRNAs have been proved to regulate the proliferation, chemoresistance and metastasis of tumors including CRC. LINC00689 and miR-31-5p in CRC were found misregulated in CRC by TCGA analysis. However, the mechanism of LINC00689 and miR-31-5p in regulating CRC remains unknown. The expression levels of LINC00689, miR-31-5p and LATS2 in CRC tissues and cell lines were examined by qRT-PCR assay. Cell proliferation, metastasis (including invasion and migration) were quantified by MTT assay, colony formation and Transwell assay, respectively. Western blotting assay was then performed to verify the levels of YAP/β-catenin and metastasis-related proteins. Dual-luciferase reporter assay and RIP assay were performed to evaluate the interaction between LINC00689 (LATS2) and miR-31-5p. Moreover, the function of LINC00689 and miR-31-5p were confirmed by CRC xenograft in nude mice. LINC00689 was decreased while miR-31-5p was increased in CRC. The overexpression of LINC00689 or the knockdown of miR-31-5p inhibited cell proliferation, chemoresistance and metastasis of CRC cells. Meanwhile, the up-regulated LATS2 suppressed the activity of YAP/β-catenin pathway to repress CRC occurrence. Silencing LATS2 reversed the inhibition effects of overexpression of LINC00689 or knockdown of miR-31-5p on proliferation, chemoresistance and metastasis of CRC cells. LINC00689 indeed acted as a miR-31-5p sponge to inhibit CRC proliferation, chemoresistance and metastasis through up-regulating LATS2 and repressing YAP/β-catenin signaling pathway.
Collapse
|
40
|
Abstract
Glypicans are a family of heparan sulfate proteoglycans that are attached to the cell membrane via a glycosylphosphatidylinositol anchor. Glypicans interact with multiple ligands, including morphogens, growth factors, chemokines, ligands, receptors, and components of the extracellular matrix through their heparan sulfate chains and core protein. Therefore, glypicans can function as coreceptors to regulate cell proliferation, cell motility, and morphogenesis. In addition, some glypicans are abnormally expressed in cancers, possibly involved in tumorigenesis, and have the potential to be cancer-specific biomarkers. Here, we provide a brief review focusing on the expression of glypicans in various cancers and their potential to be targets for cancer therapy.
Collapse
Affiliation(s)
- Nan Li
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Madeline R Spetz
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
41
|
Werneburg N, Gores GJ, Smoot RL. The Hippo Pathway and YAP Signaling: Emerging Concepts in Regulation, Signaling, and Experimental Targeting Strategies With Implications for Hepatobiliary Malignancies. Gene Expr 2020; 20:67-74. [PMID: 31253203 PMCID: PMC7284105 DOI: 10.3727/105221619x15617324583639] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The Hippo pathway and its effector protein YAP (a transcriptional coactivator) have been identified as important in the biology of both hepatocellular carcinoma and cholangiocarcinoma. First identified as a tumor suppressor pathway in Drosophila, the understanding of the mammalian YAP signaling and its regulation continues to expand. In its "on" function, the canonical regulatory Hippo pathway, a well-described serine/threonine kinase module, regulates YAP function by restricting its subcellular localization to the cytoplasm. In contrast, when the Hippo pathway is "off," YAP translocates to the nucleus and drives cotranscriptional activity. Given the role of Hippo/YAP signaling in hepatic malignancies, investigators have sought to target these molecules; however, standard approaches have not been successful based on the pathways' negative regulatory role. More recently, additional regulatory mechanisms, such as tyrosine phosphorylation, of YAP have been described. These represent positive regulatory events that may be targetable. Additionally, several groups have identified potentiating feed-forward signaling for YAP in multiple contexts, suggesting other experimental therapeutic approaches to interrupt these signaling loops. Herein we explore the current data supporting alternative YAP regulatory pathways, review the described feed-forward signaling cascades that are YAP dependent, and explore targeting strategies that have been employed in preclinical models of hepatic malignancies.
Collapse
Affiliation(s)
- Nathan Werneburg
- *Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Gregory J. Gores
- *Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Rory L. Smoot
- †Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| |
Collapse
|
42
|
Moloudizargari M, Asghari MH, Nabavi SF, Gulei D, Berindan-Neagoe I, Bishayee A, Nabavi SM. Targeting Hippo signaling pathway by phytochemicals in cancer therapy. Semin Cancer Biol 2020; 80:183-194. [PMID: 32428716 DOI: 10.1016/j.semcancer.2020.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 12/14/2022]
Abstract
The current era of cancer research has been continuously advancing upon identifying novel aspects of tumorigenesis and the principal mechanisms behind the unleashed proliferation, invasion, drug resistance and immortality of cancer cells in hopes of exploiting these findings to achieve a more effective treatment for cancer. In pursuit of this goal, the identification of the first components of an extremely important regulatory pathway in Drosophila melanogaster that largely determines cell fate during the developmental stages, ended up in the discovery of the highly sophisticated Hippo signaling cascade. Soon after, it was revealed that deregulation of the components of this pathway either via mutations or through epigenetic alterations can be observed in a vast variety of tumors and these alterations greatly contribute to the neoplastic transformation of cells, their survival, growth and resistance to therapy. As more hidden aspects of this pathway such as its widespread entanglement with other major cellular signaling pathways are continuously being uncovered, many researchers have sought over the past decade to find ways of therapeutic interventions targeting the major components of the Hippo cascade. To date, various approaches such as the use of exogenous targeting miRNAs and different molecular inhibitors have been recruited herein, among which naturally occurring compounds have shown a great promise. On such a basis, in the present work we review the current understanding of Hippo pathway and the most recent evidence on targeting its components using natural plant-derived phytochemicals.
Collapse
Affiliation(s)
- Milad Moloudizargari
- Department of Immunology, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran
| | - Mohammad Hossein Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Babol University of Medical Sciences, Babol 4717647745, Iran; Immunoregulation Research Center, Health Research Institute, Babol University of Medical Sciences, Babol 4717647745, Iran.
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran
| | - Diana Gulei
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania
| | - Ioana Berindan-Neagoe
- MedFuture - Research Center for Advanced Medicine, Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca 400337, Romania; Department of Functional Genomics and Experimental Pathology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca 400337, Romania
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran 1435916471, Iran.
| |
Collapse
|
43
|
Qi Y, Sun D, Yang W, Xu B, Lv D, Han Y, Sun M, Jiang S, Hu W, Yang Y. Mammalian Sterile 20-Like Kinase (MST) 1/2: Crucial Players in Nervous and Immune System and Neurological Disorders. J Mol Biol 2020; 432:3177-3190. [PMID: 32198112 DOI: 10.1016/j.jmb.2020.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 02/25/2020] [Accepted: 03/09/2020] [Indexed: 12/28/2022]
Abstract
As central components of the Hippo signaling pathway in mammals, the mammalian sterile 20-like kinase 1 (MST1) and MST2 protein kinases regulate cell proliferation, survival, and death and are involved in the homeostasis of many tissues. Recent studies have elucidated the roles of MST1 and MST2 in the nervous system and immune system, particularly in neurological disorders, which are influenced by aging. In this review, we provide a comprehensive overview of these research areas. First, the activation mechanisms and roles of MST1 and MST2 in neurons, non-neuronal cells, and immune cells are introduced. The roles of MST1 and MST2 in neurological disorders, including brain tumors, cerebrovascular diseases, neurodegenerative disorders, and neuromuscular disorders, are then presented. Finally, the existing obstacles for further research are discussed. Collectively, the information compiled herein provides a common framework for the function of MST1 and MST2 in the nervous system, should contribute to the design of further experiments, and sheds light on potential treatments for aging associated neurological disorders.
Collapse
Affiliation(s)
- Yating Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dongdong Sun
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Wenwen Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Baoping Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Dewen Lv
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an 710032, China
| | - Meng Sun
- Department of Cardiology, The First Hospital of Shanxi Medical University, 85 Jiefang South Road, Taiyuan 030001, China
| | - Shuai Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wei Hu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
44
|
Luo SY, Kwok HH, Yang PC, Ip MSM, Minna JD, Lam DCL. Expression of large tumour suppressor (LATS) kinases modulates chemotherapy response in advanced non-small cell lung cancer. Transl Lung Cancer Res 2020; 9:294-305. [PMID: 32420069 PMCID: PMC7225163 DOI: 10.21037/tlcr.2020.03.26] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background The Hippo signalling pathway plays an important role in regulating organ size and cell proliferation. Down-regulation of large tumour suppressor (LATS) protein homologs LATS1 or LATS2 has been found in lung cancer. LATS1 and LATS2 are the core components of the Hippo signalling pathway. LATS1 and LATS2 share some conserved structural features and exhibit redundant biological functions. The aim of this study was to dissect the interaction between these two homologs. Methods In lung adenocarcinoma (AD) cells, protein expression of LATS1 and LATS2 were determined by western blotting; cell viability and apoptosis were measured by MTT and annexin V staining after treatment with cisplatin; subcellular distributions of LATS proteins were determined by immunofluorescence microscopy; LATS2 expression was modulated by shRNA-mediated knockdown or ectopic expression in cancer cell lines. Results Manipulation of the expression of these two LATS kinases influenced cisplatin response in advanced lung AD cell lines. High LATS2-to-LATS1 ratio in H2023 cells was associated with cisplatin resistance, while low LATS2-to-LATS1 ratio in CL1-0 and CL83 cells was associated with sensitivity to cisplatin. Manipulating the LATS2-to-LATS1 ratio by LATS2 over-expression in CL1-0 and CL83 rendered them resistant to cisplatin treatment, whereas LATS2 knockdown in H2023 alleviated the LATS2-to-LATS1 ratio and sensitized cancer cells to cisplatin exposure. Conclusions Our data suggested that the ratio of expression of LATS kinases played a role in the modulation of cisplatin sensitivity in advanced lung AD, and targeting of LATS proteins as a novel therapeutic strategy for lung AD deserves further investigation.
Collapse
Affiliation(s)
- Susan Yang Luo
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Hoi-Hin Kwok
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei
| | - Mary Sau-Man Ip
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| | - John Dorrance Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David Chi-Leung Lam
- Department of Medicine, Queen Mary Hospital, University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Ranganathan S, Lopez-Terrada D, Alaggio R. Hepatoblastoma and Pediatric Hepatocellular Carcinoma: An Update. Pediatr Dev Pathol 2020; 23:79-95. [PMID: 31554479 DOI: 10.1177/1093526619875228] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hepatoblastomas (HBs) and pediatric hepatocellular carcinomas (HCCs) together account for almost 80% of primary malignant liver tumors in children and adolescents/young adults. Children's Hepatic International Collaboration (CHIC), Children's Oncology Group (COG), SociétéInternationale d'Oncologie Pédiatrique (SIOP), and International Childhood Liver Tumors Strategy Group trials have contributed to define prognostic factors and risk stratification in these tumors. The recently proposed histologic International Consensus classification of HB and HCC in children based on retrospective analysis from CHIC cases represents the base to define entities with homogeneous clinicopathologic and molecular features. This review will provide a morphologic guide for the upcoming International Liver Tumor treatment trial (Pediatric Hepatic International Tumour Trial) to be conducted through several continents. There will be an emphasis on molecular features and immunohistochemical markers for the definition of the individual histologic subtypes of HB and to better characterize the group of liver tumors in the provisional category of hepatocellular neoplasm-not otherwise specified. A brief overview of HCC in children will also be provided.
Collapse
Affiliation(s)
- Sarangarajan Ranganathan
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Dolores Lopez-Terrada
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| | - Rita Alaggio
- Department of Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pathology, Texas Children's Hospital and Baylor College of Medicine, Houston, Texas
| |
Collapse
|
46
|
Whitlock RS, Yang T, Vasudevan SA, Woodfield SE. Animal Modeling of Pediatric Liver Cancer. Cancers (Basel) 2020; 12:cancers12020273. [PMID: 31979130 PMCID: PMC7072332 DOI: 10.3390/cancers12020273] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/19/2020] [Accepted: 01/19/2020] [Indexed: 01/09/2023] Open
Abstract
Hepatoblastoma (HB) is the most common pediatric liver malignancy. Management of HB requires multidisciplinary efforts. The 5-year overall survival of this disease is about 80% in developed countries. Despite advances in the care of these patients, survival in recurrent or treatment-refractory disease is lower than 50%. This is due to more complex tumor biology, including hepatocellular carcinoma (HCC)-like mutations and expression of aggressive gene signatures leading to chemoresistance, vascular invasion, and metastatic spread. The current treatment protocols for pediatric liver cancer do not incorporate targeted therapies, and the ability to test these therapies is limited due to the inaccessibility of cell lines and mouse models. In this review, we discuss the current status of preclinical animal modeling in pediatric liver cancer, primarily HB. Although HB is a rare cancer, the research community has worked together to develop a range of interesting and relevant mouse models for diverse preclinical studies.
Collapse
Affiliation(s)
- Richard S. Whitlock
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Sanjeev A. Vasudevan
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
| | - Sarah E. Woodfield
- Divisions of Pediatric Surgery and Surgical Research, Michael E. DeBakey Department of Surgery, Pediatric Surgical Oncology Laboratory, Texas Children’s Surgical Oncology Program, Texas Children’s Liver Tumor Program, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; (R.S.W.); (S.A.V.)
- Correspondence: ; Tel.: +1-832-824-4591
| |
Collapse
|
47
|
Zheng C, Luo J, Yang Y, Dong R, Yu FX, Zheng S. YAP Activation and Implications in Patients and a Mouse Model of Biliary Atresia. Front Pediatr 2020; 8:618226. [PMID: 33553074 PMCID: PMC7859521 DOI: 10.3389/fped.2020.618226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 01/20/2023] Open
Abstract
Background and Aim: Biliary atresia (BA), an inflammatory destruction of the bile ducts, leads to liver fibrosis in infants and accounts for half of cases undergoing pediatric liver transplantation. Yes-associated protein (YAP), an effector of the Hippo signaling pathway, is critical in maintaining identities of bile ductal cells. Here, we evaluated the expression of YAP and YAP target genes in BA livers and a rhesus rotavirus (RRV)-induced BA mice model. Methods: Liver specimens collected from 200 BA patients were compared with those of 30 non-BA patients. Model mice liver tissues were also collected. The expression of YAP and YAP target genes were measured by transfection, RNA-seq, immunohistochemistry, immunoblot, and quantitative PCR. Masson's trichrome staining and the Biliary Atresia Research Consortium (BARC) system were utilized to score liver fibrosis status. Results: The expression of YAP is elevated and positively correlated with fibrosis in BA livers. Moreover, ANKRD1, which is identified as the target gene of YAP, is also highly expressed in BA livers. Consistent with clinical data, YAP and ANKRD1 are significantly upregulated in RRV-induced BA mouse model. Conclusions: YAP expression is closely correlated with the bile duct hyperplasia and liver fibrosis, and may serve as an indicator for liver fibrosis and BA progression. This study indicates an involvement of the Hippo signaling pathway in the development of BA, and the YAP induced ANKRD1 expression may also be related to bile duct hyperplasia in BA. This provides a new direction for more in-depth exploration of the etiology and pathogenesis of biliary atresia.
Collapse
Affiliation(s)
- Chao Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Jiaqian Luo
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifan Yang
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Rui Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shan Zheng
- Department of Pediatric Surgery, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
48
|
Kolluri A, Ho M. The Role of Glypican-3 in Regulating Wnt, YAP, and Hedgehog in Liver Cancer. Front Oncol 2019; 9:708. [PMID: 31428581 PMCID: PMC6688162 DOI: 10.3389/fonc.2019.00708] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 07/16/2019] [Indexed: 01/05/2023] Open
Abstract
Glypican-3 (GPC3) is a cell-surface glycoprotein consisting of heparan sulfate glycosaminoglycan chains and an inner protein core. It has important functions in cellular signaling including cell growth, embryogenesis, and differentiation. GPC3 has been linked to hepatocellular carcinoma and a few other cancers, however, the mechanistic role of GPC3 in cancer development remains elusive. Recent breakthroughs including the structural modeling of GPC3 and GPC3-Wnt complexes represent important steps toward deciphering the molecular mechanism of action for GPC3 and how it may regulate cancer signaling and tumor growth. A full understanding of the molecular basis of GPC3-mediated signaling requires elucidation of the dynamics of partner receptors, transducer complexes, and downstream players. Herein, we summarize current insights into the role of GPC3 in regulating cancer development through Wnt and other signaling pathways, including YAP and hedgehog cascades. We also highlight the growing body of work which underlies deciphering how GPC3 is a key player in liver oncogenesis.
Collapse
Affiliation(s)
- Aarti Kolluri
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States.,Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, United States
| | - Mitchell Ho
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
49
|
Sugihara T, Isomoto H, Gores G, Smoot R. YAP and the Hippo pathway in cholangiocarcinoma. J Gastroenterol 2019; 54:485-491. [PMID: 30815737 PMCID: PMC6536462 DOI: 10.1007/s00535-019-01563-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 02/20/2019] [Indexed: 02/04/2023]
Abstract
Cholangiocarcinoma (CCA) has an increasing incidence and remains a difficult to treat malignancy. In a search for more effective treatment options, progress has been made in identifying molecular drivers of oncogenic signaling including IDH mutations and FGFR2 fusions. In addition, multiple investigators have identified increased activity of YAP, the effector protein of the Hippo pathway, in CCA. The Hippo pathway regulates organ size, cellular proliferation, and apoptosis via YAP, a transcriptional co-activator. Targeting of the pathway has been difficult due the lack of a dedicated cell-surface receptor. However, more recently, additional cross-regulatory pathways have been identified that are potentially targetable. In this review, we address the current treatment landscape for CCA, the Hippo pathway broadly, animal models of CCA with attention to Hippo-related models, and the current strategies for targeting YAP.
Collapse
Affiliation(s)
- Takaaki Sugihara
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Hajime Isomoto
- Division of Medicine and Clinical Science, Department of Multidisciplinary Internal Medicine, Tottori University Faculty of Medicine, Yonago, Tottori, Japan
| | - Gregory Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| | - Rory Smoot
- Division of Hepatobiliary and Pancreas Surgery, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
50
|
Abstract
The Hippo signaling pathway is involved in tissue size regulation and tumorigenesis. Genetic deletion or aberrant expression of some Hippo pathway genes lead to enhanced cell proliferation, tumorigenesis, and cancer metastasis. Recently, multiple studies have identified a wide range of upstream regulators of the Hippo pathway, including mechanical cues and ligands of G protein-coupled receptors (GPCRs). Through the activation related G proteins and possibly rearrangements of actin cytoskeleton, GPCR signaling can potently modulate the phosphorylation states and activity of YAP and TAZ, two homologous oncogenic transcriptional co-activators, and major effectors of the Hippo pathway. Herein, we summarize the network, regulation, and functions of GPCR-Hippo signaling, and we will also discuss potential anti-cancer therapies targeting GPCR-YAP signaling.
Collapse
|